

DEVELOPMENT OF INDIUM ZINC OXIDE COATED KENAF REINFORCED PANI/PLA COMPOSITE FOR ELECTROMAGNETIC INTERFERENCE SHIELDING

DOCTOR OF PHILOSOPHY

Faculty of Industrial and Manufacturing Technology and Engineering

Nurhernida binti Abdullah Sani

Doctor of Philosophy

DEVELOPMENT OF INDIUM ZINC OXIDE COATED KENAF REINFORCED PANI/PLA COMPOSITE FOR ELECTROMAGNETIC INTERFERENCE SHIELDING

NURHERNIDA BINTI ABDULLAH SANI

Faculty of Industrial and Manufacturing Technology and Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DECLARATION

I declare that this thesis entitled "Development of Indium Zinc Oxide Coated Kenaf Reinforced PANi/PLA Composite for Electromagnetic Interference Shielding" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

APPROVAL

I hereby declare that I have read this thesis and in my opinion, this thesis is sufficient in terms of scope and quality for the award of the degree of Doctor of Philosophy.

Signature

:

Supervisor Name

: DR. MOHD EDEEROZEY BIN ABD MANAF

Date

DEDICATION

Specially dedicated to the most important person in my life "My beloved husband, my son, my parents, my siblings and the whole family" for their love, trust, support and prayers

ABSTRACT

Electromagnetic interference (EMI) has emerged as a major concern for disrupting the performance or operation of electrical equipment as well as being harmful to human health. In order to cope with the interference issues, an innovative development of biodegradable polymer blends incorporating intrinsic conductive polymers (ICPs) such as polyaniline (PANi) was pursued for EMI shielding applications. Nevertheless, PANi-filled polymer blends are frequently susceptible to weakening the mechanical properties due to agglomeration and weak adhesion issues. Thus, the research aims to improve the mechanical properties as well as the electrical properties of PLA/PANi polymer blends by reinforcing them with indium doped zinc oxide (IZO) coated kenaf fiber. In Stage 1, the development of conductive IZO coated kenaf fiber was performed via dip coating process and systematic statistical approach to obtain the most suitable level of alkaline treatment, annealing temperature and indium doping, in order to achieve the lowest surface resistivity possible, indicating an increase in charge carrier. It was found that the combination of an annealing temperature of 130 °C, NaOH treatment of 8.0 % and indium doping of 3.0 wt% has yielded a minimal surface resistivity of 1.87 x $10^9 \Omega/sq$ with the highest desirability value of 0.933. In addition, the characterizations via XRD, FTIR, morphological and elemental analysis have validated the succesful coating of the IZO on kenaf fiber. In the following Stage 2, the fabrication of biodegradable PLA/PANi polymer blends has been performed to study their electrical, thermal and EMI shielding effectiveness (EMISE) performance. Prior to that, PANi were synthesised via chemical oxidative polymerization (COP) with hydrochloric acid doping. Then, PANi was incorporated into the PLA to produce conductive polymer blends via a melt-mixing process, which were then hot-pressed into polymer sheets. The increasing amount of PANi in the polymer blends has increased the electrical conductivity and the dielectric properties; however, it has substantially reduced the mechanical properties and the thermal stability. In the final Stage 3, the development of the IZO-kenaf/PANi/PLA hybrid composite was carried out using hot compression molding. In this process, the combination of PANi amount (per-hundred-resin) and IZO-coated kenaf fiber weight percentage (wt.%) were investigated using a two-level full factorial statistical approach method to achieve the highest mechanical, electrical and EMISE performance resulting from the synergistic integration of the IZO-kenaf/PANi/PLA hybrid composite. The most suitable compositions of IZO-kenaf and PANi were determined to be 30 wt.% and 10 phr, respectively. The most suitable quantity of IZO-kenaf and PANi was successfully combined, resulting in the highest EMI shielding efficacy value of 42.6 dB, conductivity of 2.39×10^{-4} S/m, and permittivity value of 6.60. The highest incorporation amount of IZO-kenaf has raised the tensile strength and modulus to 16.6 MPa and 4.04 GPa, respectively, which indicates the reinforcing effect of IZO-coated kenaf fiber. As a result, the synergistic effects from the integration of IZOcoated kenaf fiber and PANi/PLA matrix has improved the electrical, mechanical and EMISE properties, making it a potetial alternative for EMI shielding applications.

PEMBANGUNAN KOMPOSIT PANi/PLA BERTETULANG KENAF BERSALUT INDIUM ZINK OKSIDA UNTUK PERISAI GANGGUAN ELEKTROMAGNET

ABSTRAK

Gangguan elektromagnetik (EMI) telah menjadi kebimbangan utama kerana menyebabkan gangguan terhadap prestasi atau operasi peralatan elektrik serta berbahaya kepada kesihatan manusia. Untuk menangani perkara ini, pembangunan inovatif dengan menggabungkan polimer terbiodegradasi dan polimer konduktif intrinsik (ICP) seperti polianilin (PANi) telah dijalankan untuk aplikasi sebagai perisai EMI. Namun begitu, adunan polimer yang diisi PANi selalunya cenderung mempamerkan prestasi mekanikal yang rendah akibat masalah gumpalan dan lekatan yang lemah. Oleh itu, penyelidikan ini bertujuan untuk menambah baik sifat mekanikal serta sifat elektrik campuran polimer PLA/PANi dengan mengukuhkannya dengan gentian kenaf bersalut zink oksida terdop indium (IZO). Pada Peringkat 1, pembangunan gentian kenaf bersalut IZO konduktif telah dilakukan melalui proses salutan celup dan pendekatan statistik sistematik untuk mendapatkan tahap rawatan alkali, suhu penyepuhlindapan dan dop indium yang paling sesuai, bagi mencapai kerintangan elektrik permukaan yang paling rendah yang juga menunjukkan hasil peningkatan pembawa cas. Didapati gabungan suhu penyepuhlindapan 130 °C, rawatan NaOH 8.0 % dan doping indium 3.0 wt% telah menghasilkan kerintangan permukaan minimum iaitu 1.87x10⁹ Ω /sq dengan nilai kemahuan tertinggi 0.933. Selain itu, pencirian melalui analisis XRD, FTIR, morfologi dan unsur telah mengesahkan IZO berjaya disalutkan pada gentian kenaf. Dalam Peringkat 2 berikutnya, fabrikasi adunan polimer terbiodegradasi PLA/PANi telah dilakukan untuk mengkaji prestasi keberkesanan elektrik, haba dan pelindungan EMI (EMISE) mereka. Sebelum itu, PANi telah disintesis melalui pempolimeran oksidatif kimia (COP) dengan mendopkan asid hidroklorik. Kemudian, PANi telah dimasukkan ke dalam PLA untuk menghasilkan campuran polimer konduktif melalui proses pencampuran cair, yang kemudiannya ditekan panas menjadi kepingan polimer. Peningkatan jumlah PANi dalam campuran polimer telah meningkatkan kekonduksian elektrik dan sifat dielektrik; walau bagaimanapun, ia telah mengurangkan dengan ketara sifat mekanikal dan kestabilan termal. Pada Peringkat 3 yang terakhir, pembangunan komposit hibrid IZO-kenaf/PANi/PLA telah dijalankan menggunakan kaedah pengacuan mampatan panas. Dalam proses ini, gabungan jumlah PANi (setiap-ratus-resin) dan peratusan berat gentian kenaf bersalut IZO (berat %) telah dikaji menggunakan pendekatan statistik faktorial penuh dua peringkat untuk mencapai prestasi mekanikal, elektrikal dan EMISE yang tertinggi hasil daripada integrasi sinergi bagi komposit hibrid IZOkenaf/PANi/PLA. Komposisi IZO-kenaf dan PANi yang paling sesuai ditentukan masingmasing sebagai 30 wt.% dan 10 phr. Dengan menggabungkan kuantiti IZO-kenaf dan PANi yang terbaik, ianya berjaya menghasilkan nilai efikasi pelindung EMI tertinggi iaitu 42.6 dB, kekonduksian sebanyak 2.39×10^{-4} S/m, dan nilai kebolehtelapan elektrik sebanyak 6.60. Jumlah penggabungan tertinggi IZO-kenaf telah meningkatkan kekuatan tegangan dan modulus masing-masing kepada 16.6 MPa dan 4.04 GPa, yang menunjukkan kesan pengukuhan gentian kenaf bersalut IZO. Hasilnya, kesan sinergistik daripada penyepaduan gentian kenaf bersalut IZO dan matriks PANi/PLA telah meningkatkan sifat elektrik, mekanikal dan EMISE, menjadikannya alternatif yang berpotensi tinggi untuk aplikasi perisai EMI.

ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious and the Most Merciful.

Alhamdulillah, all praise to Allah for the strength and His blessing in completing this thesis. First and foremost, I would like to express my sincere acknowledgement to my supervisor and co-supervisor, Dr. Mohd Edeerozey Bin Abd Manaf and Associate Professor Ts. Dr. Jeefferie Bin Abd Razak for their guidance, supervision, support and encouragement throughout the completion of the research.

I would like to express my very profound gratitude to my beloved parents: Hj. Abdullah Sani Bin Bujang and Hjh. Rokiah Bt Fateh Din, to my beloved husband and son: Arieff Ridzwan Bin Yussuff and Amzar Yusoff Bin Arieff Ridzwan, to my sister (Along) and brother (Angah) and my family in-laws for nourishing me with unfailing support and continuous encouragement throughout my years of study. This success definitely the answer to all of your prayers.

Once again, I would want to express my heartfelt appreciation to my hubby for his endless encouragment and trust towards me. Thank you for always being my safest place to talk and share, and also being my strongest supporter. It was not always a smooth journey, but it was the bumps that made it worth the ride, right? This is also a gift for you, as well as recognition of our achievement in conquering all of the hurdles along the way.

My sincere appreciation also goes out to all person who have helped me on various occasions throught out this PhD journey – closest friends, research colleagues, lecturers and lab technicians.

Last but not least, I would like to thank the Faculty of Industrial and Manufacturing Technology and Engineering and Universiti Teknikal Malaysia Melaka for providing the equipment, technical and financial support through the research grant, PJP/2019/FKP(1A)/S01652. Special thanks to the MyBrain15 scholarship by the Ministry of Education Malaysia for making my PhD journey possible.

TABLE OF CONTENTS

	PAGE
DECLARATION	
APPROVAL	
DEDICATION	
ABSTRACT	i
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES PLAYSIA	vii
LIST OF FIGURES	xi
LIST OF SYMBOLS AND ABBREVIATIONS	XX
LIST OF APPENDICES	xxi
LIST OF PUBLICATIONS	xxii
CHAPTER 1 1.1 Background 1.2 Problem statement	1 1
1.3 Research objective TI TEKNIKAL MALAYSIA MELAKA	9
1.4 Scopes of study 1.5 Significance of study	9 11
1.6 Thesis organization	11
CHAPTER 2 LITERATURE REVIEW	13
2.1 Introduction	13
2.2 Fundamental of Electromagnetic (EM) shielding 2.2.1 Electromagnetic (EM) spectrum	14 14
2.2.2 Mechanisms of EMI shielding	16
2.2.3 Measurement of Electromagnetic Shielding Effectiveness (EMSI	E) 17
2.2.4 Factors affecting shielding performance	19
2.2.4.1 Permittivity, conductivity and permeability	19
2.2.4.2 Size, mass ratio and thickness 2.3 Polymer matrix composites (PMCs) for FMI shielding application	21 25
2.3.1 Intrinsically Conductive Polymers (ICP)	25 26
2.3.1.1 Overview of conductive PANi	30
2.3.1.2 PANi filled PLA polymer blend/composite	32
2.3.1.3 Mechanical properties of PANi filled polymer composite	34
2.3.2 Conductive filled polymer composites	37

	2.3.3 Natural Fiber Reinforced Polymer Composites (NFRPC)	39
	2.3.4 Electro-conductive coating materials for EMI shielding application	43
	2.3.4.1 Development of conductive coated natural fiber	46
2.4	Transparent Conducting Oxide (TCO) coating	49
	2.4.1 Zinc oxide	49
	2.4.1.1 Crystal structure of zinc oxide	50
	2.4.1.2 N-type doping in ZnO	52
	2.4.2 Dip-coating process for fibrous material	54
	2.4.3 Factors affecting coating properties	56
2.5	Summary	60
CHA	PTER 3 METHODOLOGY	62
3.1	Introduction	62
3.2	Methodological framework	62
3.3	Raw materials	67
	3.3.1 Kenaf fiber mat	67
	3.3.2 Polylactic acid (PLA) polymer	68
	3.3.3 Chemicals	69
3.4	Experimental procedures	70
	3.4.1 Raw material preparation and characterization	70
	3.4.2 Stage 1 (a): Development of IZO-coated kenaf fiber and the	
	preliminary characterization	70
	3.4.3 Stage 1 (b): Determination of coating process parameter of IZO-	
	coated kenaf fiber via two level factorial design of experiment (DOE	72
	3.4.4 Stage 2: Preparation and analysis of thermal and electrical properties	
	of PANi/PLA blends	75
	3.4.5 Stage 3: Fabrication and analysis of electrical and mechanical	
	properties of the IZO-coated kenaf/PANi/PLA composites	77
3.5	Material characterizations NUMAL MALAYSIA MELAKA	79
	3.5.1 X-Ray Diffraction (XRD)	79
	3.5.2 Fourier Transform Infrared (FTIR) spectroscopy	80
3.6	Morphology and structural analysis	81
	3.6.1 Field Emission Scanning Electron Microscope (FESEM)	81
	3.6.2 Atomic Force Microscopy (AFM)	81
	3.6.3 Energy Dispersive X-Ray (EDX)	82
3.7	Thermal analysis	82
	3.7.1 Thermogravimetric analysis (TGA)	82
	3.7.2 Differential scanning calorimetry (DSC) analysis	83
3.8	Melt flow index (MFI)	84
3.9	Mechanical tensile testing	84
3.10	Electrical properties testing	86
	3.10.1 Surface resistivity test	86
	3.10.2 Conductivity analysis of polymer blends/composites	86
	3.10.3 Permittivity test (dielectric constant)	87
3.11	Electromagnetic shielding effectiveness test (EMSE)	88
3.12	Summary	90

CHAF	FER 4 RESULTS AND DISCUSSION	91	
4.1	Introduction	91	
4.2	Stage 1 (a): Development of IZO-coated kenaf fiber and the preliminary	7	
	characterization	91	
	4.2.1 Surface resistivity analysis of IZO coated kenaf	91	
	4.2.2 FTIR analysis of IZO coated kenaf	95	
	4.2.3 XRD analysis of IZO coated kenaf	100	
	4.2.4 Morphological and elemental analysis of IZO coated kenaf	104	
	4.2.5 Atomic Force Microscopy (AFM) analysis of IZO coated kenaf	107	
4.3	Stage 1 (b): Determination of coating process parameter of IZO-coated kenat	2	
	fiber via two level factorial design of experiment (DOE)	110	
	4.3.1 Screening process on coating parameters of IZO coated kenaf fiber	110	
	4.3.2 The analysis of selected coating parameters for IZO coated kenaf	•	
	using two-level full factorial (DOE)	115	
	4.3.3 Validation of the selected IZO coated kenaf parameter	123	
4.4	Stage 2: Preparation and analysis of thermal and electrical properties of	2	
	PANi/PLA blends	128	
	4.4.1 XRD analysis of PANi/PLA blend	128	
	4.4.2 FTIR of PANi/PLA blend	130	
	4.4.3 Morphological and elemental analysis	135	
	4.4.4 Thermal analysis of PANi/PLA blend	139	
	4.4.5 Melt flow index (MFI) of PANi/PLA blend	145	
	4.4.6 Electric and electromagnetic analysis of PANi/PLA blend	147	
	4.4.7 Tensile properties of PANi/PLA blend	153	
4.5	Stage 3: Fabrication and analysis of electrical and mechanical properties of	2	
	the IZO-coated kenaf/PANi/PLA composites	155	
	4.5.1 Statistical analysis using Design of Experiment (DoE): Effects of	2	
	PANi addition and IZO coated kenaf weight fraction	155	
	4.5.2 Selection of optimum parameter and validation	185	
	4.5.3 Scanning Electron Microscopy (SEM) observation	189	
	4.5.4 XRD analysis	191	
	4.5.5 FTIR spectroscopy analysis	193	
	4.5.6 DSC analysis	195	
	4.5.7 TGA analysis	198	
4.6	Summary	201	
СПАТ	FED 5 CONCLUSION AND DECOMMENDATIONS	203	
5 1	Conclusion	203	
5.1	Research contributions	203	
5.2 5.3	Future recommendations	203 206	
5.5		200	
REFE	REFERENCES 2		
APPE	NDICES	241	

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Summary of studies on ICP composite	28
2.2	Summary of related previous studies on conductive filled polymer	
	composite	39
2.3	Summary of studies on NFRPC	41
2.4	Summary of studies on conductive coating materials	45
2.5	Physical and mechanical properties of natural fiber (Westman et	
	al.,, 2010)	47
2.6	Physical properties of wurtzite ZnO (Lu, 2005)	50
2.7	List of studies on effects of process parameters for ZnO and In-	
	doped ZnO coating	59
3.1	Specifications of kenaf natural fiber mat	67
3.2	Specifications of PLANIKAL MALAYSIA MELAKA	68
3.3	List of chemicals and its detailed information	69
3.4	Fractional-factorial design factors and values in screening process	73
3.5	Experimental variables, range of values and levels for IZO coated	
	kenaf	74
3.6	Full-factorial design factors and values in variable parameter	
	selection	74
3.7	Experimental variables, range of values and levels for polymer	
	composites fabrication	78
3.8	List of factors and values	78

4.1	List of peaks for IZO coated kenaf pre-treated with different	
	concentration of NaOH	101
4.2	List of peaks for IZO coated kenaf with different percentages of	
	indium doping and its Crystallinity Index (CI)	103
4.3	The RMS surface roughness of uncoated and IZO coated kenaf	108
4.4	Result of response from the screening experiment	111
4.5	Effect list for independent factors in screening process	113
4.6	ANOVA for selected factorial model for screening	114
4.7	Response outcomes from the optimization experiment	115
4.8	Effect list for independent factors and interactions in optimization	
	process	117
4.9	ANOVA for selected factorial model for optimization	118
4.10	Optimal condition for each factor and response after optimization	
	process	124
4.11	Validation test on the predicted versus experimental data of	
	optimum parameters	125
4.12	Peak band of FTIR spectra and functional groups in PANi/PLA	
	blend	131
4.13	Results of thermogravimetric (TGA) and derivative	
	thermogravimetric (DTG) analysis	141
4.14	Transition temperatures of the PLA and PLA/PANi blends	145
4.15	Tabulation of dependent response from the optimization	
	experiment	156

Effect lists of independent and interactions factors for the electrical	
conductivity (R1) response	158
ANOVA for response variable of the electrical conductivity for	
hybrid composites	159
Effect lists of independent and interactions factors for permittivity	
value	164
ANOVA for response variable of permittivity for hybrid	
composites	164
Effect lists of independent and interactions factors for EMSE	170
ANOVA for response variable of EMSE for IZO-kenaf/PANi/PLA	
composite	170
Effect lists of independent and interactions factors for tensile	
strength response	176
ANOVA result on the response variable of tensile strength for	
UNIVERSITI TEKNIKAL MALAYSIA MELAKA composites	177
Effect lists of independent and interactions factors for Young's	
Modulus	182
ANOVA result on response variable of Young's Modulus for	
composites	182
The selected goal and optimal condition for each factor and	
response for the optimization process	185
Validation test on the predicted versus experimental data of	
optimum parameters	188
Transition temperatures of the PLA and its composites	197
	 Effect lists of independent and interactions factors for tensile strength response ANOVA for response variable of the electrical conductivity for hybrid composites Effect lists of independent and interactions factors for permittivity value ANOVA for response variable of permittivity for hybrid composites Effect lists of independent and interactions factors for EMSE ANOVA for response variable of EMSE for IZO-kenat/PANi/PLA composite Effect lists of independent and interactions factors for tensile strength response ANOVA result on the response variable of tensile strength for composites Effect lists of independent and interactions factors for Young's Modulus ANOVA result on response variable of Young's Modulus for composites The selected goal and optimal condition for each factor and response for the optimization process Validation test on the predicted versus experimental data of optimum parameters Transition temperatures of the PLA and its composites

4.29 Results of thermogravimetric (TGA) and derivative thermogravimetric (DTG) analysis 200

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Sources of electromagnetic interference (Zhang et al.,, 2009)	2
1.2	Illustration of EMI mechanisms (Zhang et al.,, 2009)	3
2.1	Illustration of electromagnetic waves spectrum (www.itu.int)	15
2.2	Electromagnetic shielding mechanism on shielding material (Idris	
2.2	et al., 2016)	16
2.3	The schematic inustration of signals of S-parameters	18
2.4	Result of (a) dielectric and magnetic loss tangent, (b) conductivity	
	and (c) EMI shielding effectiveness of PVDF-CIP composites on	
	the effect of CIP loading (Joseph et al.,, 2013)	21
2.5	SEM of the NGF, (A) PS > $300\mu m - (P1)$, (B) $250\mu m > PS > 106\mu m$	
	– (P2), (C) 150μm > PS > 45μm – (P3) (Portes et al.,, 2019)	22
2.6	EMSE of the NGF-silicone rubber composites in 5.0 and 10.0 wt%	
	of NGF, (a) SER, (b) SEA, (c) SEMR, and (d) SET (Portes et al.,,	
	2019)	23
2.7	Conductive filler distribution at (a) low concentration, (b) high	
	concentration (Bhatia et al.,, 2018)	24
2.8	The three oxidation states of PANi (Stejskal et al.,, 2015)	31
2.9	SEM micrograph of (a) EP/20AKF/4PANI and (b)	
	EP/20AKF/12PANI (Razak et al.,, 2014)	35

2.10	Graph of tensile strength and elongation of PANi(DBSA)/ PVA	
	on the effect of PANi loading (Bhadra et al.,, 2017)	36
2.11	Dielectric result with the effect of fiber loading (a) aspen wood, (b)	
	aspen bark and (c) jackpin wood (Elloumi et al.,, 2021)	42
2.12	Crystal structure of Zinc Oxide (a) cubic rocksalt, (b) cubic zinc	
	blende, and (c) hexagonal wurtzite. Shaded grey and black spheres	
	denote Zn and O atoms, respectively (Özgur, 2009)	51
2.13	Illustration of (a) n-type doping with extra free electron and (b) its	
	energy level diagram (Fiore, 2021)	52
2.14	Schematic diagram of In doping mechanism of indium atom in zinc oxide crystal structure, (a) ZnO, (b) IZO with In atom substitution, (c) IZO with In atom octahedral interstitial and (d)	
	IZO with In atom tetrahedral interstitial (Hori et al., 2019)	53
3.1	Flowchart of an overall methodological flow of study	64
3.2	Details of analysis for Stage 1 and Stage 2	65
3.3	Details of analysis for Stage 3	66
3.4	Kenaf fiber mat	67
3.5	PLA pallets	68
3.6	The sequence of IZO-kenaf dip coating process	72
3.7	Process flow of PANi synthesis	75
3.8	Process flow of manufacturing PANi/PLA polymer blends	76
3.9	Cross-section of hot press mold for polymer composite fabrication	

3.10	Peak indication for measurement of CI using peak method (Lin et	
	al., 2019)	80
3.11	Tensile Test Specimen Drawing (SI) based on ASTM D 3039	85
3.12	Universal Testing Machine (UTM) model Shimadzu (Japan)	85
3.13	Evaluation arrangement for surface resistivity test (a) schematic	
	illustration and (b) actual apparatus set-up	86
3.14	Arrangement for resistance measurement	87
3.15	Dielectric Probe kit connected to a PNA-X Network Analyzer	88
3.16	Measurement set-up using rectangular waveguide connected	
	through coaxial adapter to VNA	89
4.1	Effect of NaOH concentration treatment on the surface resistivity	
	of IZO coated kenaf	92
4.2	Schematic illustration of electron movement in the fibrous kenaf	
	(Xing et al.,, 2018)	93
4.3	Effect of Indium doping percentage on surface resistivity of IZO	
	coated kenaf.	94
4.4	FTIR spectroscopy patterns comparison between raw kenaf and	
	different percentages of NaOH pre-treatment on the IZO-coated	
	kenaf	96
4.5	Schematic illustration of surface reaction after alkaline treatment	
	and development of IZO coated kenaf fiber	97
4.6	FTIR spectroscopy patterns of different percentages of indium	
	doping on the IZO-coated kenaf	98

4.7	Comparison of bands between uncoated kenaf, pristine IZO and	
	IZO coated kenaf fiber	99
4.8	XRD results for IZO coated kenaf pre-treated with different	
	concentration of NaOH	100
4.9	XRD results for IZO coated kenaf pre-treated with different	
	concentration of indium doping	102
4.10	SEM image of kenaf fiber, a) neat kenaf, b) NaOH treated kenaf,	
	c) untreated kenaf-IZO coated and d) NaOH treated kenaf-IZO	
	coated	104
4.11	FESEM-EDX analysis of IZO coating on surface of kenaf, (a) wt.%	
	and at.% of each element and (b) the distribution of carbon,	
	oxygen, zinc and indium elements.	105
4.12	FESEM-EDX analysis of IZO coating on kenaf fiber on cross	
	section of kenaf, (a) wt.% and at.% of each element and (b) the	
	distribution of carbon, oxygen, zinc and indium elements.	107
4.13	3D and 2D AFM image of the surface (a) uncoated kenaf fiber (b)	
	In 3%-ZnO coated kenaf fiber and (c) In 7%-ZnO coated kenaf	
	fiber IZO coated kenaf fiber at scan area $2\mu m x 2\mu m$	109
4.14	Half normal plots of all screening factors to the main response of	
	surface resistivity	112
4.15	Half normal plots for surface resistivity response	116
4.16	2D-graph of independent variable of annealing temperature,	
	indium doping and NaOH treatment	119

4.17	3D response surface plot of interaction between annealing	
	temperature and NaOH treatment (AB)	120
4.18	3D response surface plot of interaction between annealing	
	temperature and indium doping (AC)	121
4.19	3D response surface plot of interaction between indium doping and	
	NaOH treatment (BC)	122
4.20	Histogram chart of desirability value based independent	
	parameters and combined parametric	124
4.21	Surface morphology of IZO coated kenaf at different annealing	
	temperature, (a)-(b) 150°C and (c)-(d) 180°C, with magnification	
	500x and 1.00kx respectively	127
4.22	XRD pattern of neat PANi, neat PLA and PANi/PLA blend	129
4.23	XRD pattern of PLA/PANi blend at different loadings of PANi	130
4.24	FTIR spectra comparison of neat PANi, neat PLA and PANi/PLA	
	UNIVERSITI TEKNIKAL MALAYSIA MELAKA	132
4.25	FTIR spectra of PANi addition in PANi/PLA blend	133
4.26	Illustration of possible hydrogen bonding between PLA and PANi	
	chains (Dash et al.,, 2020; Anisimov et al.,, 2021)	134
4.27	FE-SEM image of pristine PANi powder at (a) 1.0Kx, (b) 10.0Kx,	
	(c) 30.0Kx and (d) 50.0Kx magnification	135
4.28	FESEM-EDX image and composition result from cross-section of	
	PLA/PANi at different content of PANi, (a)-(c) 5.0 phr, (d)-(f) 7.5	
	phr, (g)-(i) 10.0 phr and (j)-(l) 15.0 phr	136

4.29	EDX mapping images of C, O, Cl and N from cross-section of	
	PLA/PANi at different content of PANi, (a)-(d) 5.0 phr, (e)-(h) 7.5	
	phr, (i)-(l) 10.0 phr and (m)-(p) 15.0 phr	138
4.30	Thermogravimetric (TGA) curve of pristine PLA, PANi and	
	PLA/PANi blends at different loading of PANi at temperature	
	range from 30 °C to 600 °C	140
4.31	Graph of derivative thermogravimetric (DTG) analysis of pristine	
	PLA, PANi and PLA/PANi blends at different loading of PANi	141
4.32	DSC curves of (a) PLA and PLA/PANi blend with different PANi	
	loadings at temperature of 20 °C to 200 °C, (b) Pristine PANi at	
	temperature of 0 °C to 300 °C	143
4.33	Graph of MFI of PLA/PANi composite at different amount of	
	PANi	146
4.34	Graph of PANi addition amount in PLA-PANi blend versus the DC	
	UNIVERSITI TEKNIKAL MALAYSIA MELAKA	147
4.35	Result of complex permittivity value of PLA-PANi blend at	
	frequency of 8.0 to 12.0 GHz, (a) dielectric constant, ϵ^\prime and (b)	
	dielectric loss, ɛ"	149
4.36	EMISE of PLA-PANi blend at frequency of 8.0 GHz to 12.0GHz	152
4.37	The effect of PANi amount (0 phr to 15 phr) on EMISE value of	
	PLA-PANi blend at a frequency of 8.0 GHz to 12.0 GHz	153
4.38	Tensile strength and Young's modulus of PANi/PLA blend on the	
	effect of PANi amount	154
4.39	Half normal plot for the electrical conductivity response	157

4.40	3D response surface plot of interaction between the factors AB for	
	the electrical conductivity	161
4.41	Illustrative view of possible charge movement occurred in	
	PANi/IZO-kenaf/PLA composite (Dash et al., 2020; Anisimov et	
	al., 2021)	162
4.42	Half normal plot for a response of permittivity constant	163
4.43	3D response surface plot of interaction between the factors AB for	
	the permittivity value	165
4.44	Result of permittivity value of neat PLA, 10phr-PANi/PLA, 30%-	
	Neat kenaf/PLA, 30%-IZO-kenaf/PLA and 10phr-PANi/30%-	
	IZO-kenaf/PLA composite at frequency of 8.0 to 12.0 GHz, (a) real	
	permittivity, ε' and (b) imaginary permittivity, ε''	167
4.45	Half normal plot for a response of EMSE	169
4.46	3D response surface plots of interaction between factors AB for	
	UNIVERSITI TEKNIKAL MALAYSIA MELAKA	172
4.47	EMISE comparison between the neat PLA, 10phr-PANi/PLA,	
	30%-IZO-kenaf/PLA and 10phr-PANi/30%-IZO-kenaf/PLA	
	composite at a frequency range of 8.0 to 12.0 GHz	173
4.48	Schematic view of electromagnetic shielding mechanism through	
	PANi/IZO-kenaf/PLA composite	174
4.49	Half normal plots for the tensile strength response	176
4.50	3D response surface plots of interaction between the factors AB for	
	tensile strength	178

4.51	Tensile strength comparison between the neat PLA, 5phr-	
	PANi/PLA, 30%-IZO-kenaf/PLA and 5phr-PANi/30%-IZO-	
	kenaf/PLA	179
4.52	Half normal plots for the response of Young's Modulus	181
4.53	3D response surface plots of interaction between the factors AB for	
	Young's modulus	183
4.54	Young's modulus comparison between the neat PLA, 5phr-	
	PANi/PLA, 30%-IZO-kenaf/PLA and 5phr-PANi/30%-IZO-	
	kenaf/PLA composites	184
4.55	Ramps of the most suitable condition for each variable	187
4.56	Histogram chart of desirability value of optimization based	
	independent parameters and combined parametric result	188
4.57	SEM micrograph of fiber reinforced composite material at	
	magnification 100x and 200x; (a)-(b) IZO-kenaf 30wt%/PLA, (c)-	
	(d) IZO-kenaf 30wt%/PANi 5 phr/PLA and (e)-(f) IZO-kenaf	
	30wt%/PANi 10 phr/PLA composite	190
4.58	XRD patterns of neat PLA, 10phr-PANi/PLA, 30%-IZO-	
	kenaf/PLA and 10phr-PANi/30%-IZO-kenaf/PLA composite	192
4.59	Plots of (a) FTIR spectra for neat PLA, 10phr-PANi/PLA, 30%-	
	IZO-kenaf/PLA and 10phr-PANi/30%-IZO-kenaf/PLA composite,	
	(b) close-up at 2700-3200 cm ⁻¹ of spectral range	194
4.60	Thermogravimetric and derivative thermogravimetric curves of	
	neat PLA, 10phr-PANi/PLA, 30%-IZO-kenaf/PLA and 10phr-	
	PANi/30%-IZO-kenaf/PLA composite	196