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ABSTRACT 

Recently, the machining of precise cylindrical forms on hard and difficult-to-cut materials 

by spark erosion has gained popularity. However, the performance of this process always 

reflects the drawbacks in terms of distortion in gap equilibrium due to sensitivity of rotating 

workpieces in which the surface finish of the machined parts and the material removal rate 

(MRR) are not satisfying even when advanced computing and statistical optimisation 

methods have been used to obtain the best machining conditions. Solving the conflict of 

MRR and surface roughness is challenging because no single combination of parameters can 

provide the best machining performance. Therefore, the main objective of this research is to 

evaluate the performance of ultrasonic assisted in wire electrical discharge turning (WEDT) 

for Ti-6Al-4V on MRR and surface roughness. The ultrasonic attachment accessories are 

fabricated and retrofitted into the existing WEDT. The collected data for parametric study is 

analysed by analysis of variance (ANOVA). For the evaluation of surface roughness, five 

machining paths are evaluated on the basis of conventional turning operations, such as 

straight-turning and cone angle. The machined surface conditions are characterised by 

elemental analysis and surface morphology in post-evaluation measurement. Results showed 

that, the integration of ultrasonic vibration to WEDT revealed positive effects, where the 

average of MRR and surface roughness are improved by 2.9% and 13.4%, respectively, even 

though the proposed ultrasonic parameters have not been optimised yet. The electrode wire 

debris generated during machining, which can resolidify to the machined surface, is able to 

be reduced with the integration of ultrasonic vibration to WEDT machining when using low 

ultrasonic amplitude (10 µm). After performing with multi-objective parameter optimization 

with the goal of maximising the MRR and minimising the surface roughness using genetic 

algorithm method, there is a 5.2% improvement for the MRR and 11.6%–27.9% 

improvement for surface roughness compared to conventional WEDT. In conclusion, this 

study successfully applied the ultrasonic vibration to rotating workpieces, proved the 

capability in machining and enhanced both MRR and surface roughness. 
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PENILAIAN PRESTASI LARIK WAYAR NYAHCAS ELEKTRIK TERBANTU 

ULTRASONIK UNTUK BAHAN TI-6AL-4V 

 

ABSTRAK 

 

 

Kebelakangan ini, pemesinan jitu merujuk kepada bentuk silinder pada bahan keras dan 

sukar dipotong menggunakan proses hakisan percikan api telah mendapat sambutan 

menggalakkan. Namun, proses ini mempunyai kelemahan iaitu gangguan keseimbangan 

pada celah percikan yang berpunca daripada bendakerja yang berputar dimana hasil 

kekemasan permukaan dan hasil kadar penyingkiran bahan tidak memuaskan walaupun 

kaedah pengkomputeran lanjutan dan pengoptimuman statistik telah digunakan untuk 

mendapatkan keadaan pemesinan yang terbaik. Menyelesaikan konflik di antara kadar 

penyingkiran bahan dan kekasaran permukaan amat mencabar kerana tiada satu kombinasi 

parameter yang mampu memberikan prestasi pemesinan yang terbaik. Oleh itu, objektif 

utama penyelidikan ini adalah untuk menilai prestasi pemesinan larik 

wayar nyahcas elektrik terbantu ultrasonik untuk bahan Ti-6Al-4V pada aspek hasil kadar 

penyingkiran bahan dan hasil kekasaran permukaan. Ultrasonik aksesori telah dihasilkan 

dan dinaik taraf pada proses pemesinan larik wayar nyahcas elektrik. Data yang 

dikumpulkan untuk kajian parametrik dianalisa menggunakan teknik analisis varians. Bagi 

penilaian kekasaran permukaan pula, lima jenis pemesinan dinilai berasaskan operasi 

pemesinan larik konvensional iaitu meliputi larik lurus dan kon. Keadaan permukaan 

pemesinan dinilai menggunakan kaedah analisis elemen dan morfologi sebagai penilaian 

pasca pengukuran. Hasil kajian yang positif telah diperoleh iaitu purata kadar penyingkiran 

bahan telah bertambah baik sebanyak 2.9% dan kekasaran permukaan telah bertambah baik 

sebanyak 13.4% walaupun parameter ultrasonik yang digunakan masih belum dalam 

keadaan yang optimum. Selain itu, pengurangan pada serpihan wayar elektrod yang 

berkemampuan untuk terendap semula pada permukaan bendakerja semasa pemesinan 

dapat dicapai dengan menggunakan nilai parameter terendah (10 µm) bagi ultrasonik 

amplitud. Dengan menyempurnakan pengoptimuman parameter berbilang objektif dibantu 

kaedah algoritma genetik pada aspek hasil maksima bagi kadar penyingkiran bahan dan 

minima pada kekasaran permukaan, hasil kajian telah berjaya membuktikan kadar 

penyingkiran bahan telah bertambah baik sebanyak 5.2% dan  kekemasan permukaan telah 

bertambah baik sebanyak 11.6%–27.9% berbanding pemesinan larik konvensional 

wayar nyahcas elektrik. Kesimpulannya, kajian ini telah berjaya mengaplikasikan getaran 

ultrasonik pada bahan kerja berputar dan membuktikan keupayaannya dalam pemesinan di 

samping meningkatkan hasil pada kadar penyingkiran bahan dan kekemasan permukaan. 
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