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ABSTRACT 

 

Autonomous cooperating mobile robots is one of technological advancement in enabling 

autonomy in search and rescue task (SaR). While, simultaneous localization and mapping 

(SLAM) algorithm is one of a key element to enable autonomous navigation. Many 

researchers chose to adopt high-end sensors to solve Cooperative SLAM or CSLAM. But 

this will cause staggering cost for multiple robot system. Thus, the alternative is to 

implement low-cost sensors with limited sensing to perform CSLAM. However, this 

approach introduces challenges such as inaccurate robots’ sensors measurements and low 

accuracy cooperative mapping were reported. In this research, an Artificial Neural 

Network (ANN) is proposed to improve the accuracy of the CSLAM algorithm with low-

cost sensors and is evaluated using real robots. Here, the selected methodologies are 

divided into three important stages to support three objectives defined to solve the stated 

problem statement. Firstly, the ANN configurations is established to reduce the 

nonlinearity error of the low-cost sensor measurements for building high accuracy 

environmental map. By training the ANN using sensor measurements, it learns to model 

the data and reduce the error or uncertainties present in the measurements obtained from 

the low-cost sensors. Secondly, a framework of CSLAM algorithm integrated with ANN 

using Rao-Blackwellized particle filter (RBPF) algorithm for single SLAM robot, and the 

map merging using random sample consensus (RANSAC) algorithm, is designed and 

developed. Lastly, the performance of the CSLAM algorithm with ANN is evaluated and 

validated using measurements from real robot platforms, and compared to that without 

ANN. From the real-world experiment, CSLAM with ANN has increased the performance 

of resulting maps by 61.09% compared to without ANN. It shows that, CSLAM integrated 

with ANN have improved the performance of CSLAM significantly. Moreover, CSLAM 

integrated with ANN have achieved 3 closed loop condition out of 10 trials for 600 

particles compared to without ANN that does not achieve closed loop map out of 10 trials 

even though, the number of particles is increased. From the results, it can be concluded that 

the development of CSLAM algorithm integrated with ANN able to improve the 

performance of CSLAM for mobile robot using low-cost sensor. 
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ABSTRAK 

 

 

Robot-robot bergerak secara autonomi yang bekerjasama merupakan salah satu kemajuan 

teknologi dalam membolehkan autonomi dalam tugas mencari dan menyelamat (SaR). 

Sementara itu, algoritma penyetempatan dan pemetaan (SLAM) merupakan salah satu 

elemen utama untuk membolehkan navigasi autonomi. Banyak penyelidik memilih untuk 

mengadopsi sensor-sensor berkualiti tinggi untuk menyelesaikan Cooperative SLAM atau 

CSLAM. Namun, ini akan menyebabkan kos yang tinggi untuk sistem robot yang banyak. 

Oleh itu, alternatifnya adalah mengimplementasikan sensor-sensor berkos rendah dengan 

penerimaan yang terhad untuk melaksanakan CSLAM. Walau bagaimanapun, pendekatan 

ini membawa cabaran seperti pengukuran sensor robot yang tidak tepat dan pemetaan 

koperatif yang kurang tepat dilaporkan. Dalam penyelidikan ini, Jaringan Neural Tiruan 

(ANN) dicadangkan untuk meningkatkan ketepatan algoritma CSLAM dengan sensor 

berkos rendah dan dinilai menggunakan robot sebenar. Di sini, metodologi yang dipilih 

dibahagikan kepada tiga peringkat penting untuk menyokong tiga objektif yang ditakrifkan 

untuk menyelesaikan kenyataan masalah. Pertama, konfigurasi ANN dibina untuk 

mengurangkan ralat bukan linear pengukuran sensor berkos rendah untuk membina peta 

alam sekitar dengan ketepatan tinggi. Dengan melatih ANN pada data sensor, ia 

mempelajari untuk memodelkan dan mengurangkan ketidaklinearan yang hadir dalam 

pengukuran yang diperoleh daripada sensor berkos rendah. Kedua, rangkaian algoritma 

CSLAM yang terintegrasi dengan ANN menggunakan algoritma Rao-Blackwellized 

particle filter (RBPF) untuk robot SLAM tunggal, dan penggabungan peta menggunakan 

algoritma random sample consensus (RANSAC), direka dan dibangunkan. Akhirnya, 

prestasi algoritma CSLAM dengan ANN dinilai dan disahkan menggunakan pengukuran 

dari platfrom robot sebenar, dan dibandingkan dengan yang tanpa ANN. Dari eksperimen 

dunia nyata, CSLAM dengan ANN telah meningkatkan prestasi peta hasil sebanyak 

61.09% berbanding tanpa ANN. Ini menunjukkan bahawa CSLAM yang terintegrasi 

dengan ANN telah meningkatkan prestasi CSLAM secara signifikan. Selain itu, CSLAM 

yang terintegrasi dengan ANN telah mencapai 3 keadaan litar tertutup daripada 10 

percubaan untuk 600 partikel berbanding tanpa ANN yang tidak mencapai peta litar 

tertutup daripada 10 percubaan walaupun bilangan partikel telah ditingkatkan. Dari hasil 

ini, dapat disimpulkan bahawa pembangunan algoritma CSLAM yang terintegrasi dengan 

ANN dapat meningkatkan prestasi CSLAM untuk robot bergerak menggunakan sensor 

berkos rendah. 

 

REKABENTUK DAN PEMBANGUNAN KOPERATIF PENYETEMPATAN DAN 

PEMETAAN SERENTAK BERSEPADU DENGAN RANGKAIAN NEURAL 

BAGI ROBOT MUDAH ALIH 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background 

These days the necessity to respond successfully to catastrophic and unanticipated 

incidents has increased, which include natural and civil crises, industrial accidents and acts 

of terrorism and crime. Present defense agencies face a lack of specialist dedicated 

resources, leading to the vulnerability of search and rescue (SaR) teams to the risk of 

human lives and less than ideal successful casualty aid within the civilian community 

(Couceiro, Portugal and Rocha, 2013). From this cause, robotics are designed and 

developed to enhance the safety of human rescue workers and potential victims, and to 

achieve faster, more accurate, and cost-effective responses in SaR applications in 

cooperation with human rescue teams (Kruijff et al., 2012). By taking advantage of the 

expendability of robotics, a team of mobile robots operating cooperatively will reduce 

human capital and increase productivity from human exhaustion during crisis operations. 

To survive and operate within its environments, an autonomous robot has to solve two 

crucial problems: mapping an unknown environment and locating its relative position 

within the map. These two common problems in robotics are known as simultaneous 

localization and mapping (SLAM). 

 SLAM plays an important role in robotics, and particularly in mobile robot systems. 

SLAM's primary objective is to jointly measure the robot's position as well as the 

surrounding map model (Alexandre, 2013; Saeedi et al., 2016; Wen et al., 2019; Ullah et 

al., 2020). For this purpose, Rao-Blackwellized particle filter (RBPF) algorithm and 
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occupancy grid map (OGM) algorithm are proposed in this study for individual robot 

framework. However, in this study, the main purpose is to design and develop cooperative 

simultaneous localization and mapping (CSLAM) for mobile robot. While it is difficult 

enough to build single SLAM robot, moving to multiple robots adds another layer of 

difficulty. For CSLAM, the crucial part is the ability to collaborate in order to merge the 

maps produced by individual robots and it is the benchmark of the performance of the 

CSLAM. Robots must include all of the data available to build a coherent world map in a 

multiple robot environment while locating themselves within the global map. CSLAM has 

many advantages, including the ability to complete missions quicker and being resilient to 

the malfunction of any one of the robots. However, these advantages come at the expense 

of a complex system that necessarily involves robot teamwork and cooperation. Hence, the 

methods and algorithms to solve the cooperative robot’s problem which is merging the 

map is studied and included in this work. Random Sample Consensus (RANSAC) 

algorithm for map merging is employed in this study to solve the crucial part of the 

CSLAM problem.  This is due to the algorithm can be implemented in real-time 

applications and suitable for SaR applications since SaR need to achieve faster and real-

time responses. 

 To achieve high accuracy of the mapping, many researchers chose to go for high-

cost sensors to solve CSLAM (Bautin et al., 2013; Andre, Neuhold and Bettstetter, 2014; 

Li et al., 2014; Saeedi et al., 2014b; B et al., 2017; Demim, Nemra, et al., 2017; Seong, Lee 

and Kim, 2019; Martins, Portugal and Rocha, 2021). High-cost sensors typically require a 

greater financial investment as they possess advanced features, higher precision, and 

enhanced capabilities, but they also come with a higher price tag. Hence, this will cause 

staggering cost for multiple robot system. Thus, the alternative is to implement low-cost 

sensors with limited sensing to perform CSLAM. Low-cost sensors refer to sensors that are 
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economically affordable and suitable for applications where cost is a significant 

consideration. These sensors are characterized by their relatively lower price point 

compared to high-end alternatives. However, this approach introduces challenges such as 

low accuracy of the sensors measurements and unstable cooperative mapping were 

reported (Waniek, Ieee and Biedermann, 2015). In addition, although RANSAC algorithm 

is reported to have fast computation time but the accuracy is lower than other method like 

Hough Transform and direct optimization method (Nasir, Hille and Roth, 2012; Iv, 2014; 

Bultmann et al., 2017). However, the other methods are not as fast as RANSAC to have 

real-time application, hence, RANSAC is chosen.  

In this research, a CSLAM algorithm integrated with artificial neural network 

(ANN) is proposed and evaluated using both simulation and real robots. Within this 

framework, a sensor model is developed to interpret measurements and generate corrected 

readings using ANN. The aim is to improve sensor measurements, enhance map estimation 

accuracy and optimize the RANSAC algorithm for the map merging process. This finding 

will be beneficial in overcoming low-cost sensors limitation in order to enhance the 

capability of multi-robots’ system with low-cost sensors. 

 

1.2 Motivation 

 Robotics can contribute to enhance the safety of human rescue workers and 

potential victims, by achieving achieve faster, more accurate, and cost-effective responses 

in SaR applications. It is achieved through the use of mobile robotic agent teams in 

cooperation with human rescue teams (Kruijff et al., 2012). Through taking advantage of 

the expendability of robotics, a team of mobile robots operating cooperatively will reduce 


