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A B S T R A C T   

- Accurate discriminative region proposal has an important effect for fine-grained image recognition. The vision 
transformer (ViT) brings about a striking effect in computer vision due to its innate multi-head self-attention 
mechanism. However, the attention maps are gradually similar after certain layers, and since ViT used a clas-
sification token to achieve classification, it is unable to effectively select discriminative image patches for fine- 
grained image classification. To accurately detect discriminative regions, we propose a novel network AMTrans, 
which efficiently increases layers to learn diverse features and utilizes integrated raw attention maps to capture 
more salient features. Specifically, we employ DeepViT as backbone to solve the attention collapse issue. Then, 
we fuse each head attention weight within each layer to produce an attention weight map. After that, we 
alternatively use recurrent residual refinement blocks to promote salient feature and then utilize the semantic 
grouping method to propose the discriminative feature region. A lot of experiments prove that AMTrans acquires 
the SOTA performance on four widely used fine-grained datasets under the same settings, involving Stanford- 
Cars, Stanford-Dogs, CUB-200-2011, and ImageNet.   

1. Introduction 

Detecting discriminative regions are critical for fine-grained image 
recognition, which are challenging tasks due to the subtle yet vital 
feature learning. As the progress of neural network methods, the per-
formance of fine-grained image recognition tasks achieves great 
upswing (Woo et al., 2018) (Lin et al., 2015) (Sun and Hea Choon Ngo & 
Yong Wee Sek, 2022) (Chakraborty et al., 2022) (Jarina et al., 2021) 
(Olugboja et al., 2021). Currently, weakly-supervision methods with 
only image-level label are popular approaches (Fayou et al., 2023) (Sun 
et al., 2022a) (Han et al., 2021) (Zheng et al., 2020) (Jiang et al., 2021). 
There are two types of network backbones (i.e., CNN-based and 
ViT-based). The networks of ViT-based are easy to train, lower in 
complexity and more accurate in capturing subtle discriminant features, 
which make ViT more valuable in practice. 

The models of CNN-based include two categories, i.e., localization 
and feature-coding approaches. Relatively, localization methods are 
more interpretable and easier to understand. The former usually trains a 
discriminative region proposal network and reuse regions to achieve 
classification. RA-CNN (Fu et al., 2017) proposed recurrent attention 

CNN to recurrently learn attention maps in three scales. MA-CNN (Zheng 
et al., 2017) employed channel grouping approach to generate multiple 
consistency feature vectors by end-to-end training. However, the 
attention numbers are hyper-parameters, which limit the productivity 
and flexibility of network. Liu (Liu et al., 2020) et al. proposed filtration 
and distillation learning network(FDL),which adopted the knowledge 
distillation method to recurrently detect critical regions. Zheng (Zheng 
et al., 2019) et al. proposed TASN, which utilized learning trilinear 
attention sampling network and a feature distiller module to strengthen 
discriminative regions. Unfortunately, these two networks are difficult 
to be trained, expanded and have high complexity. The latter methods 
rely on deep feature representations to achieve better performance for 
fine-grained image recognition. Yu (Yu et al., 2018) et al. proposed HBP 
method to do cross-layer bilinear pooling, which verified that the 
low-level features can compensate for the lack of an object structure 
feature in high-level semantics. Zheng (Heliang et al., 2019) et al. pro-
posed general block DTB, which used the channel grouping method and 
group bilinear. Because DTB block keeps consistent feature dimensions 
between input and output, thus CNN may integrate it into any layer as 
long as necessary. However, with the increase of network depth, the 
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networks are heavy and difficult to explain how to obtain the subtle 
salient regions. 

Recently, some studies innovatively introduced transformer into 
computer vision tasks, which creates a new era for CV. Visual models of 
transformer-based developed rapidly from 2019 and there are many 
achievements worth recommending (e.g., BERT (Devlin et al., 2019), 
DETR (Carion et al., 2020), iGPT (Chen et al., 2020a), etc.). Dosovitskiy 
(Alexey Dosovitskiy et al., 2020) et al. presented vision transformer 
(ViT), which was the 1st to use transformer to solve computer vision 
tasks. However, it only employs a classification token to detect cate-
gories, which is inappropriate for fine-grained representation. He (Ju 
et al., 2021) et al. presented TransFG, which developed a region selec-
tion method to propose a discriminative region, but it cannot generate 
multiscale fine-grained classification features. To resolve this problem, 
Zhang (Zhang et al., 2021) et al. presented AFTrans, which adaptively 
selects relatively sensitive patches for optimizing regions proposal.Wang 
(Wang et al., 2021) et al. proposed FFVT, which adopted the feature 
fusion ViT to select the best significant tokens within each encoder layer 
as the inputs of the last layer. However, all of above studies are limited 
by the depth of transformer encoder layers, thus they only fuse narrow 
features. 

To solve these problems, our research proposes a novel model 
AMTrans, which employs re-attention to replace multi-head self-atten-
tion mechanism to raise the depth of transformer encoder layers. Then, 
we utilize the feature fusion method to enhance the salient feature map. 
To be specific, we use DeepViT (Zhou et al., 2021) to increase the 
number of layers. Concurrently, this research fuses all attention weights 
within every transformer encoder layer and then integrates the shallow 
level features and deep level features as the input of recurrent residual 
refinement blocks(RRBs). Subsequently, the salient feature map will be 
output from RRBs, which is the input of channel attention module that 
will propose the most vital region of the input image. Finally, the pro-
posed region will be the input of our model again to achieve classifi-
cation. The AMTrans outperforms existing networks on ImageNet (Jia 
et al., 2009) as shown in Fig. 1. The contributions of this research are as 
follows:  

• To capture more diverse features, we increase the depth of layers and 
fuse the attention weights within each transformer encoder layer.  

• To saliently enhance the discriminative region proposal, we utilize 
recurrent residual refinement blocks to improve salient feature 
detection and then utilize semantic grouping method to select the 
excellent discriminative region in the input image.  

• To be our best knowledge, this research is the 1st to successfully use 
increasing the depth of layers for fusing more attention weight. 

2. Related work 

This section discusses currently approaches closely this research, 
including attention weight fusion, selecting discriminative region. 

Attention Weight Fusion: There has been a growing interest in 
exploring attention mechanisms in vision transformers, which have 
shown significant performance in computer vision tasks (e.g., image 
classification, object detection, semantic segmentation, etc.). 

One path in this field has focused on the attention weight fusion from 
multiple levels in the transformer encoder layers. These methods aim to 
capture both local and global information by combining the attention 
weights of different transformer blocks or attention heads. Zhang (Nam 
et al., 2017) et al. proposed a dual-attention network that combines 
attention weights from both image and text modalities to perform 
multimodal reasoning and matching. This model used a “cross-modal 
attention fusion” method to combine the attention weights from 
different modalities. Liu (Liu et al., 2021) et al. proposed a hierarchical 
transformer architecture that fuses attention weights across different 
scales. This method introduced a new “Shifted Window” way that allows 
the model to capture multiscale features efficiently and proposed a 
“Swish” fusion method to combine the attention weights of different 
levels in the transformer. Chen (Chen et al., 2021) et al. proposed a 
cross-attention multiscale vision transformer for image classification 
tasks. The model introduced a cross-level fusion approach that aggre-
gates the attention weights from different levels of the network to 
enhance the feature representation. In addition to these methods, 
several other works have explored the use of fusion attention weights in 
ViT, including the Hierarchical attention Vision Transformer (Hu et al., 
2023) (HAVT), the Trans2Seg (Xie et al., 2021), etc. These methods 
demonstrate improved performance on various benchmarks, high-
lighting the effectiveness of fusion attention weights in ViT. 

In view of this, as fusing attention weights is an effective method, this 
research fuses the attention weights of each head based on the charac-
teristics of fine-grained image classification to achieve the promised 
results. 

Selecting Discriminative Region: Fine-grained image classification 
is a challenging task that requires identifying subtle differences between 
similar objects within a fine-grained category. One way to improve the 
performance of fine-grained classification is to focus on discriminative 
regions within an image. 

Woo (Woo et al., 2018) et al. proposed CBAM, which uses both 
channel attention and spatial attention. It has been used for fine-grained 
image classification tasks, where it learns to attend to discriminative 
regions while suppressing irrelevant regions. Xu (Xu et al., 2022) et al. 
proposed ADDS, which generated region proposals at multiple scales 
and then combined them to identify the most discriminative regions in 
an image. The model first applies a convolutional network to the input 
image to generate feature maps at different scales. These feature maps 
are then used to generate region proposals, which are combined to 
identify the most discriminative regions in the image. Zhong (Zhong 
et al., 2021) et al. proposed STAN, which used a spatial transformer 
module to identify discriminative regions in an image. The model first 
applies a localization network to the input image, which generates a set 
of transformation parameters that are used to warp the input image. The 
warped image is then fed into a classification network, which is trained 
to classify the image based on the warped features. Zhang (Zhang et al., 
2019) et al. proposed an attention guided network that uses a 
self-attention mechanism to select discriminative regions. The model 
learns to attend to the most informative regions of an image and then 
aggregates the feature vectors of these regions for classification. 

As is known to all, selecting discriminative regions is an important 
aspect of fine-grained image classification. Different methods have been 
used to identify these regions, including attention mechanisms, part- 
based methods, localization techniques, and fine-grained object 
retrieval. Due to the use of deepViT as backbone in this research, R3Net 
and semantic grouping modules were added to the network to 

Fig. 1. The accuracy comparison of SOTA networks.  
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implement “attention in attention”. 

3. Method 

This section introduces our model AMTrans, which consists of three 
parts (i.e., fusion attention weight, salient feature detection and 
discriminative region proposal). 

An overview of AMTrans is shown in Fig. 2. The backbone of our 
model is DeepViT (Zhou et al., 2021), which focus on fusing attention 
weight within each transformer encoder layer and then utilizes R3NET 
(Deng et al., 2018) to reinforce salient feature for the critical region 
proposal. 

In Fig. 2, the image is divided into blocks of same size, which are the 
input of DeepViT. This study utilizes the Hadamard product to fuse the 
multihead attention weights of all layers according to the head and then 
generates attention weight map by concatenation them. Subsequently, 
we employ R3NET to achieve salient feature enhancement and then 
propose a discriminative region. Finally, we cut and enlarge the selected 
region on the input image, which is the input of DeepViT. From Fig. 2, it 
can be seen that the dimension of attention weigh map is D ∈ RB×L×K×P×P 

(B=batch size, L= the number of transformer layers, K = the quantity of 
head, P =the count of patches). After that, we split the feature map into 

shallow level features (L) (i.e., from layer 1# to layer 16#) and deep 
level features (H) (i.e., from layer 17# to layer 32#) as the input of 
R3NET, which generates saliency feature map (the input and output 
dimension of R3NET is without changing). To the end, we utilize a CNN 
to propose critical region. 

3.1. Attention weight fusion 

To avoid attention collapse issue (i.e., as the transformer goes 
deeper, the attention maps gradually become similar and even much the 
same after certain layers.), we utilize a simple yet effective method 
DeepViT (Zhou et al., 2021) to stack more transformer encoder layers to 
increase diversity of attention weights with negligible cost. DeepViT 
(Zhou et al., 2021) adopted re-attention to replace self-attention 
mechanism. Specifically, the output of re-attention is: 

Z(Q,K,V)= σ
(

θT × δ
(

QKT
̅̅̅̅̅
dk

√

)

(1)  

where σ is normalization, δ is softmax, θ ∈ RH×W is a learnable trans-
formation matrix, Q is Query tensor, K is Key tensor, V is Value tensor, 
and dk is the dimension of Key tensor. 

In this paper, we use pre-trained DeepViT-32B (Zhou et al., 2021) 

Fig. 2. The architecture of AMTrans.  

Fig. 3. The structure schematic of R3NET.  
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network, which is composed of 32 layers. To be our best knowledge, 
every head represents a different region over the image within each 
layer. Thus, we adopt element-wise product to fuse all attention weights 
in every encoder layer according to K multi-heads to reinforce effective 
attention features. The attention weight map of the m-th head in each 
layer is as follows: 

Hm = αp×p
m (2)  

where P is the count of patches. Then we can do Hadamard product on 
each head of all layers grouped by head. Thus, the final attention weight 
map of the m-th head is as follows: 

Wm =
N

1

∏
Hm (3)  

where 
∏

is hadamard product, N =the count of layers and Wm ∈ RB×P×P 

(B= batch size and P is the count of patches). 
Thus, the final fused attention weight map is as follows: 

F = concat
(
W0, ..,WK− 1) (4)  

where ″concat″ is concatenation operation, K is the number of head and 
F ∈ RB×K×P×P. 

3.2. Feature detection enhancement 

Detecting the subtle feature is the soul of fine-grained image repre-
sentation, but it is a difficult task. To resolve this matter, we take the 
R3NET (Deng et al., 2018) to enhance salient feature. The overview of 
R3NET is shown in Fig. 3. 

In Fig. 3, the original saliency map (S0) is H, which is many times 
optimized by some residual refinement block (RRB). At the same time, 
from Fig. 3, it can be observed that R3NET utilize integrated shallow 
level features to capturing more saliency details, which compensate for 
the weakness that deep level features only rely on rich semantic features. 
As far as we know, the RRB can accurately propose salient feature re-
gions on the input image. An RRB is defined as: 

Rk = ∂(φ(Sk− 1,M))

Sk = Sk− 1 + Rk (5)  

where ∂ is CNN, “φ” is concatenation operation, Sk− 1 is the predicted 
saliency map of the (k-1)-th step, and the feature map M is alternatively 
set as an integrated shallow level feature or integrated deep level 
feature. In this work, we use three RBBs. 

In our research, because the count of encoder layers of DeepViT is 32, 
we set the range of shallow level layers are {1–15} and the deep level 
layers are {16–32}. 

3.3. Discriminative region proposal 

Capturing the critical and subtle region is the core of fine-grained 
task. We utilize output of R3NET(Sn) as input feature for selecting the 

discriminative region. The process is shown in Fig. 4. 
In Fig. 4, we take the semantic grouping (SG) to obtain the relative 

weight parameters of the regions and then use Hadamard product with 
Sn to reinforce what to pay attention to. Finally, we use the largest 
connected selection method to select the best discriminative region. It 
can be observed that SG consists of channel grouping and intra-group 
strengthen. The outputs of SG can be denoted as: 

R= ϑ(Sn)

G=ω(R)

Co = ϵ (G) (6)  

where ϑ is channel grouping method (fastcluster (Müllner, 2013)), ω is 
matrix product in each intra-group, and ϵ is sigmoid. The output of SG 
denoted Co. Hence, the refined feature can be denoted as: 

T = Sn ⊗ Co (7)  

where Sn and Co conduct Hadamard product and the dimension of T is 
same as Sn. 

Finally, this study utilizes the largest connected region selecting 
method to capture the excellent discriminative region from T to cut this 
region on the input image. Finally, this region is amplified as the input of 
the DeepViT. 

4. Experiments 

This section reflects the advantage of AMTrans on widely used fine- 
grained datasets, that is, CUB-200-2011 (Berg et al., 2014), 

Fig. 4. The overview of discriminative region proposal.  

Table 1 
Comparison performance on CUB-200-2011,Stanford-Dogs, Stanford-Cars.  

Method Backbone Acc. (%) 

CUB-200- 
2011 

Stanford- 
Cars 

Stanford- 
Dogs 

GP-256 (Wei et al., 
2018) 

VGG16 85.8 – 83.1 

ResNet50 (He et al., 
2016) 

ResNet50 84.5 91.7 82.7 

TASN (Zheng et al., 
2019) 

VGG19 86.1 92.4 – 

FDL (Liu et al., 2020) VGG19 86.84 91.52 84.9 
DCL (Sun et al., 2022b) Resnet50 87.4 94.5 – 
S3N (Ding et al., 2019) Resnet50 88.5 94.7 87.1 
ViT (Alexey 

Dosovitskiy et al., 
2020) 

ViT_B/16 90.2 93.5 91.2 

TransFG (Ju et al., 
2021) 

ViT_B/16 90.9 94.1 90.4 

RAMS-Trans (Hu et al., 
2021) 

ViT_B/16 91.5 – 90.7 

HAVT (Hu et al., 2023) ViT_B/16 91.8 – 91.0 
AMTrans DeepViT- 

32B 
93.1 96.8 92.7  
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Stanford-Dogs (Khosla et al., 2011), Stanford-Cars (Krause et al., 2013), 
and ImageNet (Jia et al., 2009). The code of AMTrans is https://github. 
com/dlearing/AMTrans.git. 

Next, we initialize the parameters for the experiment. For fair com-
parison, the image size is 224 × 224 and every patch size is 16 × 16. 
Batch size adopts a generic value 256.Then we adopt the well-trained 
DeepViT-32B network on ImageNet1k (Jia et al., 2009) and the 
well-trained R3NET network on MSRA10K. Concurrently, we employ 
SGD optimizer and fixed learning rate 0.0002. AMTrans is trained on 2 T 
V100 GPUs with Pytorch as our code-base. Specifically, AMTrans also is 
pre-trained on ImageNet1k (Jia et al., 2009). 

4.1. Performance comparison 

To prove the performance of network, AMTrans compares with 
current SOTA approaches on three benchmarks. From Table 1, it can be 
observed that AMTrans gets good results and surpasses CNN-based 
methods and ViT-based methods. 

Compared with the good ViT-based model HAVT, AMTrans brings 
further 1.3% gain and reaches 93.1% on CUB-200-2011. Typically, we 
can stack the depth of CNN and integrate some tricks in CNN (e.g.,TASN 
(Zheng et al., 2019), DCL (Sun et al., 2022b), etc.) to boost the perfor-
mance for fine-grained image representation, but the gain is not obvious. 
The vision transformer methods (e.g., TransFG (Ju et al., 2021), HAVT 
(Hu et al., 2023), etc.) rely on self-attention mechanism to represent a 
great potential for feature representation. In view of this, we adopt 
DeepViT as backbone and CNN as necessary and profitable compensa-
tion to achieve fine-grained image recognition. 

From the 4th column of Table 1, we know that AMTrans achieves 
2.1% improvement than S3N (Ding et al., 2019) and surpasses all 
CNN-based methods. We argue that all methods can obtain better results 
on this dataset due to less background noise over images. In terms of 
accuracy, our model brings 2.7% gains compared to TransFG (Ju et al., 
2021).We believe that feature fusion and salient region proposal are the 
main reasons. 

From the 5th column of Table 1, we can know that vision transformer 
methods surpass CNN -based models.We analysis that the reason is the 
hard-to-find inter-class diversities between certain objects on Stanford- 
Dogs (Khosla et al., 2011). Hence, it proves the advantage of vision 
transforme. However, AMTrans still gets the best performance and 
reaches 92.7%,which brings 1.7% gains compared to HAVT (Hu et al., 
2023). 

In order to better compare the performance of our models with 
similar volumes, we conducted comparative experiments on other 
quantitative metrics (i.e., parameters and GFLOPS). From Table 2, it can 
be observed that AMTrans obtains 1.3% gains than self-supervised 
model MAE, which proves that weakly supervised methods still have 
advantages. At the same time, the Params and FLPOs metrics have 

decreased. We analyze that it is due to the increase in the depth of ViT 
(DeepViT) and the addition of CNN modules (i.e., R3Net and semantic 
grouping). 

In Table 3, SG is semantic grouping module. It can be observed that 
DeepViT can bring 1.1% improvement. This result further proves the 
innate advantage of the multi-head self-attention mechanism in ViT for 
computer vision tasks. 

Table 2 
Comparison of SOTA methods on ImageNet1K.  

Method Backbone ImageNet 

Top1-Acc. 
(%) 

#param 
(M) 

GFLOPs 

ResNet152 (He et al., 
2016) 

ResNet/152 75.3 60.2 11.3 

EfficientNet (Tan and Le, 
2019) 

EfficientNet- 
B7 

84.4 66 – 

ViT (Alexey Dosovitskiy 
et al., 2020) 

ViT-L/16 76.53 307 4.6 

iGPT (Chen et al., 2020b) iGPT-L 69 1362 41 
Moco V3 (Xinlei et al., 

2021) 
ResNet-50 73.9 81 4.1 

DeiT-B (Touvron et al., 
2021) 

ViT-B/16 84.4 86 17.6 

MAE (He et al., 2022) ViT-L/16 85.9 – – 
AMTrans ViT-B/16 86.6 321 3.9  

Table 3 
Comparison of Top1 accuracy on ImageNet1K using 
different classification networks.  

Method ImageNet 

Top1-Acc. (%) 

SG+MLP 85.1 
SG+DeepViT 86.6  

Table 4 
Ablation experiment on different backbone.  

Backbone Acc. (%) 

DeepViT_16B 91.4 
DeepViT_24B 92.3 
ViT_32B 91.6 
DeepViT_32B 93.1 
DeepViT_44B 93.4  

Table 5 
Ablation experiment on R3NET, discriminative region 
proposal.  

Method Acc. (%) 

baseline 90.7 
+R3Net 91.8 
+ semantic grouping (SG) 92.3 
+R3Net+SG 93.1  

Fig. 5. A confusion matrix of inter-group pairwise interactions. Green and red 
represent large and small values, respectively. 
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4.2. Ablation studies 

This section shows the influence of every part in AMTrans on abla-
tion studies. We conduct all studies on CUB-200-2011 (Berg et al., 2014) 
and other datasets have the same results as well. 

Our model adopts DeepViT (Zhou et al., 2021), which significantly 
promotes the diversity of features. The benefit it brings is shown in 
Table 4. 

From Table 4, we observe that it is beneficial for improving perfor-
mance by stacking the transformer encoder layers. We believe that the 
multi-head re-attention mechanism can increase discriminative feature 
diversity. Specifically, DeepViT_32B brings 1.5% improvement 
compared to ViT_32B. However, if we increase the transformer encoder 
layer to 44, the gain of accuracy is only 0.3% and the time complexity 
will increase. Thus, this research employs 32 layers. 

In Table 5, the DeepViT_32B is baseline. From Tables 5 and it can be 
observed that R3Net can bring 1.1% gain. Thus, fusing all levels of 
features can be beneficial and reinforce the information of the region of 
interest. Concurrently, it can be observed that SG can bring 1.6% gain. 
We analysis that SG uses the channel grouping and intra-group 
strengthen, which can focus on discriminative informative features 
and suppress less useful ones. Hence, our model associates DeepViT with 
R3NET and SG. 

In the semantic grouping module, this research uses fastcluster 
(Müllner, 2013). At the same time, it is found by experiments that the 
performance is better when the number of groups is set to k=5. 

From Fig. 5, it can be observed that the semantic grouping module 
clusters similar features and there are already significant feature dif-
ferences between inter-group. This result can also prove that semantic 
grouping can achieve “attention in attention”. 

4.3. Visualization experiments 

We randomly select an image from each dataset and then do the 
visualization experiment. The result is as shown in Fig. 6. To verify the 
strength of AMTrans, we conduct a comparative experiment. 

From Fig. 6, it can be observed that ViT-based methods can capture 
better discriminative parts with subtle critical features than CNN-based 
methods. Meanwhile, AMTrans obtains the most discriminative region 
as shown in the 5th row. 

5. Conclusion 

This research puts forward a novel model AMTrans, which achieves 
SOTA performance on widely used datasets. To resolve the attention 

collapse problem, this research uses the DeepViT. Thus, AMTrans can 
increase the depth of transformer encoder layers to obtain more diverse 
features and then fuse the attention weight within each layer to rein-
force feature representation. Concurrently, this research utilizes multi-
ple recurrent residual refinement blocks to prompt the discriminative 
features and suppress noise features. Finally, we adopt the semantic 
grouping method to capture what to pay attention to select the 
discriminative regions. At the same time, AMTrans obtains the promised 
results on four fine-grained benchmarks: CUB-200-2011, Stanford-Dogs, 
Stanford-Cars and ImageNet. In the future, we will conduct data fusion 
(e.g., internet data, videos, text, etc.) and self-supervised methods to 
obtain the progress of performance for fine-grained image 
representation. 
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