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ABSTRACT 

Microwave sensors for material characterization are the most widely used sensors in the food 

sector, quality control, biomedical, and industrial applications. One of the prospective methods 

for very precise dielectric material characterization measurements at a single or discrete frequency 

is the microwave resonant approach. Historically, waveguide, dielectric, and coaxial resonators 

have been used to characterize materials because they offer great sensitivity and precision. 

However, resonator sensors are typically large, expensive to produce, and require a large amount 

of material to detect the prior sample of the material being tested. Therefore, because of their 

benefits of being small in size, inexpensive, and simple to manufacture, planar resonant methods 

have become the most preferred approach in recent years. However, the poor sensitivity and low 

Q-factor value of this method limit the applicability for material characterization. Thus, this thesis 

introduces a single-band metamaterial to overcome the weakness of this technique by using the 

perturbation method in which the dielectric properties of the resonator affect the Q-factor and 

resonance frequency. This proposed sensor operated at 2.5 GHz in the range of 1 GHz to 4 GHz 

for material characterization of solid and liquid samples. These sensors were constructed using 

RT/Duroid Roger 5880 as a substrate with a dielectric constant of 2.2, loss tangent of 0.0009, and 

copper thickness of 17.5 µm. The integrated microfluidic sensing case is designed using Epoxy 

Resin. The epoxy resin has better corrosion resistance and is less influenced by heat and water 

than other polymeric matrices. The liquid sample will be injected into these microfluidic cases 

that will be placed at the maximum concentration of E-flux at the top of the copper structure. E-

flux areas with high concentrations are more susceptible to dielectric changes. The proposed 

sensor requires the same size of the solid sample with a different thickness of the sample and the 

same amount of liquid sample to be tested which is 0.3 𝑚𝑙 at a time. The sensor is designed by 

using computer simulation technology (CST) software and analyzed using a vector network 

analyzer (VNA). The design of the structure resonator is based on the mathematical equation and 

optimization of the parameter value. As a result, this square split ring resonator (SSRR) sensor 

generates narrow resonance, minimal insertion loss, and a high Q-factor value of 430 at 2.5 GHz. 

Consequently, the SSRR sensor's sensitivity is 98.59 % accuracy which is higher than those of 

previous studies. In conclusion, this sensor design is successfully demonstrated in terms of 

theoretical, simulation, and validation through experimental works. Due to this, it is proven that 

this sensor is suitable for material characterization that required a small number of samples to be 

tested which will be needed in many applications. This evidence supports the suggested sensor's 

use as a tool for material characterization, particularly when identifying material characteristics. 
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PENDERIA GELOMBANG MIKRO SATAH DENGAN KEPEKAAN TINGGI UNTUK 

PENCIRIAN BAHAN BERASASKAN PENYALUN GELANG BELAH SEGIEMPAT SAMA 
 

 

 

ABSTRAK 

Penderia gelombang mikro untuk pencirian bahan ialah penderia yang paling banyak digunakan 

dalam sektor makanan, kawalan kualiti, aplikasi bioperubatan dan industri. Salah satu kaedah 

prospektif untuk ukuran pencirian bahan dielektrik yang sangat tepat pada frekuensi tunggal atau 

diskret ialah pendekatan resonan gelombang mikro. Dari segi sejarah, pandu gelombang, 

dielektrik dan resonator sepaksi telah digunakan untuk mencirikan bahan kerana ia menawarkan 

kepekaan dan ketepatan yang hebat. Walau bagaimanapun, penderia resonator biasanya besar, 

mahal untuk dihasilkan dan memerlukan sejumlah besar bahan untuk mengesan sampel bahan 

yang diuji sebelumnya. Oleh itu, kerana faedahnya bersaiz kecil, murah, dan mudah untuk 

dikeluarkan, kaedah resonan satah telah menjadi pendekatan yang paling digemari sejak 

beberapa tahun kebelakangan ini. Walau bagaimanapun, sensitiviti yang lemah dan nilai faktor 

Q yang rendah bagi kaedah ini mengehadkan kebolehgunaan untuk pencirian bahan. Justeru, 

tesis ini memperkenalkan metamaterial jalur tunggal untuk mengatasi kelemahan teknik ini 

dengan menggunakan kaedah perturbasi di mana sifat dielektrik resonator mempengaruhi faktor 

Q dan frekuensi resonan. Sensor yang dicadangkan ini beroperasi pada 2.5 GHz dalam julat 1 

GHz hingga 4 GHz untuk pencirian bahan bagi sampel pepejal dan cecair. Penderia ini telah 

dibina menggunakan RT/Duroid Roger 5880 sebagai substrat dengan pemalar dielektrik 2.2, 

tangen kehilangan 0.0009 dan ketebalan kuprum 17.5 µm. Sarung penderiaan mikrobendalir 

bersepadu direka bentuk dengan menggunakan Resin Epoksi. Resin epoksi mempunyai rintangan 

kakisan yang lebih baik dan kurang dipengaruhi oleh haba dan air daripada matriks polimer lain. 

Sampel cecair akan disuntik ke dalam bekas mikrobendalir ini yang akan diletakkan pada 

kepekatan maksimum E-fluks di bahagian atas struktur kuprum. Kawasan e-fluks dengan 

kepekatan tinggi lebih terdedah kepada perubahan dielektrik. Penderia yang dicadangkan 

memerlukan saiz sampel pepejal yang sama dengan ketebalan sampel yang berbeza dan jumlah 

sampel cecair yang sama untuk diuji iaitu 0.3 ml pada satu masa. Penderia direka bentuk dengan 

menggunakan perisian teknologi simulasi komputer (CST) dan menganalisis menggunakan 

penganalisis rangkaian vektor (VNA). Reka bentuk resonator struktur berdasarkan persamaan 

matematik dan pengoptimuman nilai parameter. Akibatnya, penderia resonator cincin belah 

empat segi (SSRR) ini menjana resonans sempit, kehilangan sisipan minimum dan nilai faktor Q 

tinggi sebanyak 430 pada 2.5 GHz. Akibatnya, kepekaan sensor SSRR adalah 98.59 % ketepatan 

yang lebih tinggi daripada kajian terdahulu. Bukti ini menyokong penggunaan penderia yang 

dicadangkan sebagai alat untuk pencirian bahan, terutamanya apabila mengenal pasti ciri bahan. 

Sebagai kesimpulan, reka bentuk sensor ini berjaya ditunjukkan dari segi teori, simulasi dan 

pengesahan melalui kerja-kerja eksperimen. Disebabkan ini, terbukti bahawa sensor ini sesuai 

untuk pencirian bahan yang memerlukan sebilangan kecil sampel untuk diuji yang akan 

diperlukan dalam pelbagai aplikasi. Bukti ini menyokong penggunaan sensor yang dicadangkan 

sebagai alat untuk pencirian bahan, terutamanya apabila mengenal pasti ciri-ciri bahan. 
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INTRODUCTION 

1.1 Research Background 

The growth of microwave industrial technology, particularly in applications for material 

characterization, has led to a revolution in the field of microwave sensors. Microwaves are 

electromagnetic waves having wavelengths between one centimeter and one meter. These 

wavelengths correspond to frequencies between 300 MHz (1 m wavelength) and 30 GHz (1 cm 

wavelength). The spectrums of ultrahigh-frequency (UHF) and superhigh frequency (SHF) are 

covered by this band (Clarricoats, 1967). These frequencies are frequently employed by 

radiosondes, surveillance radars, airborne radars, navigational aids, common-carrier land mobile 

communications, radar astronomy, Bluetooth, and radio frequency identification (RFID) 

(Nicolaescu and Oroian, 2001; Khan, Duan and Sherbaz, 2012).  

All of these applications have made use of microwave materials. Current research areas in 

materials science, solid-state physics, and electrical and electronic engineering focus on the 

development of these materials and the examination of their characteristics at microwave 

frequencies. In-depth knowledge of the characteristics of materials that function at microwave 

frequencies is required for the construction of high-frequency circuits. (Waser, 2005). Because of 

this, the characterization of material characteristics is a crucial topic in microwave electronics for 

many companies and researchers (Chen et al., 2004). Electromagnetic characterization is the 

comprehensive understanding of a material's electromagnetic parameters (complex permittivity 

and permeability) as functions of frequency.  

Aside from the academic understanding of electromagnetic properties at these frequencies 

(von Hippel and Morgan, 1955; Woolley, 1957; Reddy and Raghava, 2013; Falcone, 2017), 
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precise constitutive properties are required in microwave engineering (Ramo, Whinnery and 

Duzer, 1994). Since the early 1950s, material property characterization at microwave frequencies 

has been developed and used. Designing and creating radar absorption materials since World War 

II has relied heavily on the capacity to customize the characteristics of composite materials 

(Nicolaescu and Oroian, 2001). Massive advancements have been achieved over the past several 

decades, and a variety of methodologies and procedures have been created. Accurate knowledge 

of material properties such as permittivity and permeability is required for the construction of 

electronic circuits. Technology development and the research of electromagnetic materials are 

helpful for bioengineering, agriculture, food processing, and healthcare procedures (Stuchly and 

Stuchly, 1983), also in overseeing the manufacturing process and evaluating nondestructively both 

samples and goods (Sobkiewicz, Bienkowski and Blazejewski, 2021). 

The dielectric, waveguide and coaxial probe structures are only a few examples of the 

various types of topological approaches that are typically given as useful tools for extracting 

material attributes. These methods have the possibility for very precise measurements at a single 

or discrete set of frequencies (Alahnomi et al., 2016). However, these traditional methods are 

frequently large, expensive to fabricate, and need a significant volume of samples for the 

measurement procedure (Alhegazi et al., 2019). Planar resonant techniques have therefore 

attracted a lot of attention in recent years due to their benefits, including their small size, low cost, 

simplicity of implementation, and need for only a small quantity of samples. On the other hand, 

these methods have weak Q-factor and poor sensitivity, which limit their applicability and the 

spectrum of materials  (Alahnomi et al., 2019; Alhegazi et al., 2019). 

 For this reason, dielectric characteristics of materials will be determined and detected 

using a unique construction of planar microwave sensors based on a Square Split Ring Resonator 

(SSRR) with the capability of real-time measurement for both solid and liquid specimens in a 

single port network sensor. The suggested sensor is based on employing the perturbation theory 

where frequency resonants and quality factors are affected by dielectric materials of tested solid 


