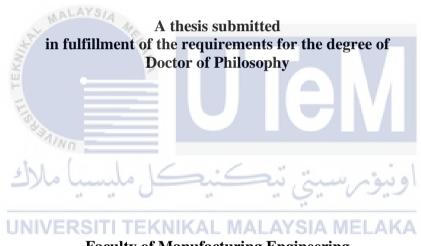


STRUCTURAL MODEL OF NOISE, VIBRATION AND VENTILATION TOWARD TEMPORARY PASSENGER HEALTH IN THE MOVING TRAIN

DOCTOR OF PHILOSOPHY

Faculty of Manufacturing Engineering


Fatimah binti Abdullah

Doctor of Philosophy

2023

STRUCTURAL MODEL OF NOISE, VIBRATION AND VENTILATION TOWARD TEMPORARY PASSENGER HEALTH IN THE MOVING TRAIN

FATIMAH BINTI ABDULLAH

Faculty of Manufacturing Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DECLARATION

I declare that this thesis entitled "Structural Model of Noise, Vibration and Ventilation Toward Temporary Passenger Health in The Moving Train" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Doctor of Philosophy.

Supervisor Name

:

:

Signature

Assoc. Prof. Ts. Dr. Wan Hasrulnizzam Bin Wan Mahmood

Date

DEDICATION

For my beloved husband:

Mr. Mohd Fauzzi bin Mohd Kassim

For my beloved children:

Nurfatihah

MALAYSIA
Muhammad Firdaus Izwan
Nurfaiqah
Muhammad Faiz Isyraf
Nurfalisha
اونيۇم سىتى تى ەNur fahmidaكل مليسىيا ملاك
Muhammad Fayyadh Firaz
UNIVERSITI TERNIKAL MALATSIA MELAKA

An my treasured colleagues:

UTeM's lecturers, staff and students

KKTM's colleagues

ABSTRACT

Rail transport is one of the alternative modes of transportation that has become a priority for developing countries to promote environmental, economic, and social well-being in upgrading the quality of urban life. As such, the study that considers the ergonomic risks experienced by passengers while boarding the train is very important to allow passengers to be in a healthy train cabin and not cause temporary unhealthy environment to train passengers. This research examined passenger satisfaction and comfort towards KTM Komuter based on the Ergonomic Risk Factor (ERF) and the health symptoms experienced by train passengers while using this public vehicle. Five dimensions were being investigated; Ergonomic Risk Factor, Musculoskeletal Disorder symptoms, Health symptoms, Passenger Comfort and Passenger Satisfaction. Structured self-administered questionnaires were distributed to the KTM Komuter passengers using the random sampling technique. A quantitative research method, with a questionnaire as an instrument for this research. Usable responses were received from 361 passengers giving a response rate of 90.25 percent. The structural Equation Model (SEM) investigated the relationship between the ERF, health symptoms, passenger comfort, and passenger satisfaction through IBM-SPSS-AMOS version 25.0 software. Apart from that, data collection using a measurement tool was also done to enable data collection for vibration values (the Dytran Model 5313A), noise (Sound Level Meter), and ventilation (Air Quality Meter) in the train cabin. This is to obtain results that are equivalent to the evaluation of the survey questions that have been answered by train passengers based on their own experiences while boarding this train to their destination. Ergonomic risk factors have a significant effect on Musculoskeletal Disorder symptoms, ergonomic risk factors have a significant effect on health symptoms, ergonomic risk factors have a significant indirect effect on passenger comfort, musculoskeletal disorder has a significant effect on passenger comfort, and lastly, health symptom has a significant effect on passenger comfort. Based on the measurement tool result that has been compared with the standard for each ergonomic risk factor, the noise in the train cabin has reached a value of 82.2 dBA while in the gangway from the journey of UKM to Kajang. As for the vibration value, the measurement tool has recorded the highest vibration value reading of 2,2182 m/s2 in the z-direction in the gangway area along the journey from Kajang to Tiroi. Meanwhile, the ventilation value that has been recorded has also exceeded the allowable standard level that is for the value of CO₂ concentration (ppm) is 1589.72 during the morning hour, relative humidity has an average value of 68.11 and the average temperature value that has been recorded is 23.72°C. The results obtained from the user's answers to the questionnaires that have been distributed that revolve around ergonomic risk factors that affect health symptoms as well as comfort and user satisfaction are in line with the reading results recorded from the measurement tool that records the value of vibration, noise and ventilation risk. This study model can be used to develop and build a public transport system that considers ergonomic risk factors to enable this vehicle to provide a healthy train cabin for the passengers. By taking separate data by gender, it can also be done by comparing other railway companies to enable validity to be done better by comparing the results obtained from two different railway transport companies.

MODEL STRUKTUR HINGAR, GETARAN DAN PENGUDARAAN TERHADAP KESIHATAN SEMENTARA PENUMPANG DALAM KERETA API BERGERAK

ABSTRAK

Pengangkutan rel merupakan salah satu kaedah pengangkutan alternatif yang menjadi keutamaan negara membangun untuk menggalakkan kesejahteraan alam sekitar, ekonomi dan sosial dalam meningkatkan kualiti kehidupan bandar. Justeru, kajian yang mengambil kira risiko ergonomik yang dialami penumpang semasa menaiki tren adalah amat penting bagi membolehkan penumpang berada dalam kabin tren yang sihat dan tidak mendatangkan persekitaran yang tidak sihat secara sementara kepada penumpang kereta api. Penyelidikan ini mengkaji kepuasan dan keselesaan penumpang terhadap KTM Komuter berdasarkan Faktor Risiko Ergonomik (ERF) dan gejala kesihatan yang dialami oleh penumpang tren semasa menggunakan kenderaan awam ini. Lima dimensi sedang disiasat; Faktor Risiko Ergonomik, Gangguan Muskuloskeletal (MsDS), Gejala Kesihatan (HS), Keselesaan Penumpang (PC) dan Kepuasan Penumpang (PS). Soal selidik terurus sendiri berstruktur telah diedarkan kepada penumpang KTM Komuter menggunakan teknik persampelan rawak. Kaedah kajian kuantitatif, dengan soal selidik sebagai instrumen untuk penyelidikan ini. Maklum balas boleh guna diterima daripada 361 penumpang memberikan kadar tindak balas 90.25 peratus. Model Persamaan struktur (SEM) mengkaji hubungan antara ERF, HS, PC dan PS melalui perisian IBM-SPSS-AMOS versi 25.0. Selain itu, pengumpulan data menggunakan alat ukuran juga dilakukan bagi membolehkan pengumpulan data bagi nilai getaran (Model Dytran 5313A), bunyi hingar (Meter Aras Bunyi), dan pengudaraan (Meter Kualiti Udara) dalam kabin kereta api. Ini bagi mendapatkan keputusan yang setara dengan penilaian soalan tinjauan yang telah dijawab oleh penumpang tren berdasarkan pengalaman sendiri semasa menaiki tren ini ke destinasi mereka. ERF memberi kesan yang signifikan terhadap simptom MsDS, ERF memberi kesan yang signifikan terhadap HS, ERF memberi kesan tidak langsung yang signifikan terhadap PC, simptom MsDS memberi kesan yang signifikan terhadap PC, dan akhir sekali, HS mempunyai kesan yang ketara terhadap PC. Berdasarkan keputusan alat ukuran yang telah dibandingkan dengan piawaian bagi setiap ERF, bunyi hingar di dalam kabin tren telah mencapai nilai 82.2 dBA semasa berada di lorong dari perjalanan UKM ke Kajang. Bagi nilai getaran pula, alat pengukur telah mencatatkan bacaan nilai getaran tertinggi iaitu 2,2182 m/s2 dalam arah z di kawasan laluan sepanjang perjalanan dari Kajang ke Tiroi. Manakala nilai pengudaraan yang telah direkodkan juga telah melebihi paras piawai yang dibenarkan iaitu bagi nilai kepekatan CO₂ (ppm) ialah 1589.72 pada waktu pagi, kelembapan bandingan mempunyai nilai purata 68.11 dan nilai suhu purata yang telah direkodkan ialah 23.72°C. Keputusan yang diperolehi daripada jawapan pengguna terhadap borang soal selidik yang telah diedarkan yang berkisarkan ERF yang mempengaruhi HS serta PC dan PS adalah selaras dengan hasil bacaan yang direkodkan daripada alat ukuran yang merekodkan nilai risiko getaran, bunyi dan pengudaraan. Model kajian ini boleh digunakan untuk membangun dan membina sistem pengangkutan awam yang mengambil kira ERF bagi membolehkan kenderaan ini menyediakan kabin tren yang sihat untuk penumpang. Dengan mengambil data berasingan mengikut jantina, ia juga boleh dilakukan dengan membandingkan syarikat kereta api lain untuk membolehkan kesahan dilakukan dengan lebih baik dengan membandingkan keputusan yang diperoleh daripada dua syarikat pengangkutan kereta api yang berbeza.

ACKNOWLEDGEMENTS

In the Name of Allah, the Most Gracious, the Most Merciful

First and foremost, I would like to thank and praise Allah the Almighty, my Creator, my Sustainer, for everything I received since the beginning of my life. I would like to extend my appreciation to Universiti Teknikal Malaysia Melaka (UTeM) for providing the research platform. Thank you also to the Malaysian Ministry of Higher Education (MOHE) for the financial assistance.

My utmost appreciation goes to my main supervisor, Associate Professor Ts. Dr. Wan Hasrulnizzam Bin Wan Mahmood, Universiti Teknikal Malaysia Melaka (UTeM) for all his support, advice and inspiration. His constant patience for guiding and providing priceless insights will forever be remembered. Also, to my co-supervisor, Assoc. Prof. Dr. Seri Rahayu Kamat, Universiti Teknikal Malaysia Melaka (UTeM) who constantly supported my journey.

Last but not least, from the bottom of my heart a gratitude to my beloved husband, Mr. Mohd Fauzzi bin Mohd Kassim, for his encouragements and who have been the pillar of strength in all my endeavors. My eternal love also to all my children, Fatihah, Firdaus, Faiqah, Faiz, Falisha, Fahmida, and Fayyadh, for their patience and understanding. I would also like to thank my beloved family for their endless support, love and prayers. Finally, thank you to all the individual(s) who had provided me the assistance, support and inspiration to embark on my study.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

TABLE OF CONTENTS

			PAGE
DE	CLAR A	ATION	
	PROVA		
DE	DICAT	ION	
	STRAC		i
		F CONTENTS	iv
		TABLES	vii
LIS	ST OF F	FIGURES	xi
LIS	ST OF S	SYMBOLS AND ABBREVIATIONS	XV
LIS	ST OF A	APPENDICES	xvi
LIS	ST OF F	PUBLICATIONS	xvii
1.	INTF	RODUCTION	1
	1.1	Background	1
	1.2	Problem Statement	4
	1.3	Research Questions	9
	1.4	Research Objective	10
	1.5	Research Scope	11
	1.6	Thesis Outline	12
2.		CRATURE REVIEW	13
	2.1	Introduction	13
	2.2	Ergonomic Risk Factors of Train Transportation	13
		2.2.1 Noise	17
		2.2.2 Vibration	22
		2.2.3/ Ventilation EKNIKAL MALAYSIA MELAKA	26
	2.3	Musculoskeletal Disorder Symptom	28
	2.4	Health Symptom	30
		2.4.1 Health Symptom From Noise	31
	2.5	Passenger Satisfaction	35
		2.5.1 Health Symptom From Vibration	36
	2.6	2.5.2 Health Symptom From Ventilation	40
	2.6	Passenger Comfort	42
	2.7	KTM Komuter Sdn Bhd	45
	2.8	Research Gap	47
	2.9	Theoretical Foundation of Research Conceptual Model	51
	2.10	The Model Development of Ergonomic Risk Factor Towards Passeng	-
	2 1 1	Comfort and Satisfaction in Term of Healthy Passenger Train	59
	2.11	Data Analysis in the Study Measurement Tool	61 63
	2.12	2.12.1 Noise	63 63
		2.12.1 Noise 2.12.2 Vibration	63 65
		2.12.2 Violation 2.12.3 Ventilation	63 68
	2.13	Standard Data	08 70
	2.13	2.13.1 Standard Data for Noise	70 71
		2.13.1 Staliualu Data IVI INVISE	/ 1

		2.13.2 Standard Data for Vibration	73
		2.13.3 Standard Data for Ventilation	75
	2.14	Summary	77
3.	MET	HODOLOGY	78
	3.1	Introduction	78
	3.2	Research Design	78
	3.3	Method of Sampling and Data Collection Methods	82
	0.0	3.3.1 Questionnaire	84
		3.3.2 Questionaire Development	85
		3.3.3 The Measuring Instrument	87
		3.3.4 Pre Test the Instrument	87
		3.3.5 Pilot Study	90
		3.3.6 Sample Size	92
	3.4	Method of Data Analysis	95
	511	3.4.1 Questionnaire Screening Analysis	95
		3.4.2 Exploratory Factor Analysis	96
		3.4.3 Descriptive Statistic	98
		3.4.4 Confirmatory Factor Analysis and Construct Validity	99
	3.5	Structural Equation Modelling	100
	3.6	Validating the Measurement Model (Confirmatory Factor Analysis)	105
		3.6.1 Unidimensionality	105
		3.6.2 Reliability	106
		3.6.3 Validity	107
		3.6.4 Evaluating of Model Fit (Fitness of the Data to the Model)	109
		3.6.5 Normality Test	111
	3.7	Analysing Structural Model	112
		3.7.1 Hypothesis Testing (Testing Structural Relationship)	112
		3.7.2 Research Hypotheses and Structural Model	113
	3.8	Measurement Tool Method	115
		3.8.1 Measurement Tool Method For Noise	116
		3.8.2 Measurement Tool Method For Vibration	117
		3.8.3 Measurement Tool Method for Ventilation	119
	3.9	Summary of the Chapter	121
4.	RESI	JLTS AND DISCUSSION	122
	4.1	Introduction	122
	4.2	Response Rate	122
	4.3	The Reliability Analysis of Survey Instrument	123
	4.4	Profile of Respondent	124
	4.5	Descriptive Analysis for Construct	128
		4.5.1 Ergonomic Risk Factors Descriptive Statistics	128
		4.5.2 Correlation Analysis of Ergonomic Risk Factor	134
		4.5.3 Musculoskeletal Disorder Desciptive Statistics	138
		4.5.4 Correlation Analysis of Musculoskeletal Disorder	140
		4.5.5 Health Symptom Descriptive Analysis	142
		4.5.6 Correlation Analysis of Health Symptoms	147

		4.5.7 Passenger Comfort Descriptive Analysis	150
		4.5.8 Correlation Analysis of of Passenger Comfort	152
		4.5.9 Passenger Satisfaction Descriptive Analysis	153
		4.5.10 Correlation Analysis of Passenger Satisfaction	155
	4.6	Measurement Model	156
		4.6.1 CFA Procedure for Validating Ergonomic Risk Factor	
		Construct	160
		4.6.2 CFA Procedure for Validating Health Symptoms Construct	164
		4.6.3 Pooled Confirmatory Factor Analysis	167
		4.6.4 Evaluating the Model Fitness	168
	4.7	Structural Model	176
		4.7.1 Testing the Hypothesis	180
		4.7.2 Summary of Hypothesis Testing	188
	4.8	Evaluation Experimental Result	189
		4.8.1 Result from Noise Measurement Tool	190
		4.8.2 Result from Vibration Measurement Tool	197
		4.8.3 Result From Ventilation Measurement Tool	203
	4.9	Summary	212
_	CON		
5.		CLUSION AND RECOMMENDATIONS	214
	5.1	Introduction	214
	5.2	Conclusion	214
	5.3	Research Contribution and Implications	218
		5.3.1 Theoretical Contribution	219 221
		5.3.2 Structural Model Contribution	
	5.4	5.3.3 Practical Implications	223 224
	5.4 5.5	Recommendations for Future Research	224 226
	5.5 5.6	Summary	220
	5.0	Summary	<i>LL</i>
DF	FEREN	JCES	229
	PENDI		249 249
		CED	477

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Correlation of Noise Value and Its Effect on Human Hearing by	
	WHO	71
2.2	Recommended Noise Exposure Tresholds	72
2.3	International Standard ISO 2631-1:1997 (Standard, 2004)	74
2.4	Comparison Between the 8 Hours and 12 Hours Vibration	
	Exposure Levels for the International Standard and Australia	
	Standard (Mabbott, Foster and Mcphee, 2001)	75
2.5	Acceptable Range for Specific Physical Parameters (DOSH,	
	2010)	77
3.1	Structure of Survey Questionnaire	85
3.2	Number of Indicators According to Group Variable	86
3.3	List ff Expert Respondents Who Validated the Questionnaire	89
3.4	Results of Examination of Construct for EFA Suitability	91
3.5	Items Retention Results from Exploratory Factor Analysis	92
3.6	Minimum sample size required depending on the model	
	complexity	94
3.7	The Formula for Computing AVE and CR	107
3.8	Fitness Indexes Category and The Level of Acceptance	111
3.9	The Summary of Hypothesis and Its Structural Analysis	113
4.1	Result of Internal Consistency Analysis for Research Variables	123

4.2	Summary of Demographic Characteristics of Surveyed	
	Passenger Demographic	127
4.3	Abbreviation of Ergonomic Risk Factors (Noise)	129
4.4	Abbreviation of Ergonomic Risk Factors (Vibration)	130
4.5	Abbreviation of Ergonomic Risk Factors (Ventilation)	132
4.8	Spearman's Correlation Test Result for the Ergonomic Risk	
	Factor (Ventilation)	138
4.9	Abbreviation of Musculoskeletal Disorder	139
4.11	Abbreviation of Health Symptom (From Noise Factor)	143
4.12	Abbreviation of Health Symptom (From Vibration Factor)	144
4.13	Abbreviation of Health Symptom (From Ventilation Factor)	146
4.15	Spearman's Correlation Test Result for the Health Symptoms	
	(From Vibration Factor)	149
4.16	Spearman's Correlation Test Result for the Health Symptoms	
	UNIVERSITI TEKNIKAL MALAYSIA MELAKA (From Ventilation Factor)	150
4.17	Abbreviation of Passenger Comfort	151
4.18	Spearman's Correlation Test Result for the Passenger Comfort	153
4.19	Abbreviation of Passenger Satisfaction	154
4.20	Spearman's Correlation Test Result for the Ergonomic Risk	
	Factor	156
4.21	Goodness-of-Fit Indices for the Measurement Model for	
	Ergonomic Risk Factor	162
4.22	The Average Variance Extracted (AVE) and Composite	
	Reliability (CR) for Ergonomic Risk Factor Construct	163

4.23	Goodness-of-Fit Indices for the Measurement Model for Health	
	Symptoms	165
4.24	The Average Variance Extracted (AVE) and Composite	
	Reliability (CR) for Health Symptoms	166
4.25	Goodness-Of-Fit Indices for The Measurement Model for This	
	Research	171
4.28	The Assessment for Normality	175
4.29	The Significant Effect of Ergonomic Risk Factor and	
	Musculoskeletal Disorder	182
4.30	The Significant Effect of Ergonomic Risk Factor and Health Symptoms	183
4.31	The Significant Effect of Ergonomic Risk Factor and Passenger	
4.32	The Significant Effect of Musculoskeletal Disorder and Passenger Comfort	184 186
4.33	The Significant Effect of Health Symptoms and Passenger	100
	Comfort	187
4.34	The Significant Effect of Passenger Comfort and Passenger	
	Satisfaction	188
4.36	Comparison Results for Noise Reading Inside a Train Cabin of	
	KTM Komuter	190
4.37	Correlation of Noise and Its Effect On Human Hearing By	
	WHO.	191
4.38	Comparison of Results Using Regression Models and Equation	197

4.39	Locations of Measurement	198
4.40	Whole Body Vibration Measurement Data Collected in KTM	
	Komuter Berhad	201
4.27	Number of Passengers for morning and evening hour	203
4.41	IAQ Reading in KTM Komuter Cabin From Tampin to Kl	
	Sentral For Morning and Evening Hour	207
4.42	Comparison of Average and Regression Value of Ventilation	
	Quality for Morning and Evening Hour	211
5.1	The Methodological Contribution	222
	UTEN I UTEN	
	UNIVERSITI TEKNIKAL MALAYSIA MELAKA	

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	KTM Komuter Route Map	46
2.2	Ergonomic Risk Factor Has a Significant Effect on	
	Musculoskeletal Disorder Among Commuter Train Passenger	
	(H1)	52
2.3	Ergonomic Risk Factor Has a Significant Effect on Health	
2.4	Symptom Among Commuter Train Passenger (H2) Ergonomic Risk Factor Has a Significant Effect on Passenger	53
2.4	Comfort Among Commuter Train Passenger (H3)	54
2.5	Musculoskeletal Disorder Has a Significant Effect on Passenger	
	Comfort Among Commuter Train Passenger (H4)	55
2.6	Health Symptom Has a Significant Effect on Passenger Comfort Among Commuter Train Passenger (H5)	57
2.7	Passenger Comfort Have a Significant Effect on Passenger	
	Satisfaction Among Commuter Train Passenger (H6)	58
2.8	Research Framework	60
2.9	Sound Level Meter TECPEL 331	64
2.10	Tri-Axial Seat Pad Accelerometer With Vibration Meter	66
2.11	Tri-Axial Seat Pad Accelerometer	66
2.12	Air Quality Monitor AIRFLOW Model TA465	69
3.1	Research Methodology of the Study	80
3.2	Theoretical Structural Model of this Research	114

3.3	Position of Reading Noise Measurement Inside a Train (a= At	
	the Gangway, b=At the Exit Door, c=At the Middle of the Cabin)	
		116
3.4	Dytran Model 5313A Tri-Axial IEPE Location of Seat Pad	
	Accelerometer at Train Floor Used in This Research. (a=At Seat,	
	B=At Enter/Exit Door, C=At Gangway)	118
3.5	Air Quality Monitor AIRFLOW Model TA465 Location Used	
	for This Study (x=Middle of the Train Cabin)	120
4.1	Mean Score of Ergonomic Risk Factor (Noise)	129
4.2	Mean Score of Ergonomic Risk Factor (Vibration)	131
4.3	Mean Score of Ergonomic Risk Factor (Ventilation)	133
4.4	Mean Score of Musculoskeletal Disorder	139
4.5	Mean Score of Health Symptom (From Noise Factor)	143
4.6	Mean Score of Health Symptom (From Vibration Factor)	145
4.7	Mean Score of Health Symptoms (from ventilation factor)	146
4.8	Mean Score of Passenger Comfort	151
4.9	Mean Score of Passenger Satisfaction	154
4.10	The CFA Results for Ergonomic Risk Factor Construct	161
4.11	The CFA Results for Health Symptoms Construct	164
4.12	The Measurement Model – Consist of 32 items	169
4.13	The Final Structural Model Linking Ergonomic Risk Factor,	
	Musculoskeletal Disorder, Health Symptoms, Passenger	
	Comfort and Passenger Satisfaction	178

4.14	The Standardized Path Coefficient Between Constructs in the	
	Model	179
4.15	The Regression Path Coefficient Between Constructs in the	
	Model	181
4.16	Ergonomic Risk Factor Have a Significant Effect on	
	Musculoskeletal Disorder Among Commuter Train Passenger	
	(H1)	182
4.17	Ergonomic Risk Factor Have a Significant Effect on Health	
	Symptoms Among Commuter Train Passenger (H2)	183
4.18	Ergonomic Risk Factor Have a Significant Effect on Passenger	
	Comfort Among Commuter Train Passenger (H3)	184
4.19	Musculoskeletal Disorder Have a Significant Effect on	
	Passenger Comfort Among Commuter Train Passenger (H4)	185
4.20	Health Symptoms Have a Significant Effect on Passenger	
	Comfort Among Commuter Train Passenger (H5)	186
4.21	Passenger Comfort Have a Significant Effect on Passenger	
	Satisfaction Among Commuter Train Passenger (H6)	187
4.22	Record of the Travel Time of The KTM Komuter from One	
	Station to Another	192
4.23	Noise Reading From Pulau Sebang/Tampin to KL Sentral	194
4.24	Noise Reading From KL Sentral to Pulau Sebang/Tampin	195
4.25	Case Study Result on Exposure of Vibration	200
4.26	Result of RMS Vibration Value For X, Y, And Z Axis in Three	
	Place of Train Floor for KTM Komuter Berhad	202

4.28	CO ₂ Concentration Reading in KTM Komuter Cabin From	
	Tampin to KL Sentral for Morning and Evening Hours.	204
4.29	Temperature Reading in KTM Komuter Cabin Train From	
	Tampin to KL Sentral for Morning and Evening Hour	205
4.30	Relative Humidity Reading in KTM Komuter Cabin Train From	
	Tampin to KL Sentral for Morning and Evening	206
4.31	Regression Line and R ² Value for Number of Passenger Versus	
	CO ₂ Concerntration	208
4.32	Regression Line and R ² Value for Number of Passenger Versus	
	Temperature	209
4.33	Regression Line and R ² Value For Number of Passenger Versus	
	Relative Humidity	209
	اونيوم سيتي تيكنيكل مليسيا ملاك	
	UNIVERSITI TEKNIKAL MALAYSIA MELAKA	

LIST OF SYMBOLS AND ABBREVIATIONS

CO_2	- Carbon Dioxide
dBA	- Decibels A
Leq	- Equivalent Continuos Sound Level
EFA	- Exploratory Factor Analysis
ERF	- Ergonomic Risk Factor
GIF	- Goodness-of-fit
HS	- Health Symptoms
HSN	- Health Symptom from Noise Effect
HSVB	- Health Symptom from Vibration Effect
HSVT	- Health Symptom from Ventilation Effect
KLS	- KL Sentral
KTM	- Keretapi Tanah Melayu
MSD	- Musculoskeletal Disorder
OSHA	Occupational Safety and Health Administration
PC	- Passenger Comfort
PS	Passenger Satisfaction
PS	- Pulau Sebang
RMSEA	- Root Mean Square Error of Approximation

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Result of Exploratory Factor Analysis	249
В	Questionnaire Survey	264

LIST OF PUBLICATIONS

Journal :

- Wan Mahmood W. M., Abdullah, F., Kamat, S. R., and Hambali, R. H., and Mat Ariffin, N. A., 2018. Level of Indoor Air Quality Among Malaysia Commuter Users: A Case Study. *Malaysian Journal of Public Helath Medicine 2018*, pp.79-88.
- Abdullah, F., Awang, Z., and Wan Mahmood W. M., 2021. Ergonomic Risk Factors, Musculoskeletal Disorder and Passenger Comfort (in the Context of Commuter Trains in Malaysia). *The Journal of Management Theory and Practice 2021*, pp. 56-69.
- 3. Abdullah, F., Wan Mahmood W. M., and Kamat, S. R., 2023. The Development of Structural Model of Noise, Vibration and Ventilation toward Temporary Passenger Health in the Moving Train. *Journal of Advanced Manufacturing Technology 2023*. (in review)

Proceedings :

- 1. Abdullah, F. and Wan Mahmood W. M., 2022, April 2022. Developing Items for Measuring Ergonomic Risk Factors among Malaysian Train Passengers: An Exploratory Factor Analysis Procedure. In *The 7th International Conference and Exhibition on Sustainable Energy and Advanced Materials (ICE-SEAM '21).*
- Abdullah, F., Awang, Z., and Wan Mahmood W. M, 2021. Ergonomic Risk Factor, Musculoskeletal Disorder and Passenger Comfort (in the Context of Commuter Trains in Malaysia). *The Journal of Management Theory and Practice (JMTP)*.

- Abdullah, F., Wan Mahmood W. M., Kamat, S. R., and Othman. M. N., 2020. Evaluation of Noise Level In Woman Train Cabin at KTM Komuter Berhad. *Journal* of Physic: Conference Series.
- 4. Abdullah, F., Wan Mahmood W. M., and Kamat, S. R., 2019, July 2019. The Assessment of Vibration Level among Female Passengers in KTM Komuter. *In Proceeding of Mechanical Engineering Research Day (MERD 2019).*
- Abdullah, F., Wan Mahmood W. M., Kamat, S. R., Afandi, S. F., and Othman. M. N., 2018, 1-2 May. Muscle Activity Analysis for Passenger while Riding Moving Train in Prolonged Standing: A Case Study. *In Proceeding of Mechanical Engineering Research Day (MERD 2018)*.
- Abdullah, F., Wan Mahmood W. M., Kamat, S. R., Afandi, S. F., and Othman. M. N., 2018, 1-2 May. Muscle Activity Analysis for Passenger while Riding Moving Train in Prolonged Standing: A Case Study. In Proceeding of Mechanical Engineering Research Day (MERD 2018).
- Abdullah, F., Wan Mahmood W. M., Kamat, S. R., Afandi, S. F., and Othman. M. N., 2018, 1-2 May. Muscle Activity Analysis for Passenger while Riding Moving Train in Prolonged Standing: A Case Study. *In Proceeding of Mechanical Engineering Research Day (MERD 2018).*