

Faculty of Information and Communication Technology

INVESTIGATING IEEE 802.15.4 FOR WIRELESS BODY SENSOR NETWORK: THE PERFORMANCE EVALUATION

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Rabei Raad Ali

MASTER OF COMPUTER SCIENCE (INTERNETWORKING TECHNOLOGY)

BORANG PENGESAHAN STATUS THESIS*

JUDUL: INVESTIGATING IEEE 802.15.4 FOR WIRELESS BODY SENSOR NETWORK: THE PERFORMANCE EVALUATION

SESI PENGAJIAN: 2011 - 2012

Saya Rabei Raad Ali

(HURUF BESAR)

Mengaku membenarkan tesis Sarjana ini disimpan di Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dengan syarat-syarat kegunaan seperti berikut:

1. Tesis dan peojek adalah hakmilik Universiti Teknikal Malaysia Melaka.

 Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dibenarkan membuat salinan untuk tujuan pengajian sahaja.

 Perpustakaan Fakulti Teknologi Maklumat dan Komunikasi dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi pengajian tinggi.

4, ** Sila tandakan (Ä	
SULIT	
TERHAD	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
UNIVER	(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
TIDAK TERHAD	
(TANDA TANGAN PENULIS)	(TANDATANGAN PENYELIA)
	Assoc. Prof. Dr. Burairah Bin Hussin
	Tarikh:09 july 2012
Tarikh:09 July 2012	

CATATAN: * Tesis dimaksudkan sebagai Laporan Akhir Projek Sarjana (PS).

** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa.

INVESTIGATING IEEE 802.15.4 FOR WIRELESS BODY SENSOR NETWORK:

THE PERFORMANCE EVALUATION

RABEI RAAD ALI

A thesis submitted in fulfillment of requirements for the degree of Master of Computer Science (Internetworking Technology)

undo,

UNIVERSITI TEKNIKAL MALAYSIA MELAKA Faculty of Information and Communication Technology

وية

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2012

DECLARATION

I declare that this thesis entitle INVESTIGATING IEEE 802.15.4 FOR WIRELESS BODY SENSOR NETWORK: THE PERFORMANCE EVALUATION is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	
Name	: Rabei Raad Ali
Date	: 09 July 2012

i.

÷

APPROVAL

"I/WE* hereby declare that I/WE* have read through this thesis and in my/we* opinion this thesis is sufficient in terms of scope and quality for the award for the degree Master of Computer Science (Internetworking Technology)".

DEDICATION

I would like to dedicate my thesis to my father and my mother who have supported me all the way since the beginning of my study. They never hesitated to provide me all the facilities to push me foreword as much as they can. This work is a simple and humble reply to them.

Also, this thesis is dedicated to my brother, sisters and to my grandmother who has been a great source of motivation.

Finally, this thesis is dedicated to all those who believe in the richness of learning.

Raboi Raad Ah

اونيۈم،سىتى تيكنىكل مليسىيا ملاك

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

الاهداء....

إلهي لايطيب الليل إلا بشكرك ولايطيب النمار إلى بطاعتك .. ولاتطيب اللحظات إلا بذكرك .. ولا تطيب الآخرة إلا بعفوك .. ولا تطيب الجنة إلا برؤيتك.

إلى من كلله الله بالميبة والوقار .. إلى من علمني العطاء بحون انتظار .. إلى من أحمل أسمه بكل افتخار .. أرجو من الله أن يمد فني عمرك لترى ثماراً قد حان قطافها بعد طول انتظار وستبقى كلماتك نجوم أمتحي بما اليوم وفني الغد وإلى .. الأبد

والدي العزيز

إلى ملاكيى فيى المياة .. إلى معنى المبم وإلى معنى المنان والتفانيى .. إلى بسمة المياة وسر الوجود

إلى من كان دمانها سر نداحي وحنانها بلسو دراحي إلى أملى الدبايد.

UNIVERSITA THE AND A CALE AND A CALE AND A CALE

إلى من شاركنيى مضن ألاء وبمع استمد مزتيى وإحراري

الموتيي....

إلى أحدقاني الذين تسكن حورهم وأحواتهم أجمل اللعظات والأيام التي ممشتما إلى كل من سامدني في انجاز هذا العمل... شكري الجزيل وامتناني

ACKNOWLEDGEMENT

بِشْمِ اللهِ الرِّحْمنِ الرِّحِيمِ

(وَقُلْ اعْمَلُوا فُسَيَرَى اللَّهُ عَمَلَكُمْ وَرَسُولُهُ وَالْمُؤْمِثُونَ وَسَتُرَدُونَ إلى عَالِم الْغَيْبِ وَالشَّهَادَةِ قَيْنَبِّتُكُمْ بِمَا كُنْتُمْ تَعْمَلُونَ)

بِحَتَى اللهُ العَظِيمِ (التوية:105)

Foremost, praise be to Allah, for giving me this opportunity to complete my career. I would like to express my deepest gratitude to, Prof. Madya, Dr. Burairah Bin Hussin the ideal supervisor. His constant encouragement, support, and invaluable suggestions made this work successful.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

I express my gratefulness to Dr. Abdul Samad bin Hasan Basari and Dr. Abdul Samad Shibghatullah for the discussion and interpretation of some results presented in this thesis.

I would also like to thank the Technical University of Malaysia Malacca for its interest and the Dean of Faculty of Information and Communication Technology Prof. Madya Shahdan bin Md Lani, I doubt that I will ever be able to convey my appreciation fully, but I owe them my eternal gratitude.

Rabei Raad Ali

TABLE OF CONTENT

		PAGE
DECLA	ARATION	i
APPRO	WAL	ii
DEDIC	ATION	ш
ACKN	OWLEDGEMENT	v
TABLE	OF CONTENT	vi
LIST O	FTABLES	ix
LIST O	FFIGURE	x
LIST O	FABBREVIATIONS	xii
ABSTR		xv
ABSTR		xvi
	ونىۋىرىسىتى تىكنىكل ملىسىا ملاك	
CHAPT		1
1. INT	RODUCTION UNIVERSITI TEKNIKAL MALAYSIA MELAKA	1
1.1	Introduction	1
1.2	Problem Statement	6
1.3	Research Questions	7
1.4	Research Objectives	7
1.5	Scope Of Study	7
1.6	Signification Of Study	8
1.7	Organization Of Project	8
1.8	Summary	9

2	LITERATURE REVIE	W

	2.1	Wireless Sensor Networks	10
		2.1.1 Medical Sensor Technologies	13
	2.2	Wireless Body Area Networks	16
		2.2.1 Wireless Body Area Networks Architecture	18
		2.2.2 Mac In Wban	21
	2.3	Ieee 802.15.4	25
		2.3.1 Physical Layer (PHY)	27
		2.3.2 Media Access Control Layer (MAC)	30
	2.4	Overview Of Wbsn Functional	33
		WALAYSIA A	
3.	RES	EARCH METHODOLOGY	37
	3.1	Description Of Simulation	37
	3.2	Reserch Methodology	38
		3.2.1 Pre-Software Stage	39
		3.2.2 Software Stage	43
		UNIVERSITI TEKNIKAL MALAYSIA MELAKA	
4.	ANA	ALYTÙCAL MODEL DEVELOPMENT	45
	4.1	Introduction	45
	4.2	Analysis Of The Contention Access Period (CAP)	45

10

4.3Model Of Node State474.4Model Of Channel State514.5Inter-Frame Spacing53

vii

5.	SIM	ULATION AND RESULTS	56
	5.1	Introduction	56
	5.2	Matlab Tool	56
	5.3	Parameters For Simulation Model	57
		5.3.1 Human Body Path Loss	57
		3.3.2 Parameters For The Analytical Model	59
	5.4	Results And Discussions	60
		5.4.1 Latency	60
		5.4.2 Energy Consumption	61
		5.4.3 Aggregate Channel Throughput	63
		5.4.4 Higher Path Loss Channel	65
	5.5	Summary	67
6.	CO	NCLUSIONS AND FUTURE WORK	68
	6.1	اونىۋىرىسىتى تىكنىكل ملىسىا ملاك	68
	6.2	Future Work UNIVERSITI TEKNIKAL MALAYSIA MELAKA	69

REFERENCES	71
APPENDICES	78

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Data Rates And Frequency Bands.	27
5.1	Parameter Values Of The Path Loss Model For The Arm	57
5.2	Path Loss Parameters For Different Antenna-Body Separations	58
5.3	Parameters Used For The Perform Simulations	59

LIST OF FIGURE

FIGURE	TITLE	PAGE
1.1	Environment Of Wpsn	4
1.2	Ieee 802.15.4 Device Architecture	5
2.1	Typical Wireless Sensor Networks Architecture	11
2.2	Sensor Node Architecture	12
2.3	Overview Of Simple Medical Sensor Application	16
2.4	Architecture For Wban	19
2.5	Inter-Ban Architecture	20
2.6	Topology Of Star Network	22
2.7	The Stack Of 802,15.4 Protocol	26
2.8	Structure Channel Of The Ieee 802.15.4	28
2.9	Packet Structure For leee 802.15.4 Physical Layer	29
2.10	Frame Format'For Mac June June June June June June June June	30
2.11	Mac Super-Frame Structure For The 802.15.4	32
2.12	Communication From A Device To A Coordinator In A Beacon Enabled P	an 34
2.13	Flow Chart For Slotted Csma/Ca Mechanism	35
3.1	Steps Of Simulation Method	39
3.2	Cycle Of Uplink Radio	42
4.1	Markov Chain Model For A Sensing Node	47
4.2	Channel State Use Markov Chain Model	52
4.3	Ifs For Acknowledged Transmission	54
4.4	Ack Reception Scheme	55
5.1	Transitions And Energy States For The Cc2420 Radio	59
5.2	Performance Of Latency For Ack	60

61
62
63
64
65
66

LIST OF ABBREVIATIONS

Synopses	StandFor
ACK	Acknowledgement
BAN	Body Area Network
BASN	Body Area Sensor Network
BE	Backoff Exponent
BI	Beacon Interval
во	Beacon Order
CAP	Contention Access Period
CCA	Clear Channel Assessment
CFP	Contention Free Period
CSMA/CD	Carrier Sense Multiple Access/Collision detection
CSMA	Carrier Sense Multiple Access
CSMA/CA	Carrier Sense Multiple Access/Collision Avoidance
CW	Contention Window
DES	Discrete Event-based Simulation
ECG	Electro Cardio Gram
ED	Energy Detection

EEG	Electroencephalography
EMG	Electromyography
EU	European Union
FCS	Frame Check Sequence
FDMA	Frequency Division Multiple Access
FFD	Fully Functional Devices
GSM	Global System for Mobile Communication
GTS	Guaranteed Time Slot
GUI	Graphical User Interface
IEEE	Institute of Electrical and Electronics Engineers
IFS	Inter-Frame Spacing
ISTAG	Information Society Technologies Advisory Group
лят	اونيوم سيتي تبيي تنظيم المسيا ملاك
LIFS	UNIVERSITI TEKNIKAL MALAYSIA MELAKA
LQI	Link Quality Indication
MAC	Medium Access Control
NB	Number of Backoff (periods)
NFC	Near Field Communication
NS2	Network Simulator version-2
PAN	Personal Area Network
PDA	Personal digital assistant

PHY	Physical layer
PPDU	Physical Layer Protocol Data Unit
PSDU	Physical Layer Service Data Unit
QoS	Quality of Service
RFID	Radio Frequency Identification
RFD	Reduced Function Devices
RMS	Root Mean Square
RS	Recommended Standard
SD	Superframe Duration
SFO	SuperframeOrder
SHR	Synchronization Header
SIFS	Short Inter-frame Spacing
SO	Superframe Order
TDMA	Time Division Multiple Access
тх	Transmit or Transmitter
USB	Universal Serial Bus
WBAN	Wireless Body Area Networks
WBSN	Wireless Body Sensor Networks
WLAN	Wireless Local Area Network
WPSN	Wireless Personal Sensor Network
WSN	Wireless Sensor Network
	xiv

ABSTRACT

Wireless body sensor networks (WBSN) are a specially type of wireless sensor networks (WSN) have gained in recent years thanks to the development of innovative wearable, wireless and implantable biosensors tremendous international interest. The applications of WBSN extend from intervention to everyday healthcare and in-vivo monitoring and , also fitness, sport and security. This study provides a brief introduction to the 802.15.4 standard and investigates its use in WBSNs. WBSN applications require high reliability in data transfer, but I is not dense enough to ensure there is enough redundancy in the deployment of sensors to avoid the use of the confirmation messages reaching the level of the MAC. The simulation design in this project is focused on determining the performance of the Contention Access Period (CAP) protocol of the IEEE 802.15.4 standard in WBSN by employed to predict latency, energy consumption and throughput. As well as, the simulation is executed based on Markov chain under MATLAB tool environment. However, the simulation result shows how the energy consumption in WBSN networks experiences a high path loss, this uncovers one of the main problems of using IEEE 802.15.4 in a human body environment, that is the hidden node problem, which have a significant impact on the performance WBSN, both in terms of productivity and energy consumption that cant solved without increasing the transmitted power.

ABSTRACK

Jaringan penderia badan wayarles (WBSN) ialah satu jaringan istimewa seperti penderia wavarles (WSN). Terima kasih kepada pembangunan inovatif biosensors yang telah diperolehi dalam tahun-tahun kebelakangan ini, kerana ia amat sesuai digunakan wayarles dan juga boleh diimplan kepentingan hebat peringkat antarabangsa. Permohonan-permohonan WBSN dilanjutkan pengunaannya dari gangguan untuk setiap hari bagi penjagaan kesihatan dan pengawasan in-vivo begitu juga untuk kesukanan dan keselamatan. Kajian ini menyediakan satu pengenalan pendek bagi tahap 802.15.4 dan menyiasat penggunaannya dalam WBSNs. Permohonan-permohonan WBSN memerlukan kepercayaan yang tinggi dalam pemindahan data, tetapi ia tidak akan mencukupi ketebalannya bagi memastikan kelebihan sensomya yang mencukupi dalam penggunaan pengesan-pengesan bagi mengalak penghantaran mesej-mesej untuk mengesahan sampai tahap MAC. Reka bentuk simulasi dalam projek ini akan menentukan prestasi Contention Access Period (CAP) protokol IEEE 802.15.4 yang setaraf dalam WBSN untuk bekerjasama meramalkan kependaman, penggunaan tenaga dan daya pemprosesan. Simulasi ini juga akan mengikut semua dasar rangkaian Markov di bawah persekitaran peralatan MATLAB. Bagaimanapun , similasi tersebut telah menunjukan bagaimana penggunaan tenaga dalam jaringan WPSN mengalami satu kehilangan laluan tinggi, ini akan membuka satu daripada masalah utama penggunakan IEEE 802.15.4 dalam persekitaran kehidupan manusia, ia adalah masalah nod yang tersembunyi, begitu juga ia akan memberi kesan yang penting bagi prestasi WBSN, kedua-duanya mempunyai masalah produktiviti dan penggunaan tenaga di mana ia tidak akan diselesaikan tanpa penambahkan kuasa penyampaian.

CHAPTER 1

INTRODUCTION

1.1 Introduction

Electronic embedded systems are pervasive or widespread; from mobile phones to cars, from alarm clocks to PDAs, every day; most of the appliances that we use are controlled by internal or embedded electronics. In relation with the recent advances in technology, in technology with the recent advances today, almost all of the microprocessors produced are used in such embedded systems, and recently the number of embedded systems in use has increased and developed. Ambient intelligence are reflects the vision that technology will be embedded, not only develop, it be fully hidden in our natural surroundings, and invisible, but present whenever we need it, enabled by easy interactions and simple (Basten, Geilen and De Groot, 2005). According to the EU Information Society Technology Program (ISTAG) the ambient intelligence has been defined as "the convergence of three major key technologies: ubiquitous computing, ubiquitous communication, and interfaces adapting to the user" (Benini, Farella and Guiducci, December 2006).

According to (Yick, Mukherjee and Ghosal, 2008) Wireless Sensor Network (WSN) technology is developing at a surprisingly high speed. Lots and many areas have begin to use the wireless sensor network technology and discover the features of WSN, such as environmental observing, smart home, military applications, forecasting system, structure monitoring and medical care. (Lee and Chung, 2009) Referring that the scientific society as the prospect of environmental monitoring increasingly considers WSN, providing at a low cost the possibility to process after gather all sorts of data with a time and place decision unimaginable before, WSNs are out looked as a critical factor of the revolution of ubiquitous computing.

(Ahmed, Kanhere and Jha, 2010) defined WSN as a network of lots of sensor nodes, having communicate with each other through wireless channel. Without any predefined communication link and centralized control, WSN can transport signals to the external world. The nodes are able to be active as sink node or source at the similar time. Because of their tiny physical size, these nodes have a limited processing power, which limits the size of battery and capacity of processor. Those nodes have an ability to collect information of the physical environment, when collectively works mutually. Which mean a communicated between the virtual world and the physical world happen depend on the transceiver. Furthermore, based on the transmission power available at a nodes, the routing topology was be used for the network; as well as depends on the location of node, which may vary time to time.

(ROMER, Mattern and Zurich, 2004) confirmed that current sensor network applications in ambient intelligence range from the industrial processes for tracking assets and people to the maintenance of buildings and the environmental monitoring of ecosystems, etc. Additionally, there are different requirements for each application domain and the nature of the problem based on restrictions. In this project will focus on one specific application, the application which driver depend on human body implantable sensors and wearable to monitoring of humans, that will be expand the role of such technologies in healthcare and to overcome new challenges from nature on human health. The important reasons for this choice are firstly for all of us, the human monitoring is an extremely important field. Second, there are new challenges poses for the scope of human monitoring application such as security, low energy consumption and requisites for unobtrusiveness, etc. However, In fact, one of the WSNs types is Wireless Personal Sensor Networks (WPSN), which is becoming an important topic in the technological research community.

According to (Rodrigues, Pereira and Neves, 2011) defined the WPSN as a special purpose wireless-sensor network to enable remote monitoring in various environments that incorporates wireless devices and different networks. Medical environments are one of the targeted applications of WPSNs where conditions of a large number of patients are constantly being monitored in a real-time environment. One of the current needs is Wireless monitoring of physiological signals of a large number of patients so as to deploy a complete WSN in healthcare systems. WPSNs main goal is to provide biofeedback data, the ability to continuously monitor health parameters such as arterial blood pressure, heartbeat rate, body/intra-body temperature, in an efficient and unobtrusive way. As illustrated in Figure 1.1 the WPSNs consists of smaller, fewer opportunities for redundancy, less space covered, and less nodes, Unlike conventional WSNs.

Moreover when working with the two to ten nodes typical of a WPSN the scalability can lead to inefficiencies. Adding path redundancy and sensor for network congestion problems and solving node failure cannot be a viable mechanism for a WPSN looking for to minimize resource usage and form factor; indicates that the hierarchical nature for WPSNs are a distinctly. Naturalistically that microprocessors should process to extract the needed information and they capture large amount of data constantly. Data processing must be hierarchical to ensure the availability of data, to maintain system efficiency, and exploit the asymmetry of resources, (Hanson et al., 2009).

WPSN technology has many potential applications, including wearable computing, medical sensing and control, identification and location awareness. In this area, the IEEE 802.15.4 standard was growth a response to support low data rate networks where latency; low power and bit rate are not so critical (Shrestha, Hossain and Camorlinga, 2011). The IEEE 802.15.4 MAC is since its ratification that has received much interest to assess energy performance and its throughput. In fact, that will spur the novel slotted access protocol featured in the Contention Access Period (CAP) particularly, as its beaconenabled mode. Based on (Koubaa, Alves and Tovar, 2006) there are many preliminary simulation studies were conducted, and introduced a several accurate analytical models. In particular, the finalization of the IEEE 802.15.4 standard the development of those applications has been stimulated, which defines the physical layer (PHY) and MAC for low-rate wireless personal area networks, Figure 1.3 show the device architecture for IEEE

802.15.4.

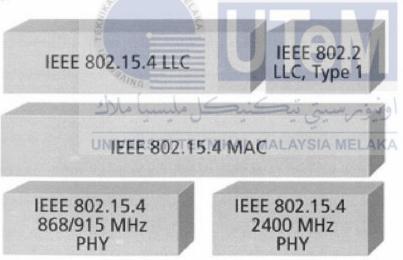


Figure 1.2 IEEE 802.15.4 Device Architecture

Slotted Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) is one of the MAC schemes proposed (Ndih, Khaled and Micheli, 2009). Through This project will analyzes the performance of MAC; Markov chain models will monitoring the behaviour of the MAC by using two sub model the channel state model and the per-node