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ABSTRACT 

In rehabilitation system application, precise output responses are important for position 

control on the mechanism’s joint to avoid injury that occurs during physiotherapy. Hence, 

position control of DC motors has attracted considerable research with applied control 

system algorithms.  This research aims to determine the mathematical modeling gain of the 

third-order transfer function for the DC motor that represents the features parameter of the 

Ankle Rehabilitation System. The transfer function is a model in Matlab software to 

validate the performance of the control system through simulation compared with real-time 

experiments. Next, the control algorithms are proposed to design and implement the 

Proportional-Integral-Derivative (PID) with Particle Swarm Optimization (PSO) controller 

technique for optimal Proportional (Kp), Integral (Ki) and Derivative (Kd) gains. The 

control algorithms also aim to be analyzed using an incremental rotary encoder sensor 

device as closed-loop feedback for dorsiflexion and plantarflexion movement. This rotary 

encoder sensor device converts rotary motion into electrical signals or pulse signals to 

count per revolution of the gearbox output shaft. The H-Bridge module is used for bi-

directional motor control with pulse-width modulation (PWM) from the Arduino 

microcontroller. The control pulse-width modulation is calculated and realized by tuning 

the value of Proportional (Kp), Integral (Ki) and Derivative (Kd) with soft computing 

optimization techniques PSO controller. This proposed approach to develop optimal 

controller tuning parameters for proper computational performances position control 

efficiency and stable convergence characteristics. The simulation result of the PID-PSO 

controller with variables Kp= 6.542, Ki= 0.103 and Kd= 0.255 provide good performance 

with the rise time (TR) is 0.0659sec, settling time (Ts) is 0.1183sec and maintain the 

steady-state error with zero overshoot. This gain tuning of Kp, Ki and Kd from the 

simulation was also implemented in real-time hardware for validation producing 

effectiveness for the controller to improvise the Ankle Rehabilitation System position 

control analysis. The statistical trajectory tracking error is evaluated using mean square 

error (MSE) and root mean square error (RMSE) achieving a small value. The percentage 

improvement for simultion from PID controller to PID-PSO shows the MSE made is 

almost 91% while the RMSE is 71%. The real-time experiment performance also have high 

percentage improvement with MSE is 97% and RMSE is 84%. It concludes that the PID-

PSO controller effectiveness control strategies of DC motor can accurately track the 

sinusoidal setpoint rotational angle movement of the Ankle Rehabilitation System.  
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REKA BENTUK PENGAWAL KEDUDUKAN MOTOR DC PID-PSO UNTUK SISTEM 

PEMULIHAN PERGELANGAN KAKI 

ABSTRAK 

 

Dalam aplikasi sistem rehabilitasi, tindak balas yang tepat adalah penting untuk kawalan 

kedudukan pada sendi mekanisme bagi mengelakkan kecederaan yang berlaku semasa 

fisioterapi. Oleh itu, kawalan kedudukan motor DC telah menarik banyak penyelidikan 

dengan penggunaan sistem algoritma kawalan. Penyelidikan ini bertujuan untuk 

menentukan pendapatan pemodelan matematik untuk fungsi pemindahan tertib ketiga bagi 

motor DC yang mewakili ciri parameter Sistem Pemulihan Buku lali. Fungsi pemindahan 

adalah model dalam perisian Matlab untuk mengesahkan prestasi sistem kawalan melalui 

simulasi berbanding dengan eksperimen masa nyata. Seterusnya, algoritma kawalan 

dicadangkan untuk mereka bentuk dan melaksanakan Berkadaran-Integral-Derivatif (PID) 

dengan Pengoptimuman Kawanan Zarah (PSO) teknik pengawalan untuk mendapatkan 

Berkadaran (Kp), Integral (Ki) dan Derivatif (Kd) yang optimum. Algoritma kawalan juga 

bertujuan untuk dianalisis menggunakan peranti penderia pengekod berputar tambahan 

sebagai sistem maklum balas litar tertutup untuk pergerakan dorsiflexion dan 

plantarflexion. Peranti pengesan pengekod berputar ini menukarkan gerakan berputar 

kepada isyarat elektrik atau isyarat nadi untuk mengira setiap putaran aci keluaran kotak 

gear. Modul H-Bridge digunakan untuk kawalan motor dwiarah dengan modulasi lebar 

nadi (PWM) daripada mikropengawal Arduino. Modulasi lebar nadi kawalan dikira dan 

direalisasikan dengan menala nilai Berkadaran (Kp), Integral (Ki) dan Derivatif (Kd) 

dengan teknik komputer pengawal pengoptimuman PSO. Pendekatan yang dicadangkan 

ini bertujuan untuk membangunkan parameter penalaan pengawal yang optimum untuk 

prestasi pengiraan yang betul kecekapan kawalan kedudukan dan ciri penumpuan yang 

stabil. Hasil simulasi pengawal PID-PSO dengan pembolehubah Kp= 6.542, Ki= 0.103 

dan Kd= 0.255 memberikan prestasi yang baik dengan masa naik (TR) ialah 0.0659sec, 

masa menetap (Ts) ialah 0.1183sec dan mengekalkan kadar ralat dalam keadaan tetap 

dengan terlebih tembakan sifar. Penalaan kadar Kp, Ki dan Kd daripada simulasi ini juga 

dilaksanakan dalam peralatan masa nyata untuk pengesahan dan menghasilkan 

keberkesanan bagi pengawal untuk menambah baik analisis kawalan kedudukan Sistem 

Pemulihan Buku lali. Ralat penjejakan trajektori statistik dinilai menggunakan ralat min 

kuasa dua (MSE) dan ralat min kuasa dua punca (RMSE) yang mencapai nilai yang kecil. 

Peratusan penambahbaikan bagi simualasi daripada pengawal PID kepada PID-PSO 

menunjukkan MSE yang dibuat adalah hampir 91% manakala RMSE ialah 71%. Prestasi 

percubaan masa nyata juga mempunyai peningkatan peratusan yang tinggi dengan MSE 

ialah 97% dan RMSE ialah 84%. Ia menyimpulkan bahawa keberkesanan pengawal PID-

PSO strategi kawalan untuk motor DC boleh menjejaki dengan tepat titik tetapan 

sinusoidal pergerakan sudut putaran Sistem Pemulihan Buku lali. 
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CHAPTER 1  

 

INTRODUCTION 

1.1 Research Background 

Recently, the evolution of innovative robotic technology constantly developed in 

the robotic field, especially in the medical field z(Qian and Bi, 2015; Guo et al., 2021). 

These new trends in the robotic field have drawn the attention of researchers conducting 

studies in terms of development for the rehabilitation robots application such as power-

assist devices integrating sensors (Kawase et al., 2017). The invasion of robots application 

in medical industries helps to improve faster recovery for rehabilitation treatment control 

systems and provides power assistance with data acquisition (Gao et al., 2020). 

Rehabilitation is a mainstay treatment where robots can give a significant impact on 

patients treatment who suffer from injuries (Gassert and Dietz, 2018). Several studies 

revealed that a sprained ankle injury can happen to almost everybody especially active 

people because turned unexpected movement directions (Roos et al., 2017). This injury 

causes damage severity to the ankle ligament which can stretch or tear either partially or 

fully in the worst situation (Delahunt et al., 2018). The rehabilitation application system is 

created to perform therapeutic exercises with repetitive movement and measure mechanical 

parameters objectively using sensors for ankle strength recovery (Atlihan et al., 2014). 

The existing sprain ankle rehabilitation system consists of two types which are 

traditional manual rehabilitation and robotic technology rehabilitation. The traditional 

manual rehabilitation treatment approach mainly uses a simple device available at any 

physiotherapist outlet or clinical (Shi et al., 2021). Examples of primitive passive device or 

simple devices for manual rehabilitation therapists is elastic bands, roller foams and 

wobble boards. Unfortunately, these primitive passive devices or only can perform with the 
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patient's effort strength, restrict patient training time and lack of function to produce any 

data acquisition for patients resulting outcomes exercise (Saglia et al., 2019; Collins and 

Jackson, 2013). As compared to robotic rehabilitation is capable of providing more 

intensive training with more motivation, better quantitative feedback and improved 

functional outcomes for patients (Chen et al., 2013). It also could give moral motivation 

with interesting strategies for patients to involve in the training session and recover from 

ankle injuries. 

Nowadays, electric motors actuator such as Direct Current (DC) motor is widely 

used in industry application constantly developed for robot manipulators, electric traction 

and the medical industry (Mohamed et al., 2020). Robotic rehabilitation system technology 

used for medical needs to be concerned with several mechatronic device elements in terms 

of actuator mechanism’s joint, control system, mechanical design structure and safety 

(Khalid et al., 2015). In this research, the actuator mechanism’s joint using a DC motor 

was chosen that can achieve speed control and position by varying the terminal voltage 

incorporated with an incremental encoder as the closed-loop feedback. The encoder pulse 

is counted when the disk is rotating while the rotary encoder consists of two output sensors 

to determine the steps each time the signal changes. However, there are uncertain and 

nonlinear characteristics that affect the robustness and stability of the system especially 

when there is load disturbance (Guermouche et al., 2015). Therefore, control system 

algorithms are applied in the DC motor application plant system for robust control of 

position and velocity. The angular position is determined by using a rotary encoder as the 

closed-loop feedback 

Since 1940, the PID controller has been used for several decades in industries to 

process control system applications (Hassan et al., 2017). Traditionally, Proportional 

Integral Derivative (PID) algorithm controller is the most preferable controller because of 


