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 Distribution network feeder characteristics can typically be divided into 

groups based on factors including length, load distribution along the feeder, 

peak demand, installed capacity, and load profile. By comparing the 

parameters to those of similar feeders with known losses, it is usually 

possible to predict the power losses and technical losses (TL) of the 

respective feeders pretty accurately. However, it is exceedingly difficult and 

time-consuming to estimate the losses with various variables and 

characteristics over such a large area. This paper proposed that through base 

case feeder modeling and simulation utilizing typical network and load data, 

feeders’ peak power loss (PPL) functions can be established as a simple and 

effective power loss estimation method. Hence, the least time-consuming 

way of using a PPL regression equation based on a base case feeder is 

established in this paper to estimate the losses. The flexibility of PPL is 

proven through the case study. In the end, the results obtained between PPL 

and peak power demand (PPD) are demonstrated to be precisely proportional 

and the method is proven as a simple power loss estimation method due to 

the flexibility of the PPL regression equation. 
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1. INTRODUCTION  

Energy losses (EL), whether technical losses (TL) or non-technical losses (NTL) during the 

distribution of electricity have caused financial setbacks for electrical companies. These losses occur during 

times of high demand or stress on the grid and can also lead to voltage fluctuations, increased operating 

expenses, and potential damage to equipment. These losses have also resulted in a decrease in the reliability 

and stability of the electrical system [1]. Nonetheless, even the most advanced distribution systems face 

challenges related to what is known as power losses [2]. Hence, there is a need to accurately understand and 

mitigate losses within the electrical distribution system. By employing precise estimation methods, such as 

regression equations, to quantify losses, utilities can identify areas where energy is being wasted and take 

proactive measures to minimize these losses. This, in turn, contributes to the overall efficiency and reliability 

of the electricity supply chain, ensuring that homes, businesses, and industries receive the energy they require 

without interruptions. A number of theoretical calculation methods to estimate EL are found in the literature 

and are well established such as in reference [3]–[5]. On the other hand, numerical simulations of load flow 

over time intervals are commonly utilized by some researchers to analyze EL precisely in distribution feeders 

[2], [6], [7]. Also, heuristic approaches are found to compute losses, such as heuristic load characteristics  

[8], [9], stochastic simulation [10], [11], data mining clustering approach [12], and clustering algorithm [13]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Machine learning [14], artificial neural networks (ANN) [15], [16], and fuzzy recognition [17] are examples 

of artificial intelligence techniques.  

However, traditionally, running load flow simulations for each feeder section to determine the peak 

power loss (PPL) for each peak power demand (PPD) seems impractical because it requires a large amount of 

data and resources. For instance, Barbosa et al. [7] stressed that the load flow-based approach requires a large 

amount of data, hence it is not always available in practice since it includes network parameters, switching 

configuration, as well as a complete set of actual load profiles or curves for each load in the system [10]. 

Therefore, it is crucial to comprehend and address PPL in distribution systems to maintain the stability and 

resilience of our electrical infrastructure. In order to do that, PPL can be estimated through base case 

modeling and simulation since it requires a significant amount of time, money, and resources to precisely 

model a big distribution network in order to establish the TL. The base case feeder serves as the fundamental 

building block upon which the entire system is constructed. Understanding the base case feeder is vital 

because it offers a foundational configuration that can be adjusted and improved to meet different operational 

requirements, enhance reliability, and accommodate the integration of renewable energy sources. In past 

research, Zhu et al. [18] utilized the base case feeder to assess the economic advantages of the new design, 

which led to enhanced efficiency and an increased capacity to host additional resources. Nevertheless, their 

research does not pertain to improving the estimation of power losses in the distribution system. Thus, there 

is a need to delve into the intricacies of the base case feeder, examining its essential characteristics, functions, 

and its pivotal role in the broader context of modern power distribution, which eventually leads to the 

production of regression equations. 

Regression analysis is a statistical technique used to examine the relationship between a continuous 

value dependent variable, y, and one or more independent variables, x [19]. The premise of linear regression 

is that output values may be roughly predicted from input values using a rule-based regression. To put it 

another way, it relates to the case in which the data set in question and any additional unknown values are 

situated along a hyperplane that connects to a single point. A regression equation expresses the relationship 

between two sets of data. Since it shows the response that depends on the changed variable, a regression 

equation is adaptable. When dealing with PPL within an electrical distribution system, regression analysis 

becomes a valuable tool for identifying and measuring the variables that contribute to these losses. The 

connection between the PPL and the PPD is the focus of this paper in order to develop a simple estimation 

method. The PPD serves as the dependent variable, while the PPL serves as an independent variable. PPL 

functions are one of the straightforward and effective methods for estimating losses. A regression analysis 

was used by Manusov and Mogilenko [20] to evaluate the power losses in an electrical network. However, 

instead of using the base case feeder model to generate the regression equation, the study by Manusov and 

Mogilenko [20] focused on the fuzzy regression model which leaves the research still in its infancy. Another 

related study was found, where Sippola and Sepponen [21] used regression analysis to validate the accuracy 

of the power transformer losses. In practice, there are many ways to estimate the losses. However, at times 

when cost, resources, and availability of network data are major constraints, some utilities have to make use 

of whatever data is available, as long as the methodology can be easily deployed and yield reasonably 

accurate results.  

In all, to establish a simple way to estimate EL, this paper focuses on developing the regression 

equations of PPL functions utilizing the base case feeder and showing the flexibility of these PPL functions 

allowing users to estimate the PPL of the feeder section for any PPD value. The feeder length, load 

distribution, cable characteristic, and feeder peak demand were taken into account in the formulation of 

generic PPL equations. The main contribution of this work can be summarized as follows: i) establishment of 

a base case feeder model based on the most used cable characteristics in Malaysia to cut the amount of time 

in estimating losses in a wide power system, ii) development of a simple way to estimate the losses using the 

PPL regression equation without having to collect vast amounts of data and calculate the losses at every load 

point, and iii) validation of the flexibility of PPL functions using real power distribution network data at two 

different base lengths. 

 

 

2. METHOD 

The main idea is that the PPL will be defined using the regression analysis through independent 

variables in the base case feeder. Firstly, in subsection 2.1, real data is collected and the base case feeder that 

represents 11 kV Malaysia’s feeder is constructed through statistical analysis by Ibrahim et al. [22]. 

Subsequently, in subsection 2.2, the chosen model is constructed by fitting the data, specifically in the case of 

PPL, to understand the relationship between independent variables and power losses during PPD periods. 

Given the variable nature of PPL, it is crucial to continuously monitor and periodically update the model to 

account for changing conditions in the distribution system. To address this, a length correction factor (CF) is 
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also introduced. This model’s reliability is then verified by testing it against real-world data in a base case 

study, assessing its predictive accuracy.  

 

2.1.  Base case feeder modeling 

The base case feeder section model is constructed as illustrated in Figure 1. The three (3) key 

parameters that define the base case feeder are; i) varied lengths, ii) load distribution, and iii) cable 

characteristics. The model of this base case feeder is set at 11 kV, 240 mm2, three-core Cu XLPE cable type, 

load value of (10-100)%×3.0 MVA, the LF of 0.95, based on the statistical analysis by Ibrahim et al. [22]. 

The base case length which was originally set at 1 km, is varied from 1 km to 4 km to show the flexibility of 

PPL functions and the relationship of PPL functions with base case cable length. 
 

 

 
 

Figure 1. Model of the base case feeder section in a single-line 

 

 

2.2.  Peak power loss characteristics 

A regression analysis is conducted using load flow data derived from the base case feeder 

configuration. The analysis involves static load flow simulations carried out at different loading levels: 10%, 

30%, 50%, 70%, 90%, and 100%. At each of these loading points, the PPL is recorded, and this data is used 

to establish a third-order polynomial regression equation. A polynomial regression model is preferred over 

multiple regression or time-series regression in this context due to its suitability for the data and its ability to 

minimize errors. Then, the PPL for each segment of the feeder is directly related to its PPD expressed in 

megawatts (MW), which can vary over time. The calculation of PPD is based on the fundamental formulas 

presented in (1): 
 

𝑃𝑃𝐷 = 𝑆 cos 𝜃 (1) 
 

Then, this base case feeder section where a single feeder connected to a single end-point load as in 

Figure 1 is simulated in DigSILENT Powerfactory™ to find its PPL for the regression equation. The equation 

derived to estimate the PPL in different feeder sections assumes that each section has the same length and 

size as the base case feeder. In addition, using the same base case model, the result of PPL through simulation 

is added with a variation of cable length. These PPL results are then plotted in Excel in polynomial form to 

get the PPL functions at 1 km, 2 km, 3 km, and 4 km cable lengths. 

However, to enhance the accuracy of PPL calculations based on PPD, adjustments are required. 

According to the findings in reference [22], the PPL equation is shown to have a linear correlation with the 

length of the cable. Consequently, length (C) for the base case feeder’s PPL (𝑃𝑃𝐿𝑏 ) are determined by 

multiplying the PPL equation by the ratio of the length of the specific feeder (𝑙𝑖) to the base case feeder 

length (𝑙𝑏), as shown in (2). The PPL coefficients for each section of the base case feeder are represented by 

the coefficients a, b, c and d. Subsequently, the 30-day EL for each feeder section, taking into account 

varying PPD and lengths, is computed in the following section.  
 

𝑃𝑃𝐿𝑏 =  
𝑙𝑖

𝑙𝑏
× {𝑎𝜌𝑖

3 + 𝑏𝜌𝑖
2 − 𝑐𝜌𝑖 − 𝑑} (2) 

 

2.3.  Validation of proposed method using case study 

 After obtaining the crucial data, the PPD and PPL of each feeder, an EL can be estimated. In order 

to produce the estimates, a case study based on a base case feeder is used to demonstrate the proposed 

methodology. The case study is based on real data from Batu Caves, Kuala Lumpur. Overall, the case study 

aims to display the relationship between the flexibility of PPD and PPL with a base length feeder. 
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3. RESULTS AND DISCUSSION 

In the case of feeders, a simple way of establishing its PPL functions is through modeling and 

simulation using typical network and load data. Thus, this section shows the results of the proposed 

methodology covering the case study of real networks. 

 

3.1.  Peak power loss functions 

Based on the typical installation of the local power utility, the base case feeder is set at 11 kV,  

240 mm2, three-core, Cu XLPE cable type. These characteristics are based on a statistical study performed in 

reference [23], [24]. For simplification, loads are assumed to be balanced, with a power factor of 0.95 and a 

constant voltage along the feeder. 

The peak loss functions are snapshots of power losses in relation to cable capacity, feeder length, 

and load distribution profile. The value of S is obtained based on the load percent. Since the base case model 

shows full load at 3 MVA, 100% load would be 3MVA, while 10% load would be 0.3 MVA, and so on. Then, 

the PPD is calculated using a basic formula based on apparent power, S, and power factor, pf in (1). After 

that, the value of PPL is obtained through the simulation of the base case model in DigSILENT at several 

base lengths (1 km, 2 km, 3 km, and 4 km). Table 1 indicates the value of the regression result, which shows 

that the higher the percent loading and apparent power, the higher the PPD and PPL. Also, it can be seen 

from Table 1 that the longer the cable length, the higher the PPL. Results in graphs expressed in terms of PPL 

functions for 11 kV MV feeders based on Table 1 are shown in Figure 2. 

 

 

Table 1. Regression results with 1 km, 2 km, 3 km, and 4 km base case cable length 

Load (%) S (MVA) PPD (MW) 
PPL (MW) 

1 km 2 km 3 km 4 km 

10 0.3 0.2850 0.0001 0.0001 0.0002 0.0002 
30 0.9 0.8550 0.0005 0.0012 0.0009 0.0020 

50 1.5 1.4250 0.0014 0.0035 0.0022 0.0056 

70 2.1 1.9950 0.0027 0.0069 0.0043 0.0110 
90 2.7 2.5650 0.0046 0.0114 0.0070 0.0183 

100 3 2.8500 0.0056 0.0142 0.0087 0.0227 

 

 

 
 

Figure 2. PPL functions of 11 kV feeders with distributed loads along the feeder 

 

 

It can be seen from Figure 2 that the PPL of each feeder section is proportional to its PPD, measured 

in MW, which varies with time. The graph is displayed in a polynomial form. It is proven that the higher the 

power demand, the higher the power loss. Also, based on the steepness of the graph, the longer the cable 

length, the higher the power loss or PPL.  

Table 2 depicts the same results of a regression equation that can be used to calculate the PPL based 

on PPD with different base lengths of 1 km and 4 km. From Table 2, the mathematical equation is converted 

into a regression equation. The y simply represents the PPL function, while the x simply represents the PPD. 

y = 8E-07x3 + 0.0007x2 - 7E-06x + 5E-07

y = 1E-05x3 + 0.0017x2 - 3E-05x - 3E-06

y = 1E-05x3 + 0.001x2 - 3E-05x + 0.0001

y = 2E-05x3 + 0.0028x2 - 6E-05x - 6E-06
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The results would be varied with a different base length. However, it still correlates and does not deny that 

the higher the power demand and cable length, the higher the losses. This statement has been proved by a 

previous study by Rozegnał et al. [25] where in cases that the lines are extended, the active power losses 

increase in direct proportion to the length of the line. 
  

 

Table 2. Regression equation for the length of 1 km and 4 km 
Length (km) Mathematical equation Regression equation 

1 𝑦 = 8𝑒−7𝑥3 + 7𝑒−4𝑥2 − 7𝑒−6𝑥 + 5𝑒−7 𝑃𝑃𝐿(𝑃𝑃𝐷) = 8𝑒−7𝑃𝑃𝐷3 + 7𝑒−4𝑃𝑃𝐷2 − 7𝑒−6𝑃𝑃𝐷 + 5𝑒−7 

2 𝑦 = 1𝑒−5𝑥3 + 1𝑒−3𝑥2 − 3𝑒−5𝑥 + 1𝑒−4 𝑃𝑃𝐿(𝑃𝑃𝐷) = 1𝑒−5𝑃𝑃𝐷3 + 1𝑒−3𝑃𝑃𝐷2 − 3𝑒−5𝑃𝑃𝐷 + 1𝑒−4 

3 𝑦 = 1𝑒−5𝑥3 + 17𝑒−4𝑥2 − 3𝑒−5𝑥 − 3𝑒−6 𝑃𝑃𝐿(𝑃𝑃𝐷) = 1𝑒−5𝑃𝑃𝐷3 + 17𝑒−4𝑃𝑃𝐷2 − 3𝑒−5𝑃𝑃𝐷 − 3𝑒−6 

4 𝑦 = 2𝑒−5𝑥3 + 28𝑒−4𝑥2 − 6𝑒−5𝑥 − 6𝑒−6 𝑃𝑃𝐿(𝑃𝑃𝐷) = 2𝑒−5𝑃𝑃𝐷3 + 28𝑒−4𝑃𝑃𝐷2 − 6𝑒−5𝑃𝑃𝐷 − 6𝑒−6 

 

 

3.2.  Case study 

The case study aims to prove that regardless of any base case length chosen, the result is the same 

after taking length CF into consideration. In this case study, an average size distribution system of 11 kV 

illustrates the proposed approach to estimate TL and its results. To prove the length CF in (2) regardless of 

any regression equation with the same cable condition, two (2) base lengths were used which are 1 km and  

4 km as highlighted in Table 2. Meanwhile, the real data of the distribution system for the case study is 

depicted in Figure 3. This case study is based on data from Batu Caves, Kuala Lumpur. 

 

 

 
 

Figure 3. Case study’s distribution system 

 

  

Table 3 shows the distribution PPL for a 1 km and 4 km base length. The CF length is calculated by 

dividing the real length by the base length. Then, the PPL base is calculated by (2). From Table 3, it can be 

observed that the longer the cable length, the higher the PPL value. For example, the longer cable length, 

which is 6.88 km, shows the largest PPL value of 28.72 kW and 28.66 kW for both base lengths of 1 km and 

4 km respectively. Similarly, the shorter cable length will result in lower PPL. From the same Table 3, the 

shortest cable length at 3.55 km, results in the lowest PPL value which is 9.82 kW and 9.746 kW for both 

base lengths of 1 km and 4 km respectively. The reason for this is that extended cables contain a greater 

amount of conductor material, which results in elevated cable resistance due to the additional length. This 

increased resistance gives rise to increased power losses in the form of heat as electrical current traverses the 

cable. Additionally, longer cables bring about added impedance due to heightened inductance and 

capacitance. This impedance has the potential to impact the power factor and result in losses associated with 

reactive power, in line with or corroborating the findings of a previous study by Esobinenwu and 

Oniyeburutan [26] and also Abdelhady et al. [27].  

Besides, the highlighted value in Table 3 indicates the PPL comparison between base lengths of  

1 km and 4 km. At the base length of 1 km, total PPL estimation shows 249.88 kW, while at the base length 
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of 4 km, total PPL estimation displays 248.59 kW. The value PPL of 1km base length is slightly higher than 

4 km base length. There is a difference of approximately 1.29 kW between the two values, with a 1 km base 

length being the larger of the two. The values exhibit a minor difference, but it is acceptable and in the 

permissible range and considered the same. It proves that different regression equations and the base length 

will produce the same result after length CF as long as it does not change the cable characteristics. Hence, the 

base case model needs to be changed if this method will be used in different countries or regions. Table 3 

also proves that a simple way is established to estimate the losses using the flexibility of regression equation 

without having to calculate the losses at every load point. 

 

 

Table 3. PPL estimation for 1 km and 4 km base length 
11 kV 
feeder 

number 

Length 

(km) 

Base length=1 km Base length=4 km 

CF 

length 

PPL 

(MW) 

PPL 

(kW) 

PPL base, 

𝑃𝑃𝐿𝑏 (kW) 
CF 

length 

PPL 

(MW) 

PPL 

(kW) 

PPL base, 

𝑃𝑃𝐿𝑏 (kW) 

F11-01 6.879 6.879 0.004 4.175 28.717 1.720 0.017 16.667 28.663 

F11-02 5.701 5.701 0.004 3.870 22.063 1.425 0.015 15.413 21.967 

F11-03 3.709 3.709 0.003 3.026 11.224 0.927 0.012 12.016 11.143 

F11-04 5.043 5.043 0.003 3.026 15.260 1.261 0.012 12.041 15.180 
F11-05 4.677 4.677 0.005 4.818 22.535 1.169 0.019 19.155 22.397 

F11-06 5.613 5.613 0.003 2.768 15.536 1.403 0.011 11.029 15.477 

F11-07 5.228 5.228 0.003 3.296 17.229 1.3047 0.013 13.117 17.143 
F11-08 6.132 6.132 0.003 3.296 20.210 1.533 0.013 13.145 20.152 

F11-09 4.032 4.032 0.004 3.577 14.423 1.008 0.014 14.212 14.325 

F11-10 4.354 4.354 0.004 4.175 18.178 1.089 0.017 16.591 18.061 
F11-11 4.193 4.193 0.004 3.870 16.228 1.048 0.015 15.378 16.121 

F11-12 3.548 3.548 0.003 2.768 9.820 0.887 0.011 10.988 9.746 

F11-13 4.354 4.354 0.004 4.175 18.178 1.089 0.017 16.591 18.061 
F11-14 4.516 4.516 0.004 4.491 20.278 1.129 0.018 17.850 20.151 

Total 67.980 67.980 0.051 51.328 249.877 16.995 0.204 204.193 248.588 

 

 

Overall, although the value of PPL in Table 1 shows different results at different base case cable 

lengths, the result of PPL after considering CF is almost the same. In other words, the proposed method of 

PPL regression equation can be varied depending on the base length used since there is a ratio of CF for the 

length, as in (2). Therefore, utilities can come out with any regression equation that is suitable for their 

choices of the base feeder. It is proven that this study makes it possible to compute the losses quickly and 

simply. To assess losses of large distribution networks, an analytical method based on equations created 

through energy distribution is used. This method can be used to assess a distribution network’s performance 

based on the desired characteristics of different feeders. However, the limitation of this research is the 

established base case model only can be used in Malaysia’s network due to the cable characteristics that only 

take into account Malaysia’s network. Nevertheless, it can be overcome by changing the model of the base 

case to get the new regression equation depending on the cable characteristics in different areas or countries. 

The advantage of this method is it can calculate PPL for any value of PPD as long as the characteristics are 

the same as the base case feeder. If it is different, the base case can be modified according to a specific area, 

and then the new regression equation needs to be changed too, but it is still a simple procedure because there 

is no need to do the power flow for all areas. 

 

 

4. CONCLUSION 

In conclusion, this paper introduces an optimal method and effective approach for estimating the 

EL. The focus is on constructing regression equations for PPL functions using data from the base case feeder. 

The findings highlight that regression analysis can be a powerful tool in identifying the key factors 

influencing PPL and making informed decisions to improve the efficiency and reliability of electrical 

distribution systems. Furthermore, the method demonstrates that utilizing a base case feeder model can 

significantly reduce the time required for loss estimation across wide power systems. By showcasing the 

adaptability and flexibility of PPL functions, researchers and utilities can efficiently estimate the PPL of 

feeder sections for various PPD values, offering a versatile approach for EL estimation. In essence, the more 

accurate the estimation method, the better-equipped utilities are to optimize their systems and maintain a 

consistent and reliable flow of electricity to consumers. In the future, this method can also help to make 

forecasts and decisions about managing and mitigating PPL. For example, it can help in optimizing 

maintenance schedules, load management, or infrastructure improvements. 
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