

OVERHEAD CRANE CONTROL UPGRADED TO VARIABLE FREQUENCY DRIVE AND WIRELESS REMOTE CONTROLLER FOR PROGRAMMING LOGIC CIRCUIT

UNIVER MUHAMAD NAZRI BIN OMAR

MASTER OF SCIENCE IN ELECTRONIC ENGINEERING

2024

Faculty of Electronics and Computer Technology and Engineering

Muhamad Nazri bin Omar

Master of Science in Electronic Engineering

2024

OVERHEAD CRANE CONTROL UPGRADED TO VARIABLE FREQUENCY DRIVE AND WIRELESS REMOTE CONTROLLER FOR PROGRAMMING LOGIC CIRCUIT

MUHAMAD NAZRI BIN OMAR

Faculty of Electronics and Computer Technology and Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DECLARATION

I declare that this thesis entitled "Over Head Crane Circuit Control Updated to Variable Frequency Drive & Wireless Remote Controller for Programming Logic Circuit (PLC)" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Master of Science in Electronic Engineering.

DEDICATION

I dedicate this work to Almighty Allah SWT for bestowing upon me health and blessings when I was writing it, as well as to my loving parents, Omar Bin Din and Rubiah Binti Kaus, for their constant moral support throughout the course of the study. Finally, I thank my supervisor, Ir. Dr. Mohd Muzafar Bin Ismail, for his willingness to assist me in completing the research requirement by dedicating this thesis to him. For her endurance and constant support, I am grateful to my sweet wife Nurul Wajihah Binti Ramezan. Not to mentioned my senior managers Vijayan Subramaniam and Rakhidin Bin Osman, who consistently provide their technical know-how and understanding of the Over Head Crane system in Steel Manufacturing Factory.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ABSTRACT

Radio Frequency (RF) remote controllers are widely used in manufacturing, construction, transportation, and many other industrial applications. Cranes, drills, and miners, among others, are commonly equipped with Radio Frequency (RF) remotes. In this thesis focused on overhead crane in steel manufacturing industry. Installation wired communication takes a long time to set up the connection as compared to the wireless connection. The installation becomes very lengthy and complex to get connected with each router. In future to connect one more device with the network, then it must do the setup again. However, in the wireless connection, don't have to perform all the setup again. Only must access the network with the authorized passcode. Radio-controlled devices are ubiquitous in all sorts of industries. In fact, many cranes are now being equipped with radio-controlled technology, which is revolutionizing the way crews move materials around a warehouse or job site. On the same time, in steel manufacturing industry is still used old technology which is the motor starter of existing cranes is using Rotor Resistance Starter with AC Slip Ring motor type which are need to be improve to Inverter or Variable Frequency Drive (VFD) in this thesis presented. Most of the industries nowadays are using VFD or Inverter with their electrical equipment such as overhead crane as for purpose is Energy Saving, High Operational Efficiency, easy for Maintenance and easy to link with advance technology application such as Programming Logic Circuit (PLC). The study's few main goals are to investigate the overhead crane performance based on Steel Manufacturing Overhead Crane failure and downtime, upgraded motor starter from Rotor ResistanceStarter to Variable Frequency Drive (VFD) with Slip Ring AC motor type and design new Remote Controller with wireless communication system including Transmitter (Tx) and Receiver (Rx). The research was divided into three parts. First, is to design new Remote Controller with Wireless Communication System based on Transmitter (Tx) and Receiver (Rx) communication in order to replace existing controller which is Pendant and Joystick Controller which to improve the demand of more manpower (operator to conduct crane activity), enhance safety and simplify the wiring design. Second is to investigate theoverhead crane performance of base on previous of motor starter design which is Rotor Resistance Starter before implement new motor starter which is Variable Frequency Drive (VFD). Third is to upgrade motor starter from Rotor Resistance Starter to Variable Frequency Drive (VFD) in order to improve motor start up, hoisting anti-sway for safety concern and cost saving for purchase maintenance spare part in in steel manufacturing industry. Through the surveillance and monitoring of wireless remote control motor starter control for crane that done at Ann Joo Steel (AJSB), Prai, Penang, Malaysia. The findings and analysis on the application of wireless remote controllers and variable frequency drives (VFDs) to overhead cranes in the steel manufacturing sector. Following that, a methodology for estimating system upgrading of the overhead crane in the steel manufacturing industry is established by utilising the transmitter (Tx) and receiver (Rx) with a new complete set of Variable Frequency Drive (VFD). The suggested systemestimation method's applicability is demonstrated through case studies. The design of the new control system wire is divided into three components, each based on the current design of the old control wiring.

ABSTRAK

KAWALAN KREN ATAS DIPERTINGKAT KEPADA PEMACU FREKUENSI BOLEH UBAH DAN KAWALAN JAUH WAYERLES UNTUK LITAR LOGIK PENGATURCARAAAN

Alat kawalan jauh Radio Frekuensi (RF) digunakan secara meluas dalam pembuatan, pembinaan, pengangkutan dan banyak lagi aplikasi perindustrian. Kren, gerudi dan pelombong, antara lain, biasanya dilengkapi dengan alat kawalan jauh Radio Frekuensi (RF). Dalam tesis ini tertumpu kepada kren atas dalam industri pembuatan keluli. Komunikasi berwayar pemasangan mengambil masa yang lama untuk menyediakan sambungan berbanding dengan sambungan wayarles. Pemasangan menjadi sangat panjang dan rumit jika berhubung dengan setiap penghala. Jika kemudian kita ingin menyambungkan satu lagi peranti dengan rangkaian, mesti melakukan persediaan semula. Walau bagaimanapun, dalam sambungan wayarles, tidak perlu melakukan semuapersediaan sekali lagi. Hanya perlu mengakses rangkaian dengan kod laluan yang dibenarkan. Peranti kawalan radio terdapat di mana-mana dalam semua jenis industri. Malah, banyak kren kini dilengkapi dengan teknologi kawalan radio, yang merevolusikan cara krew memindahkan bahan di sekitar gudang atau tapak kerja. Pada masa yang sama, dalam industri pembuatan keluli masih menggunakan teknologi lama iaitu motor starter kren sedia ada menggunakan Rotor Resistance Starter dengan jenis motor AC Slip Ring yang perlu diperbaiki kepada Inverter atau Pemacu Frekuensi Berubah (PFB) dalam hal ini tesis dibentangkan. Kebanyakan industri pada masa kini menggunakan Pemacu Frekuensi Berubah (PFB) atau Inverter dengan peralatan elektrik mereka seperti kren atas kerana tujuannya adalah Penjimatan Tenaga, Kecekapan Operasi Tinggi, mudah untuk Penyelenggaraan dan mudah dihubungkan dengan aplikasi teknologi canggih seperti Litar Logik Pengaturcaraan (LLP). Beberapa matlamat utama kajian ini adalah untuk menyiasat asas prestasi kren overhed pada kegagalan Kren Overhed Pembuatan Keluli dan masahenti, pemula motor yang dinaik taraf daripada Pemula Rintangan Rotor kepada Pemacu Frekuensi Berubah (PFB) dengan jenis motor AC Gelang Gelang dan mereka cipta bentuk Alat Kawalan Jauh baharu dengan komunikasi tanpa wayar. Sistem Pemancar (Tx) dan Penerima (Rx) adalah sistem Komunikasi Tanpa Wayar berasaskan komunikasi antara Pemancar (Tx) dan Penerima (Rx) bagi menggantikan pengawal sedia ada iaitu Loket dan Pengawal Kayu Bedik yang meningkatkan permintaan lebih ramai tenaga manusia (operator untuk menjalankan aktiviti kren), kurang keselamatan dan reka bentukpendawaian yang rumit. Kedua adalah untuk menyiasat prestasi kren overhed asas pada reka bentuk penghidup motor sebelum ini iaitu Rotor Resistance Starter sebelum melaksanakan penghidup motor baharu iaitu Pemacu Frekuensi Berubah (PFB). Ketiga adalah untuk menaik taraf starter motor daripada Rotor Resistance Starter kepada Pemacu Frekuensi Berubah (PFB) untuk menambah baik pemulaan motor, pengangkat anti goyang dan penjimatan kos untuk pembelian alat ganti penyelenggaraan dalam industri pembuatan keluli. Pengawasan dan pemantauan kawalan pemula motor kawalan jauh wayarles untuk kren dilakukan di Ann Joo Steel (AJSB), Prai, Pulau Pinang, Malaysia. Penemuan dan analisis mengenai penggunaan pengawal jauh tanpa wayar dan pemacu frekuensi berubah- ubah (PFB) kepada kren overhed dalam sektor pembuatan keluli. Berikutan itu, satu

metodologi untuk menganggarkan peningkatan sistem kren overhed dalam industri pembuatan keluli ditubuhkan dengan menggunakan pemancar (Tx) dan penerima (Rx) dengan set lengkap baru Pemacu Frekuensi Boleh Ubah (PFB). Kebolehgunaan kaedah anggaran sistem yang dicadangkan ditunjukkan melalui kajian kes. Reka bentuk wayar sistem kawalan baru dibahagikan kepada tiga komponen, masing-masing berdasarkan reka bentuk semasa pendawaian kawalan lama.

ACKNOWLEDGEMENTS

In the Name of Allah, the Most Gracious, the Most Merciful

All thanks are due to Allah; without his grace, I would not have been able to achieve this.

First and foremost, I would like to take this opportunity to thank my main supervisor, Ir. Dr. Mohd Muzafar Bin Ismail of the Faculty of Electronics and Computer Technology and Engineering (UTeM), my co-supervisor, Dr. Mohd Nasir Ayob of the Faculty of Electrical Engineering Technology at Universiti Malaysia Perlis (UniMAP) and Dr. Faiz Bin Arith of the the Faculty of Electronics and Computer Technology and Engineering (UTeM), for their support, and encouragement in helping me complete this research project.

For their contribution and technical support, I would like to express my gratitude to all of the Ann Joo Steel Berhad management and staff from electrical/mechanical and operation department particularly Rakhidin Osman, Vijayan Subramaniam, Ahmad Faizul, Nizam Jaffar, Azlan, Suhaidi, Firdaus, Muhammad Yunos, Thoma, Izwan and Naemi.

Lastly, I would want to express my gratitude to the Malaysian Ministry of Higher Education and UTeM for the FRGS/1/2020/FTKEE-COSSID/F00424 scholarship. Finally,I would want to express my gratitude to everyone who has helped me with this study inwhatever way.

TABLE OF CONTENTS

		PAGE
DECL	ARATION	
APPR	OVAL	
DEDIC	CATION	
ABST	RACT	i
ABSTI	RAK	ii
ACKN	IOWLEDGEMENTS	iv
TABL	E OF CONTENTS	v
LIST (OF TABLES	viii
LIST (OF FIGURES	xiii
LIST (OF SYMBOLS AND ABBREVIATIONS	xiv
LIST (OF APPENDICES	xvi
LIST (OF PUBLICATION	xvii
СНАР	TER 1 INTRODUCTION	1
1.1	Background ERSITI TEKNIKAL MALAYSIA MELAKA	1
1.2	Problem Statement Research Objective	3
1.5	Scope of Research	4 5
1.5	Contribution of Research	6
1.6	Thesis Outline	7
СНАР	TER 2 LITERATURE REVIEW	9
2.1	Introduction	9
2.2	Overhead Crane System Configurations and Components	10
2.3	Overhead Crane Induction Motor Working Principle	11
	2.3.1 Induction Motor Starting Method	12
2.4	2.3.1.1 Squirrel Cage Induction Motor Overhead Crene Motor Starter Previous Design	12
<i>2.</i> 4	2.4.1 Rotor Resistance Starter of Circuit Diagram and Working Principle	16
	2.4.2 Rotor Resistance Starter Advantage	18
	2.4.3 Rotor Resistance Starter Disadvantage	18
2.5	Overhead Crane Motor Starter Modern Design	18
	2.5.1 Variable Frequency Drive Advantage	19
	2.5.1.1 Preparation Set Up	20

	2.5.1.2 Local and Remote Monitoring	21
	2.5.1.3 Equipment Status and Monitoring	21
2.6	Overhead Crane Controller Previous Design	23
	2.6.1 Joystick Controller	23
	2.6.2 Wire Pendant Controller	23
	2.6.2.1 Wire Pendant Controller Advantage	24
	2.6.2.2 Wire Pendant Controller Disadvantage	24
2.7	Overhead Crane Controller Modern Design	24
	2.7.1 Wireless Pendant Controller	24
	2.7.1.1 Wireless Pendant Controller Advantage	27
	2.7.1.2 Wireless Pendant Controller Disadvantage	29
2.8	Overhead Crane Controller Summary	30
2.9	Overhead Crane Control Previous Design	30
	2.9.1 KAE Card and Contactor Control	30
2.10	Overhead Crane Control Modern Design	33
	2.10.1 Programming Logic Control (PLC)	33
2.11	Literature Review	33
2.12	Summary of This Chapter	34
CHAI	PTER 3 METHODOLOGY	35
3.1	Introduction	35
3.2	Research Design	39
3.3	Variable Frequency Drive (VFD)	39
	3.3.1 AC Motor Rotational Speed Formula	39
	3.3.2 AC Motor Rotational Speed	40
	3.3.3 Speed Reduction	41
	3.3.4 Variable Frequency Drive (VFD) Electrical Circuit	44
	3.3.5 Six-pulse Rectifier or Converter	45
	3.3.6 DC Bus or DC Filter and Buffer MALAT SIA MELAKA	48
	3.3.7 Insulated-gate Bipolar Transistor (IGBT)	52 52
	3.3./.1 How doest an IGB1 Work	53 55
	3.3.8 Pulse width Modulation (PMW) Signal	33 57
	3.3.9 VFD Control Processor Program	57 57
2.4	3.3.10 Summary	57
3.4	Wireless Pendant Controller	59
	3.4.1 Receiver Control Panel Design	01
	3.4.2 Receiver Circuit Control Design	02 62
	3.4.5 Receiver Contact Relay	03
25	3.4.4 Iransmuter Device	08
3.5	How to Connect PLC to VFD	/1
	3.5.1 How to Control VFD with PLC using Ladder Logic	12
	3.5.2 HOW TO CONTROL VED WITH PLC 2.5.2 Control and Dower Discourse	15
	5.5.5 Control and Power Diagram	/4
	3.5.4 VFD commissioning and parameter programming	/4 7-
	3.5.5 Programming Logic Circuit (PLC)	75
26	3.5.6 Scada and Human Machine Interphase Design	77
3.6	Summary	79

CHAF	TER 4 RESULTS AND DISCUSSION	81
4.1	Introduction	81
4.2	Overhead Crane Performance	82
	4.2.1 Why-why 1 st Analysis	85
	4.2.2 Why-why 2 nd Analysis	86
4.3	Motor Starter Analysis	88
	4.3.1 Rotor Resistance Starter Analysis	88
	4.3.2 Variable Frequency Drive (VFD) Analysis	89
	4.3.3 Rotor Resistance & Motor Starter Performance	91
4.4	Pendant Controller Analysis	95
4.5	Overall Project Result and Analysis	98
4.6	Summary	103
CHAF	TER 5 CONCLUSION AND RECOMMENDATIONS	105
5.1	Conclusion	105
5.2	Recommendations	105
BEEE	PENCES MALAYSIA	108
NLI L	REIVCES	100
APPE	UTEM	115
	اونيۈم سيتي تيڪنيڪل مليسيا ملاك	
	UNIVERSITI TEKNIKAL MALAYSIA MELAKA	

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1	Application, Design and Limitations in Literature Review	33
Table 2.2	Previous and Upgraded of Overhead Crane	33
Table 3.1	Function Relay Contacts for Receiver	64
Table 3.2	General Specification of Transmitter	71
Table 4.1	Overhead Crane of Travelling System	84
Table 4.2	Utilize of high contribution of crane downtime	85
Table 4.3	Why-why 1 st analysis on Man, Method, Machine and Material	86
Table 4.4	Why-why 2 nd analysis on man, method, machine and materal	87
Table 4.5	Rotor resistance comparison on advantage and weakness	89
Table 4.6	VFD comparison on advantage and weakness	89
Table 4.7	Current rated of crane motors	95
Table 4.8	Free load test current (ampere) for hoisting motor MELAKA	95
Table 4.9	Free load test current (ampere) for trolley motor	95
Table 4.10	Free load test current for travelling motor 1	95
Table 4.11	Free load test current for travelling motor 2	95
Table 4.12	Crane movement by wireless controller	96
Table 4.13	Condition od distance and obstacle	96
Table 4.14	Crane Performance in Minutes	100
Table 4.15	Crane Performance in Minutes and Details	101

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.1	Pelarasan Tarif Elektrik Last Half Year 2023	10
Figure 2.2	Working of Three Phase Induction Motor	11
Figure 2.3	Direct On-Line (D.O.L) Motor Starter	13
Figure 2.4	Rotor Resistance Motor Starter	14
Figure 2.5	Autotransformer Motor Starter	15
Figure 2.6	Start-Delta Motor Starter	16
Figure 2.7	Rotor Resistance Motor Starter	17
Figure 2.8	The pendant control	24
Figure 2.9	A variety of handheld and "bellybox" style radio controls	27
Figure 2.1	Block Diagram of ACE Control for Overhead Crane	31
Figure 3.1	First Phase Methodology	36
Figure 3.2	Second Phase Methodology KAL MALAYSIA MELAKA	37
Figure 3.3	Third Phase Methodology	38
Figure 3.4	Formula for AC Motor Rotational Speed	39
Figure 3.5	Rotational Speed of an AC Motor	40
Figure 3.6	AC Motor Rotational Speed Formula	40
Figure 3.7	AC Motor Rotational Speed	41
Figure 3.8	AC Motor Rotational Speed Pole Formula	42
Figure 3.9	Variable Frequency Drive (VFD) Speed, Voltage and Frequency	42
Figure 3.10) VFD Application in Industrial and Commercial	43
Figure 3.11	The Use of VFDs for Pump Control Flow	44

Figure 3.12 VFD Electrical Circuit	44
Figure 3.13 VFD Electrical Circuit	45
Figure 3.14 VFD Six-pulse Rectifier or Converter	46
Figure 3.15 VFD Six-pulse Rectifier or Converter	46
Figure 3.16 Alternating Current to Converter Connection	47
Figure 3.17 Alternating Current to Converter Connection	47
Figure 3.18 Alternating Current to Converter Connection	48
Figure 3.19 DC Filter or DC Bus	48
Figure 3.20 Capacitor and Impedance	49
Figure 3.21 Relays Contact, Resistor and Thermostat Working	49
Figure 3.22 Capacitor, Resistor and DC link Working	50
Figure 3.23 Thermostat Act Once VFD Overheating	51
Figure 3.24 Thermostat Act Once VFD Overheating	51
Figure 3.25 Insulated-gate Bipolar Transistor (IGBT)	52
Figure 3.26 Pulse Width Modulation (PWM) with IGBT	53
Figure 3.27 IGBT and Switch Function KAL MALAYSIA MELAKA	53
Figure 3.28 Terminals of Gate, Collector, and Emitter	54
Figure 3.29 Current flow from Collector to Emitter and Gate as Controller	54
Figure 3.30 IGBT Functioning in VFD	55
Figure 3.31 Lower Switches Functioning in FD	56
Figure 3.32 Signal of Positive, Zero and Negative	56
Figure 3.33 Rectangular Waveform of PWM Signal	57
Figure 3.34 Panel of Indication for Movement of Overhead Crane	62
Figure 3.35 Power Supply, Relays & Terminals for Receiver (Rx)	63

Figure 3.36 Relay Contacts of Receiver	64
Figure 3.37 Relay Circuit Control for Hoisting Movement	65
Figure 3.38 Circuit Control for Trolley & Travelling Movement	66
Figure 3.39 Relay Circuit Control for Hoisting Movement	67
Figure 3.40 Relay Wiring for Receiver Controller	67
Figure 3.41 Wireless Pendant Controller (Transmitter)	68
Figure 3.42 System Protype Achitecture of Wireless Crane Remote Controller	69
Figure 3.43 Series Wireless Remote-Controller (Transmitter) Models	69
Figure 3.44 Communication of VFD and PLC via Converter	72
Figure 3.45 Motors, VFD, PLC and Local Panel	73
Figure 3.46 VFD Control and Power Drawing	74
Figure 3.47 Motors in Normal State	77
Figure 3.48 Motors in Running State	78
Figure 3.49 Motors in Error State	78
Figure 4.1 Monthly downtime & maintenance cost	82
Figure 4.2 Monthly Individual Overhead Crane Breakdown A MELAKA	83
Figure 4.3 Overhead Crane Downtime in Pareto Chart	83
Figure 4.4 Overhead Crane Downtime Comparison 4 Cranes	83
Figure 4.5 Control System's Auto-tuning Control Reaction	84
Figure 4.6 Anti-swing Positioning System's Response is based on Sliding	90
Figure 4.7 Response of Auto-tuning Control System to the Phase Trajectory	91
Figure 4.8 Three phases voltage graph with rotor resistance starter during motor	92
Figure 4.9 Three phases voltage graph with rotor resistance starter during motor	93
Figure 4.10 Three phases voltage graph with rotor resistance starter during motor	94

Figure 4.11 Three phases voltage graph with rotor resistance starter during motor	94
Figure 4.12 System prototype wireless crane control	97
Figure 4.13 Remote Controller for Transmitter (Tx) System Software	97
Figure 4.14 Circuit Control for Receiver	98
Figure 4.15 Overall Crane Performance in Minutes	100

LIST OF SYMBOLS AND ABBREVIATIONS

Tx	-	Transmitter
Rx	-	Receiver
VFD	-	Variable Frequency Drive
LED	-	Light Emiting Diode
I G BT	-	Insulate ate Bi-Polar Transistor
USB	-	Universal Serial Bus
RPM	-	Rotation Per Minutes
RF	-	Radio Frequency
HP	-	Horse Power
PLC	-57	Programming Logic Circuit
IoT	N. Contraction	Internet of Thing
NO / NC	F	Normally Open / Normally Close
MCB	Feel	Mould Circuit Breaker
СОМ	- 41	Common Supply
E/S	NE	Emerency Stop
R1	-	Relay No.1
R2	UNIV	Relay No.2TEKNIKAL MALAYSIA MELAKA
R13	-	Relay No.13Close
2P	-	2 Pole (Breaker)
L	-	Live (Supply)
Ν	-	Natural (Zero)
1S / 2S	-	First Step (low speed) / Second Step (high speed)
S/N	-	South / North
ID	-	Identification
AP	-	Access Point
IP	-	Industrial Protocol
DO / DI	-	Digital Output / Digital Input
DC	-	Direct Current

LIST OF APPENDICES

APPENDIX	TITLE		
APPENDIX A	Variable Frequency Drive (VFD) Circuit Diagram	115	
APPENDIX B	Periodical Schedule Setting Preventive Maintenance Data	116	
APPENDIX C	Programming Logic Circuit of IO & E-Components	117	
APPENDIX D	Programming Logic Circuit of Relay (Interlock) & Signal	122	
APPENDIX E	Programming Logic Circuit for Operator Cabin	126	
APPENDIX F	Variable Frequency Drive Specification	128	
APPENDIX G	Wireless Pendant Remote Controller Function	129	
UN	IIVERSITI TEKNIKAL MALAYSIA MELAKA		

XV

LIST OF PUBLICATIONS

Research Papers

Muhamad Nazri Omar, Mohd Muzafar Ismail, Mohd Nasir Ayob, Faiz Arith. Wireless Control Modelling for Overhead Crane. *Journal on Physic., Conf. Ser.* 2107012033, 2021. (SCOPUS indexed).

Muhamad Nazri Omar, Mohd Muzafar Ismail, Mohd Nasir Ayob, Faiz Arith.Upgrading for overhead crane anti-sway method using variable frequency drive. *Bulletin of Electrical Engineering and Informatics*, Vol. 11, No. 4, August 2022, pp.1837~1844ISSN: 2302-9285, DOI: 10.11591/eei. v11i4.3731, 2022. (SCOPUS indexed).

Conference Proceedings

Muhamad Nazri Omar, Mohd Muzafar Ismail, Mohd Nasir Ayob, Faiz Arith. Wireless Control Modeling for Overhead Crane. *ICoMMS 2021 The 7th International Conferences* (*UniMAP*), 2021, pp 215. (Participation with Best Presenter Award).

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

CHAPTER 1

INTRODUCTION

1.1 Background

An overhead crane is a form of heavy-duty machinery capable of lifting extremely heavy loads and equipment from one point to another in a safe and exact manner by utilising the overhead area of a steel manufacturing industry facility. It is made composed of two parallel runways that hold a horizontal beam (often referred to as the bridge or simply the crane) on which a main hoist or auxiliary hoists running. The supportingrunways can be joined at a raised level to the building walls. Overhead cranes make it possible to move loads that would otherwise be difficult or hard to position.

The wireless radio communication provides more reliability even in a harsh environment, which is specifically used in critical and industrial applications. Wireless communication provides cost-effective, easy installation and mobility as compared towired communication. When compared with a wired connection, a wireless connection requires minimum maintenance. If an underground cable is damaged. Then we need to repair or replace the cable, which will cost high.

Whereas wireless communication does not require such kind of maintenance. To communicate over long distances through wireless communication, Access Points (AP) are installed to amplify the signals. So, over a long distance, the signal does not get weak, or some distortion is not created in that signal. However, wired communication is more reliable and stable as compared to wireless communication. It also provides better security than the wireless one.

Wireless control and motor starter technology is now widely used to eliminate the need for cables and reduce power consumption to make sure daily efficiency of productivities. Wireless control is made up of Transmitter (Tx) and Receiver (Rx) is used as one of the devices to transmits the control of signal. While motor starter is used as one of the devices to transmits the power for motor start up and continue running. This study is to evaluate the potential of novel investigation on the performance of wireless signal processing of crane control system and crane motor starter system by designing of new control circuit that is reliable with current technology for crane control function in steel manufacturing industry.

Analysis on Transmitter (Tx) & Receiver (Rx) for wireless control and motor starter at control cable termination, new control circuit design such as relays, contactors, and incoming power supply cable by measuring voltage and current to make sure in control range and within motor rated. SITI TEKNIKAL MALAYSIA MELAKA

The final stage of analysis is test run the crane movement by wireless crane and motor starter to see any interrupting on the new design system for troubleshooting. It is expected the novel design of wireless control and motor starter for crane will be established. Three goals must be prioritised in this research study. First, a new remote controller with a wireless communication system based on Transmitter (Tx) and Receiver (Rx) communication must be designed to replace the pendant and joystick controller that iscurrently in use. This will reduce the need for more manpower (an operator to operate the crane), improve safety, and simplify the wiring design. Before implementing a new motor starter, a Variable Frequency Drive (VFD), it is important to first analyse the performance of overhead cranes using the Rotor Resistance Starter design from the past. Third, switching to a Variable Frequency Drive (VFD) from a Rotor Resistance Starter will increase performance of motor startup, hoisting anti-sway, and cost-effectiveness of purchasing maintenance spare parts in of Steel Manufacturing Industry.

1.2 Problem Statement

The study's three main goals are to investigate overhead crane downtime, design a new remote controller with a wireless communication system, and design a motor starter upgrade from a Rotor Resistance Starter to a Variable Frequency Drive (VFD) for AC Motor (Slip Ring Type) in the steel manufacturing industry.

The first problem statement is a lack of mobility; a wired connection does not provide mobility when compared to a wireless connection. If the user wishes to relocate, we will require new cables and switches to connect the devices. The second disadvantageis that wired communication takes longer to set up than wireless communication. If we wish to connect to each router, the installation becomes very lengthy and complex. If we want to connect another device to the network later, we must repeat the setup process.

However, in the case of a wireless connection, we do not need to repeat the entire setup process. We only need to enter the authorised passcode to gain access to the network. Third is maintenance; if the user just needs a small network frame, there is no need for a server.