

Faculty of Electrical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Muhamad Fadli Ghani

Doctor of Philosophy

OPTIMIZED FUZZY LOGIC SLIDING MODE CONTROL WITH PROPORTIONAL-INTEGRAL-DERIVATIVE FOR AN ELECTROHYDRAULIC ACTUATOR SYSTEM

MUHAMAD FADLI GHANI

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2023

DECLARATION

I declare that this thesis entitled "Optimized Fuzzy Logic Sliding Mode Control with Proportional-Integral-Derivative for an Electrohydraulic Actuator System" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in the candidature of any other degree.

Signature Muhamad Fadli Ghani Name 30/5/2023 Date TEKNIKAL MALAYSIA MELAKA UNIVERSITI

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Doctor of Philosophy.

Signature Associate Professor Dr. Rozaimi Ghazali Supervisor's Name 30/5/2023 Date **TEKNIKAL MALAYSIA MELAKA** UNIVERSITI

DEDICATION

To my lovely wife, Nur Safiyah Mohamad Adib for her tolerance, inspiration and constant support over the years.

To my beloved children, Muhamad Fayyadh Alqushayyi and Muhamad Faheem Alfateh for creation my life productive and pleasant.

ABSTRACT

The electrohydraulic actuator (EHA) system generates a trajectory by transferring high force densities in the form of pressurized fluid flows to a hydraulic actuator. Moreover, the sliding mode control (SMC) approach has been discovered as a potential method for the EHA trajectory tracking control system. However, high-frequency proportional valve activity has occurred during the practical application of the conventional SMC approach, resulting in tracking performance degradation. Furthermore, a preferable SMC sliding surface design is necessary to improve the precision of trajectory tracking performance, and the SMC designs involve complicated procedure and mathematical formulations. Therefore, this thesis proposes an optimized fuzzy logic (FL) SMC with a proportional-integral-derivative (PID) structure for trajectory tracking control in an EHA system. The proposed control strategy was designed with the switching function modification based on an FL approach in the conventional SMC algorithm called FLSMC. A particle swarm optimization (PSO) algorithm was implemented as the FLSMC design involves a complicated procedure and mathematical formulations to obtain the optimal value of the designed control variables. By adopting the same design concept, the conventional SMC approach was developed for performance comparisons. Furthermore, in an attempt to achieve the objectives of precise trajectory tracking control, a hybrid control structure of FLSMC and PID feedback control (FLSMCPID) is proposed and implemented. Due to the difficulty of concurrent hybrid design, the PSO algorithm was employed to determine the optimal control variables value. For performance comparisons with the proposed hybrid control strategy, a hybrid conventional SMC and PID feedback control (SMCPID) was established by using the same design concept. Simulations utilizing a linear EHA system model obtained using the greybox identification approach and experimentation on an EHA system workbench for various trajectories and under the consequences of variation in supply pressure were conducted to evaluate the performance of the proposed control strategies. A linear type actuation of the EHA system using a single-ended cylinder controlled by a proportional valve was considered in the experimental design. The simulation and experimental results demonstrate that higher effectiveness, precision, and robustness were achieved by the EHA system with the FLSMC and FLSMCPID as compared to the established conventional SMC and SMCPID approaches, respectively. Moreover, the experimental results verified that the EHA system with the FLSMCPID achieved 82.1%, 78.9%, 94.8%, and 88.8% improvement in the precision tracking control for 0.25 Hz sinusoidal, multi-sinusoidal, point-to-point, and chaotic trajectories, respectively, and enhanced the robustness by 33.3% compared to the FLSMC control strategy. It is envisaged that the proposed FLSMC and FLSMCPID control strategies can be utilized for effective, precise, and robust tracking control of various EHA systems.

KAWALAN MOD GELONGSOR LOGIK KABUR YANG DIOPTIMUMKAN DENGAN BERKADARAN-KAMIRAN-TERBITAN UNTUK SISTEM PENGGERAK ELEKTROHIDRAULIK

ABSTRAK

Sistem penggerak elektrohidraulik (EHA) menjana trajektori dengan memindahkan ketumpatan daya tinggi dalam bentuk aliran bendalir bertekanan ke penggerak hidraulik. Selain itu, pendekatan kawalan mod gelongsor (SMC) telah ditemui sebagai kaedah yang berpotensi untuk sistem kawalan pengesanan trajektori EHA. Walau bagaimanapun, aktiviti injap berkadar frekuensi tinggi telah berlaku semasa aplikasi praktikal pendekatan SMC konvensional, mengakibatkan kemerosotan prestasi pengesanan. Tambahan pula, reka bentuk permukaan gelongsor SMC yang lebih baik adalah perlu untuk meningkatkan ketepatan prestasi pengesanan trajektori, dan reka bentuk SMC melibatkan prosedur yang rumit dan rumusan matematik. Oleh itu, tesis ini mencadangkan SMC logik kabur (FL) yang dioptimumkan dengan struktur berkadaran-kamiran-terbitan (PID) untuk kawalan pengesanan trajektori dalam sistem EHA. Strategi kawalan yang dicadangkan telah direka bentuk berdasarkan pengubahsuaian fungsi pensuisan pendekatan FL dalam algoritma SMC konvensional yang dipanggil FLSMC. Algoritma pengoptimuman kawanan zarah (PSO) telah dilaksanakan kerana reka bentuk FLSMC melibatkan prosedur dan rumusan matematik yang rumit untuk mendapatkan nilai optimum pembolehubah kawalan yang direka bentuk. Dengan menggunakan konsep reka bentuk yang sama, pendekatan SMC konvensional telah dibangunkan untuk perbandingan prestasi. Tambahan pula, dalam usaha untuk mencapai objektif kawalan pengesanan trajektori yang tepat, struktur kawalan hibrid FLSMC dan kawalan maklum balas PID (FLSMCPID) dicadangkan dan dilaksanakan. Disebabkan oleh kesukaran reka bentuk hibrid serentak, algoritma PSO telah digunakan untuk menentukan nilai pembolehubah kawalan yang optimum. Untuk perbandingan prestasi dengan strategi kawalan hibrid yang dicadangkan, kawalan maklum balas SMC konvensional dan PID (SMCPID) hibrid telah dibangunkan dengan menggunakan konsep reka bentuk yang sama. Simulasi menggunakan model sistem EHA linear yang diperoleh menggunakan pendekatan pengenalan kotak kelabu dan eksperimen pada meja kerja sistem EHA untuk pelbagai trajektori dan di bawah akibat variasi dalam tekanan bekalan telah dijalankan untuk menilai prestasi strategi kawalan yang dicadangkan. Penggerakan jenis linear sistem EHA menggunakan silinder hujung tunggal yang dikawal oleh injap berkadar telah dipertimbangkan dalam reka bentuk eksperimen. Hasil simulasi dan eksperimen menunjukkan bahawa keberkesanan, ketepatan dan keteguhan yang lebih tinggi telah dicapai oleh sistem EHA dengan FLSMC dan FLSMCPID berbanding dengan pendekatan SMC dan SMCPID konvensional yang telah ditetapkan, masing-masing. Selain itu, keputusan eksperimen mengesahkan bahawa sistem EHA dengan FLSMCPID mencapai 82.1%, 78.9%, 94.8%, dan 88.8% peningkatan dalam kawalan penjejakan ketepatan untuk 0.25 Hz sinusoidal, berbilang-sinusoidal, titik-ke-titik dan trajektori huru-hara, masingmasing, dan meningkatkan keteguhan sebanyak 33.3% berbanding strategi kawalan FLSMC. Adalah dijangkakan bahawa strategi kawalan FLSMC dan FLSMCPID yang dicadangkan boleh digunakan untuk kawalan penjejakan yang berkesan, tepat dan teguh bagi pelbagai sistem EHA.

ACKNOWLEDGEMENTS

All praise to Allah, the Almighty...

First and foremost, I want to thank our Creator for His endless blessings and for providing me with the strength and opportunities to complete this thesis.

Special thanks to my project supervisor, Assoc. Prof. Dr. Rozaimi Ghazali and co-supervisor, Ts. Dr. Hazriq Izzuan Jaafar, for the advice, encouragement, and insightful comments provided while doing this research.

My dearest parents, wonderful wife and adored childrens deserves special recognition for their enthusiastic support and contribution as the driving force behind the success of my project. My sincere appreciation also extends to everyone I may have omitted who assisted directly or indirectly in the completion of my PhD thesis.

My sincere appreciation also extends to my in-laws for their assistance on numerous occasions.

I am also grateful to the Ministry of Higher Education (MoHE) for the financial support to embark on my research journey.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

TABLE OF CONTENTS

DECLARATION APPROVAL **DEDICATION** ABSTRACT i ABSTRAK ii **ACKNOWLEDGEMENTS** iii **TABLE OF CONTENTS** iv LIST OF TABLES vi **LIST OF FIGURES** viii LIST OF APPENDICES xiii LIST OF ABBREVIATIONS xiv LIST OF SYMBOLS xvii LIST OF PUBLICATIONS xix CHAPTER

1.	INT	INTRODUCTION					
	1.1	Research Background	1				
	1.2	Motivation	3				
	1.3	Problem Statement	4				
	1.4	Research Objectives	5				
	1.5	Research Scopes	6				
	1.6	Research Contributions	7				
	1.7	Thesis Organization	8				
		AIND					
2.	LIT	ERATURE REVIEW					
	2.1	اوىيەم سىتى ئىكىنچى مايسIntroduction	9				
	2.2	Electrohydraulic Actuator System	9				
		2.2.1 Hydraulic Transmission: Valve-Controlled System					
		2.2.2 Hydraulic Actuator					
		2.2.3 Issues in Actuation Control: Non-Linearities Effect	13				
		2.2.4 Linearization of EHA System					
	2.3	Previous Research on EHA Control Strategies					
		2.3.1 Linear Control	22				
		2.3.2 Non-linear Control					
		2.3.3 Intelligent Control					
		2.3.4 Hybrid Control	34				
	2.4	Optimization Approach	36				
	2.5	Summaries of Literature Review and Research Gaps	45				
	2.6	Summary	51				
3.	RES	SEARCH METHODOLOGY					
	31	Introduction	52				

Introduction		
Methodology	52	
3.2.1 Premilinary Work: Model Identification of an EHA System	52	
3.2.2 Phase 1: FLSMC Design	53	
3.2.3 Phase 2: FLSMCPID Design	53	
	Introduction Methodology 3.2.1 Premilinary Work: Model Identification of an EHA System 3.2.2 Phase 1: FLSMC Design 3.2.3 Phase 2: FLSMCPID Design	

	3.3	Simulation and Experimental Tools	55			
	3.4	Experimental Design	57			
	3.5	Grey-box Identification for a Linear EHA System Model	59			
		3.5.1 Physical Modelling	60			
		3.5.2 Parameter Estimation	63			
	3.6	Control Strategy Design	64			
		3.6.1 SMC and FLSMC Designs	65			
		3.6.2 SMCPID and FLSMCPID Designs	69			
		3.6.3 Lyapunov Theorem: Stability Analysis	71			
		3.6.3.1 SMC and SMCPID Approaches	72			
		3.6.3.2 FLSMC and FLSMCPID Control Strategies	72			
		3.6.4 Particle Swarm Optimization Algorithm	73			
	3.7	Trajectory Tracking Profile	76			
		3.7.1 Sinusoidal and Multi-Sinusoidal Trajectories	76			
		3.7.2 Point-to-point Trajectory	78			
		3.7.3 Chaotic Trajectory	79			
	3.8	Performance Indicators	79			
	3.9	Summary	81			
4.	RESULTS AND DISCUSSIONS					
	4.1	Introduction	82			
	4.2	EHA System: Linear Model	82			
	4.3	Validation of the Dynamic Model	85			
	4.4	PSO Algorithm: Optimum Variables Value	88			
	4.5	Simulation and Experimental Results: FLSMC Control Strategy	89			
		4.5.1 Sinusoidal Trajectory Tracking	90			
		4.5.2 Multi-Sinusoidal Trajectory Tracking	97			
		4.5.3 Point-to-point Trajectory Tracking	103			
		4.5.4 Chaotic Trajectory Tracking and Robustness Assessment	109			
		4.5.5 Summaries of Real-Time Tracking Control Performances	121			
	4.6	Simulation and Experimental Results: FLSMCPID Control Strategy	122			
		4.6.1 Sinusoidal Trajectory Tracking	123			
		4.6.2 Multi-Sinusoidal Trajectory Tracking	130			
		4.6.3 Point-to-point Trajectory Tracking	136			
		4.6.4 Chaotic Trajectory Tracking and Robustness Assessment	142			
		4.6.5 Summaries of Real-Time Tracking Control Performances	153			
	4.7	Performance Analysis: FLSMC and FLSMCPID Control Strategies	154			
	4.8	Discrepancy between Simulation and Experimental Implementations	160			
	4.9	Summary	161			
5.	CONCLUSION AND FUTURE RECOMMENDATIONS					
	5.1	Conclusion	163			
	5.2	Future Recommendations	165			
REFE	REN	CES	166			
APPE	APPENDICES 18					

LIST OF TABLES

TABLE

TITLE

PAGE

2.1	Summary of existing linear control strategies	46
2.2	Summary of existing non-linear control strategies	47
2.3	Summary of existing intelligent and hybrid control strategies	48
2.4	Summary of existing optimization approaches	49
2.5	Summary of research gaps	50
3.1	The specifications of PCIe-6321 card	57
3.2	Input-output rule base	68
4.1	Estimated parameters	83
4.2	Percentage best fit for model validation	85
4.3	RMSE performance of multi-sinusoidal trajectory tracking without a	
	controller	87
4.4	Optimized variables values using PSO algorithm	89
4.5	MSE and RMSE indicators value for the sinusoidal trajectory	
	tracking	95
4.6	MSE and RMSE indicators value of tracking control for multi-	
	sinusoidal trajectory tracking	102
4.7	MSE and RMSE indicator values for point-to-point trajectory	
	tracking	108
4.8	MSE, RMSE, and RI indicators value for chaotic trajectory tracking	119
4.9	Percentage of tracking control effectiveness, precision, and	
	robustness improvements between FLSMC and SMC control	
	strategies	122
4.10	MSE and RMSE indicators value for the sinusoidal trajectory	
	tracking	128

4.11	MSE and RMSE indicators value for multi-sinusoidal trajectory	
	tracking	135
4.12	MSE and RMSE indicators value for point-to-point trajectory	
	tracking	141
4.13	MSE, RMSE, and RI indicators performance for chaotic trajectory	
	tracking	151
4.14	Tracking control effectiveness, precision, and robustness	
	improvements between FLSMCPID and SMCPID control strategies	154
4.15	Effectiveness improvement between FLSMCPID and FLSMC	
	approaches	158
4.16	Preciseness improvement between FLSMCPID and FLSMC	
	approaches	158
4.17	Robustness improvement between FLSMCPID and FLSMC	
	approaches	159
	اونيۈم سيتي تيڪنيڪل مليسيا ملاك	
	UNIVERSITI TEKNIKAL MALAYSIA MELAKA	

LIST OF FIGURES

FIGURE

TITLE

2.1	Classification of developed control strategies for EHA system 2			
3.1	Flowchart of research methodology			
3.2	Bosch Rexroth 4WREE 6 E08-2X/G24K31/A1V			
3.3	The double acting cylinder hydraulic actuator	56		
3.4	The wire displacement sensor SP1-12	56		
3.5	The EHA system experimental design	58		
3.6	Control schematic diagram for EHA system workbench	59		
3.7	Schematic diagram of the double-acting EHA system			
3.8	Parameter estimation flowchart	64		
3.9	The closed-loop block diagram of an EHA system			
3.10	Phase illustration of a sliding motion			
3.11	Input membership functions	68		
3.12	Output membership functions L MALAYSIA MELAKA	68		
3.13	Input-output surface plot	69		
3.14	Searching optimization process	74		
3.15	The overall design process using PSO algoritm	75		
3.16	Sinusoidal trajectory	77		
3.17	Multi-sinusoidal trajectory	77		
3.18	Point-to-point trajectory	78		
3.19	Chaotic trajectory	79		
4.1	Input-output data before trend filtering	83		
4.2	Simulated and measured output for validation process: (a) Nominal			
	condition (b) Variation condition	85		
4.3	A closed-loop block diagram evaluation without a controller	86		

4.4	Multi-sinusoidal trajectory tracking responses without a controller:	
	(a) Nominal condition (b) Variation condition	87
4.5	Convergence curve of fitness function	89
4.6	Tracking responses for 0.25 Hz sinusoidal trajectory: (a) Simulation	
	(b) Experiment	93
4.7	Control signal for 0.25 Hz sinusoidal trajectory tracking: (a)	
	Simulation (b) Experiment	94
4.8	Tracking error for 0.25 Hz sinusoidal trajectory : (a) Simulation (b)	
	Experiment	94
4.9	Sliding surface response of SMC and FLSMC control strategies for	
	0.25 Hz sinusoidal trajectory tracking (Experiment)	95
4.10	Effectiveness performance of 0.25 Hz sinusoidal trajectory tracking	95
4.11	Tracking performance for multi-sinusoidal trajectory: (a) Simulation	
	(b) Experiment	99
4.12	Control signal for multi-sinusoidal trajectory tracking: (a) Simulation	
	(b) Experiment	100
4.13	Tracking error for multi-sinusoidal trajectory: (a) Simulation (b)	
	Experiment	101
4.14	Sliding surface of SMC and FLSMC control strategies for multi-	
	sinusoidal trajectory tracking (Experiment)	101
4.15	Effectiveness performance of multi-sinusoidal trajectory tracking	101
4.16	Tracking performance for point-to-point trajectory: (a) Simulation (b)	
	Experiment	106
4.17	Control signal for point-to-point trajectory tracking: (a) Simulation	
	(b) Experiment	107
4.18	Tracking error for point-to-point trajectory: (a) Simulation (b)	
	Experiment	107
4.19	Sliding surface of SMC and FLSMC control strategies for point-to-	
	point trajectory tracking (Experiment)	108
4.20	Effectiveness performance of point-to-point trajectory tracking	108
4.21	Tracking performance for chaotic trajectory under nominal condition:	
	(a) Simulation (b) Experiment	112

4.22	Control signal for chaotic trajectory tracking under nominal	
	condition: (a) Simulation (b) Experiment	113
4.23	Tracking error for chaotic trajectory under nominal condition: (a)	
	Simulation (b) Experiment	113
4.24	Sliding surface of SMC and FLSMC control strategies for chaotic	
	trajectory tracking under nominal condition (Experiment)	114
4.25	Tracking performance for chaotic trajectory under variation	
	condition: (a) Simulation (b) Experiment	117
4.26	Control signal for chaotic trajectory tracking under variation	
	condition: (a) Simulation (b) Experiment	117
4.27	Tracking error for chaotic trajectory under variation condition: (a)	
	Simulation (b) Experiment	118
4.28	Sliding surface of SMC and FLSMC control strategies for chaotic	
	trajectory tracking under variation condition (Experiment)	118
4.29	Effectiveness performances of chaotic trajectory tracking under	
	nominal and variation conditions	119
4.30	Tracking responses for 0.25 Hz sinusoidal trajectory tracking: (a)	
	Simulation (b) Experiment	126
4.31	Control signal for 0.25 Hz sinusoidal trajectory tracking: (a)	
	Simulation (b) Experiment	127
4.32	Tracking error for 0.25 Hz sinusoidal trajectory: (a) Simulation (b)	
	Experiment	127
4.33	Sliding surface response of FLSMCPID and SMCPID control	
	strategies for 0.25 Hz sinusoidal trajectory tracking (Experiment)	128
4.34	Effectiveness performance of 0.25 Hz sinusoidal trajectory tracking	128
4.35	Tracking performance for multi-sinusoidal trajectory: (a) Simulation	
	(b) Experiment	132
4.36	Control signal for multi-sinusoidal trajectory tracking: (a) Simulation	
	(b) Experiment	133
4.37	Tracking error for multi-sinusoidal trajectory: (a) Simulation (b)	
	Experiment	134
4.38	Sliding surface of SMCPID and FLSMCPID control strategies for	
	multi-sinusoidal trajectory tracking (Experiment)	134

4.39	Effectiveness performance of multi-sinusoidal trajectory tracking 13		
4.40	Tracking performance for point-to-point trajectory: (a) Simulation (b)		
	Experiment	138	
4.41	Control signal for point-to-point trajectory tracking: (a) Simulation		
	(b) Experiment	139	
4.42	Tracking error for point-to-point trajectory: (a) Simulation (b)		
	Experiment	140	
4.43	Sliding surface of SMCPID and FLSMCPID control strategies for		
	point-to-point trajectory tracking (Experiment)	140	
4.44	Effectiveness performances of point-to-point trajectory tracking	140	
4.45	Tracking performance for chaotic trajectory under nominal condition:		
	(a) Simulation (b) Experiment	144	
4.46	Control signal for chaotic trajectory tracking under nominal		
	condition: (a) Simulation (b) Experiment	145	
4.47	Tracking error for chaotic trajectory under nominal condition: (a)		
	Simulation (b) Experiment	145	
4.48	Sliding surface of SMCPID and FLSMCPID control strategies for		
	chaotic trajectory tracking under nominal condition (Experiment)	146	
4.49	Tracking performance for chaotic trajectory under variation		
	condition: (a) Simulation (b) Experiment	148	
4.50	Control signal for chaotic trajectory tracking under pressure variation:		
	(a) Simulation (b) Experiment	149	
4.51	Tracking error for chaotic trajectory under pressure variation: (a)		
	Simulation (b) Experiment	150	
4.52	Sliding surface of SMCPID and FLSMCPID control strategies for		
	chaotic trajectory tracking under variation condition (Experiment	150	
4.53	Effectiveness performances of chaotic trajectory tracking under		
	nominal and variation conditions	150	
4.54	Trajectory tracking responses (Experiment): (a) 0.25 Hz Sinusoidal		
	(b) Multi-sinusoidal (c) Point-to-point (c) Chaotic	155	
4.55	Control signal (Experiment): (a) 0.25 Hz Sinusoidal (b) Multi-		
	sinusoidal (c) Point-to-point (c) Chaotic	156	

4.56Trajectory tracking error (Experiment): (a) 0.25 Hz Sinusoidal (b)Multi-sinusoidal (c) Point-to-point (c) Chaotic157

LIST OF APPENDICES

APPENDI	X TITLE P	'AGE
А	Simulink closed-loop block diagram for the EHA system with the SMC	186
В	Simulink closed-loop block diagram for the EHA system with the	
	FLSMC	187
С	Simulink closed-loop block diagram for the EHA system with the	
	SMCPID	188
D	Simulink closed-loop block diagram for the EHA system with the	
	FLSMCPID UTEN	189
	اويوم سيتي نيڪنيڪل مليسيا ملاك UNIVERSITI TEKNIKAL MALAYSIA MELAKA	

LIST OF ABBREVIATIONS

ABC	 Artificial Bee Colony
ABRH	– Adaptive Backstepping Robust H_{∞}
ACO	 Ant Colony Optimization
AE	– Absolute Error
AWPSO	 Adaptive Weighted Particle Swarm Optimization
BFA	– Bacterial Foraging Algorithm
CG	- Cauchy and Gaussian Mutations
CSA	Cuckoo Search Algorithm
CW	Cauchy Mutation and Mass Weighing
DAQ	– Data Acquisition System
DE	- Differential Evolution
DNN	U+IIV Dynamic Neural NetworksMALAYSIA MELAKA
EHA	– Electrohydraulic Actuator
EHFLS	 Electrohydraulic Force Loading System
EHLS	 Electrohydraulic Load Simulator
EHSS	 Electrohydraulic Servo System
ESO	 Extended State Observer
FI	– Fuzzy Inference
FL	 Fuzzy Logic
FLNI	 Fuzzy Logic Negative Input
FLNO	 Fuzzy Logic Negative Output

FLPI	_	Fuzzy Logic Positive Input
FLPO	_	Fuzzy Logic Positive Output
FLZI	_	Fuzzy Logic Zero Input
FLZO	_	Fuzzy Logic Zero Output
FLSMC	_	Fuzzy Logic Sliding Mode Control
FLSMCPID	_	Hybrid FLSMC with Proportional-Integral-Derivative Control
FOPID	_	Fractional-Order Proportional-Integral-Derivative
GA	_	Genetic Algorithm
GPC	_	Generalized Predictive Controller
GSA	_	Gravitational Search Algorithm
IAE		Integral Absolute Error
ISE	A. S.	Integral Square Error
ITAE	TEX	Integral Time Absolute Error
LMI	LISS	Linear Matrix Inequality
LQR	- 94	Linear Quadratic Regulator
MFS	للك	اوينوم سيني تيڪنيMembership Functions
MPC	JĪNIV	Modified Predictive Control
MR	_	Magneto-Rheological
MRAC	_	Model Reference Adaptive Control
MSE	_	Mean Square Error
NN	_	Neural Network
NOM	_	Nominal
Р	_	Proportional
PI	_	Proportional-Integral
PID	_	Proportional-Integral-Derivative
PSO	_	Particle Swarm Optimization
PSOGSA	_	Particle Swarm Optimization-Gravitational Search Algorithm xv

RI	_	Robustness Measurement Index
RMPC	_	Robust Model Predictive Controller
RMSE	_	Root Mean Square Error
SISO	_	Single Input and Output
SMC	_	Sliding Mode Control
SSE	_	Sum Square Error
VAR	_	Variation
VSC	_	Variable Structure Control
ZN	_	Ziegler-Nichols

LIST OF SYMBOLS

<i>a</i> ₀ , <i>a</i> ₁ , <i>a</i> ₂	_	EHA system parameters obtained from the system identification
A_p	_	Cylinder piston surface area
b_i	_	Sinusoidal signal amplitude
<i>C</i> 1, <i>C</i> 2	_	Acceleration constants
C_{tp}	_	Total leakage coefficient of the cylinder piston
е	-2	System tracking error
$f(P_L)$	KIII	Function of internal and external oil leakage non-linear influence
Fa	I. TE	Generated force
f_i	1000	Input frequency
fuzz()	styl	Fuzzy logic function
gbest _{ij}	20	ويور سيبي ييسيب
i	UNIV	Swarm of individuals AL MALAYSIA MELAKA
J	_	Fitness value
k	_	Constant of reaching law
K_c	_	Flow-pressure coefficient
k _p , k _i , k _d	_	Derivative, Integral, Proportional parameters of PID sliding surface
K_q	_	Flow-gain coefficient
M_t	_	Load mass
n	_	Order for the model of the EHA system
Р	_	Supply pressure
р	_	Number of the model parameters

<i>pbest_{ij}</i>	—	Personal best position
P_L	_	Pressure drops
Q_L	_	Total oil flow rates
r	_	Reference trajectory
<i>r</i> ₁ , <i>r</i> ₂	_	Random function values
S	_	Sliding surface
sign()	_	Signum function
t	_	Time
Т	—	Tracking process period
и	—	Input signal
V_{ij}^N	-	Velocity of the N th particle
V_{ij}^{N+1} V_t	A TERULA	New velocity of the N th particle Total compressed oil volume
W	-2437	Inertia weight
\dot{x}_p X^N_{ij}	للأك	Position of the N th particle
X_{ij}^{N+1}	UNIV	New position of the N th particle_AYSIA MELAKA
x_p	_	Piston trajectory
β	_	Effective bulk-modulus coefficient
Е	_	Constant of reaching law
λ	_	Control gain coefficient factor of the sliding surface

LIST OF PUBLICATIONS

Journal:

- Ghani, M.F., Ghazali, R., Jaafar, H.I., Soon, C.C., Sam, Y.M. and Has, Z., 2022. Improved Third Order PID Sliding Mode Controller for Electrohydraulic Actuator Tracking Control. *Journal of Robotics and Control (JRC)*, 3(2), pp.219-226.
- Ghani, M.F., Ghazali, R., Jaafar, H.I., Soon, C.C., Sam, Y.M. and Has, Z., 2022. Third-Order Robust Fuzzy Sliding Mode Tracking Control of a Double-Acting Electrohydraulic Actuator. *International Journal of Emerging Technology and Advanced Engineering (IJETAE)*, 12(6), pp.141-151.
- Ghani, M.F., Ghazali, R., Jaafar, H.I., Soon, C.C., Sam, Y.M. and Has, Z., 2022. Fractional Order Integral Sliding Mode Tracking Control of a Third-Order Double-Acting Electrohydraulic Actuator Model. *International Journal of Mechanical Engineering and Robotics Research (IJMERR)*, 11(9), pp.669-675.

Conference Paper:

- Ghani, M.F., Ghazali, R., Jaafar, H.I., Soon, C.C., Shern, C.M. and Has, Z., 2021, August. The Effects of Mass Variation on Closed-loop EHA System under High Leakage Flow Condition. In 2021 11th IEEE International Conference on Control System, Computing and Engineering (ICCSCE), pp. 206-209.
- 2. Ghani, M.F., Ghazali, R., Jaafar, H.I., Soon, C.C., Jamaluddin, A.Z. and Has, Z., 2022, August. Robust Optimized Sliding Mode Tracking Control of an Electrohydraulic