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ABSTRACT 

 

 

Bobbin Friction Stir Welding (BFSW) is a solid-state welding technique combining heat and 

pressure to complete the process. With the advancement of technology, many industries opt for 

thin materials in their production thus making the joining process more difficult especially when 

involving BFSW technique. This is due to lack of study focusing on joining thin materials using 

BFSW technique. Therefore, this study is carried out to investigate the welding performance of 

thin material Alumium Alloy 1100 series using fixed BFSW process. 3mm thickness of 

Aluminium Alloy 1100 series is used in this study. 2 types of tool designs are used to ensure 

that the joining can be achieved with zero defect. Both tools are used in a pilot test to identify 

the suitable range of process parameter and the best tool is selected for this study. The test results 

showed that the tool having two convex angles (Tool 2) produced better joining compared to 

the other one. Therefore, Tool 2 is selected as the main tool for the rest of this study. There are 

only 2 process parameters used in this study which are rotational speed and welding speed. 

Based on the pilot test results, the suitable range of parameters used in this study are 1500 – 

1600 rpm for rotational speed and 150 – 210 mm/min for welding speed. Design of Experiment 

(DoE) software is used in designing the study model. After the experiment is conducted, it is 

found out that the rate of error of this study model is below 10% and all the analysis by DoE 

can be accepted. During the process, 4 different responses were recorded which were 

temperature, vibration, current and force. Then, all the welded parts were cut for the tensile and 

microhardness testing. After that, the welded parts were divided into 3 different areas which 

were Entry Side (EN), Middle Side (MD), and Exit Side (EX). Each area was analyzed based 

on the best and worst mechanical properties for joining. The analysis showed that the EN of the 

welded parts had higher tensile and microhardness strength, while EX showed the weakest 

tensile and microhardness strength. Apart from that, Advancing Side (AS) had higher 

temperature generation compared to Retreating Side (RS) due to the tool direction. Then, it was 

also found that all the vibration, current and force were unstable at the EN and becoming more 

stable towards the EX. This is believed to be due to heat generation that occurs towards the end 

of the material. Last but not least, all the joining specimens were analyzed based on the 

microstructure of each area focusing on Heat Affected Zone (HAZ) and Stir Zone (SZ). The 

founding showed that HAZ encompassed bigger microstructure area compared to the SZ due to 

the higher heat experience without any mechanical movement. Due to that, there were a few 

defects that occurred on the welded parts which were incomplete joining and keyhole defects. 

All of these findings show that the difficulties of joining thin materials using BFSW technique 

can be solved by maintaining the temperature within acceptable value during the process, 

lowering the vibrancy during the process, and using suitable tool design to transport the soft 

material from AS to RS during the process.  
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ANALISIS PRESTASI KIMPALAN BAHAN NIPIS ALUMINIUM ALOI SIRI 1100 

MENGGUNAKAN KIMPALAN PUTARAN GESERAN BOBBIN 

 

ABSTRAK 

 

Kimpalan Putaran Geseran Bobbin (BFSW) merupakan kimpalan bahan pejal yang berlaku 

menggabungkan haba dan tekanan bagi menjayakan proses tersebut. Namun begitu, dengan 

kemajuan teknologi di industri yang menggunakan bahan nipis dalam pengeluaran mereka, 

menyebabkan kesukaran bagi memastikan proses ikatan menggunakan teknik BFSW berjaya. 

Terdapat banyak kekurangan kajian yang khusus dalam ikatan bahan nipis menggunakan teknik 

BFSW. Oleh itu, kajian ini dijalankan untuk mengkaji prestasi kimpalan bahan nipis Aluminium 

Aloi siri 1100 menggunakan proses BFSW kekal. Ketebalan 3mm bagi Aluminium Aloi siri 1100 

digunakan bagi kajian ini. 2 jenis rekabentuk alat digunakan dalam memastikan ikatan boleh 

dijayakan dengan kosong kecacatan. Kedua-dua alat digunakan dalam ujian rintis bagi 

mengenal pasti julat parameter proses dan alat terbaik akan dipilih bagi menjalankan 

keseluruhan kajian.didapati alat yang mempunyai 2 sudut cembung (Alat 2) menghasilkan 

ikatan yang baik dibandingkan alat lain. Oleh itu, Alat 2 dipilih sebagai alat utama untuk 

keseluruhan kajian ini. Terdapat hanya 2 parameter proses yang dikhususkan dalam kajian ini 

iaitu kelajuan pusingan dan kelajuan kimpalan. Berdasarkan keputusan ujian rintis, julat yang 

sesuai bagi parameter kajian ini adalah 1500-1600 rpm bagi kelajuan pusingan dan 150-210 

mm/min bagi kelajuan kimpalan. Perisian reka bentuk eksperimen (DoE) digunakan bagi 

merekabentuk model kajian. Selepas eksperimen dijalankan, didapati kadar ralat bagi model 

kajian ini dibawah 10% dan semua analisis oleh DoE diterima. Semasa proses dijalankan, 4 

respon berbeza telah direkodkan iaitu suhu, getaran, arus elektrik dan daya tekanan. Kemudian, 

semua bahagian sudah dikimpal dipotong bagi ujian tegangan dan kekerasan mikro. 

Seterusnya, bahagian yang sudah dikimpal dibahagi kepada 3 bahagian berbeza iaitu bahagian 

masuk (EN), bahagian tengah (MD), dan bahagian keluar (EX). Setiap bahagian dianalisis 

berdasarkan keputusan yang terbaik dan terburuk bagi sifat mekanikal ikatan. Didapati EN 

bagi bahagian kimpalan mempunyai tegangan dan kekerasan mikro paling tinggi, manakala 

EX menunjukkan tegangan dan kekerasan mikro terlemah. Selain itu, sisi dimajukan (AS) 

mempunyai kenaikan suhu paling tinggi berbanding sisi berundur (RS) disebabkan arah 

pusingan alat. Ia juga menunjukkan kesemua getaran, arus elektrik, dan daya tekanan tidak 

stabil di EN dan semakin stabil kearah EX. Ini dipercayai disebabkan kenaikan suhu yang 

berlaku ke penghujung bahan. Akhirnya, semua spesimen ikatan dianalisis berdasarkan 

struktur mikro di setiap bahagian fokus terhadap bahagian zon terjejas haba (HAZ) dan zon 

kacauan (SZ). Ia didapati bahagian HAZ mempunyai struktur mikro yang lebih besar 

berbanding di SZ disebabkan berdepan dengan suhu yang tinggi tanpa pergerakan mekanikal. 

Oleh itu, terdapat beberapa kecacatan yang berlaku di bahagian kimpalan seperti ikatan tidak 

berjaya, dan kecacatan lubang kunci. Semua dapatan ini menunjukkan kesukaran ikatan bahan 

nipis menggunakan teknik BFSW boleh diselesaikan dengan memastikan suhu semasa proses 

mencapai tahap diterima, getaran yang rendah semasa proses, dan rekabentuk alat yang sesuai 

bagi membawa bahan lembut dari AS ke RS semasa proses.  
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CHAPTER 1 

 

INTRODUCTION 

 

This chapter elaborates the background of this study, problem statements, objectives, scopes, 

and significance of this study. 

 

1.1 Background of study 

 Nowadays, welding industry has increasing demands in zero defect products. In fact, 

Friction Stir Welding (FSW) is probably the only solution to overcome the usual problems that 

occur in fusion welding such as material wastage and radiation produced by the harmful gas 

emissions during fusion welding (Leitão et al., 2009). Moreover, expansion and development in 

automotive and aerospace industries results in the application of lightweight materials such as 

magnesium alloy and aluminum alloy. The application of these materials is to improve fuel 

economy and it is more environmentally sustainable (Cao and Jahazi, 2009). However, the 

application of lightweight material such as aluminum alloys invites challenges that required to 

be resolved. This is because of aluminum properties which are very sensitive in the sense that 

they need to be taken into consideration such as having a low melting point, higher strength to 

weight ratio, low density, and easy to be formed and machined. As mentioned by Ghosh et al. 

(2010) and Cao and Jahazi (2011), the applications of fusion welding such as tungsten inert gas 

(TIG) welding and metal inert gas (MIG) welding are creating many defects such as voids, hot 

cracking, distortion in shape and loss of work hardening. 
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 FSW is known as the solid-state welding. This process occurs with the combination of 

heat and pressure (Boumerzoug and Helal, 2017). The need of heat in this process is important 

since the heat is the only source that creates the joining. The heat in this process is generated 

from the mechanical friction between two surfaces which are the tools and the materials used. 

During this process, the temperature of the joint area generally rises between 0.80 to 0.90 from 

the melting point of the material used. However, the process is maintained without exceeding 

the melting point and the material stays in the solid phase (Gibson et al., 2014). This process is 

energy efficient, environmentally friendly and versatile thus it aligns with the objectives of green 

manufacturing (Mishra and Ma, 2005). In addition, the applications of FSW can easily 

eliminates defects associated with fusion welding such as shrinkage, solidification cracks and 

porosity (Bussu and Irving, 2003). The elimination of defects is needed in improving joined 

industries. In FSW, the joining can be used for different applications such as butt, lap or angle 

joints. However, the approaches to use FSW are different in every application. It is because, in 

FSW, the joining setup is complicated due to the availability of back anvil to support the 

downward force by the tool. Other than that, the capability of FSW is various in term of 

complexity and the size of the material. 

 There are two different types of FSW which are Conventional Friction Stir Welding 

(CFSW) and Self-Support/Bobbin Friction Stir Welding (BFSW). The main difference for both 

types of FSW is the tool design. In CFSW, there is only a single shoulder used while two 

shoulders are used in BFSW. Figure 1.1 shows the difference between CFSW and BFSW. With 

tool difference, it gives BFSW more advantages (Threadgill et al., 2010). This is because of the 

heat generation by the shoulders. The good heat generation in BFSW ensures that the material 

is ready before the stirring process. The readiness of material is important in FSW to improve 


