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ABSTRACT 

Wire sweep is a common defect observed in power semiconductor devices, especially when 

bonded with thin aluminium wire (< 100µm). The conventional methods for detecting the 

wire sweep defect are Automatic Optical Inspection (AOI), Real-Time X-ray and Automatic 

Test Equipment (ATE). However, all three methods are having capability limitations to 

detect the wire sweep defect, especially in nearly short conditions. The objective of this 

research is to develop a new test methodology to detect the wire sweep defect using Time 

Domain Reflectometry (TDR) that can overcome the limitations of these conventional 

methods. The focus of the wire sweep defects is on the wire-wire sweep and wire-lead sweep. 

The research is using power semiconductor device bonded with 75µm thin aluminium wire 

as test samples and consists of three experiments and a case study. The first experiment is to 

select the optimal TDR probe measurement methods that can be used to detect wire-related 

failure in a power semiconductor device. The second experiment is to study whether TDR 

can detect and respond when there is a wire sweep failure in the power semiconductor device. 

The last experiment is to characterize the response of the TDR curve with a statistical data 

analysis method and establish modelling with regression equations that can be used to predict 

the gap between the two wire sweeps. Lastly, a case study is performed to confirm that the 

proposed TDR methodology can detect the wire sweep defects and the gap for the wire 

sweep can be estimated using the regression equation model. By performing TDR 

measurement using Single-Pin Grounded method at the affected pin of the power 

semiconductor having a wire sweep defect and calculating the area under the TDR curve 

with a 4pSec time-range, the TDR curve shifts statistical significantly (p-value ≤ 0.05) to 

lower impedance in comparison to a good reference curve. This demonstrates that the 

proposed method using TDR can detect and respond to both types of wire-wire (WW) sweep 

and wire-lead (WL) sweep defects. By fitting the value for the area under the TDR curve 

into the regression equation established, the estimated gap between the wire sweep is within 

+/-10% tolerance in comparison to the actual gap. From this research, it is demonstrated 

TDR can detect both wire sweep defects in nearly short conditions on a power semiconductor 

device bonded with thin aluminium wire; and can overcome the limitation of conventional 

methods using AOI, X-ray and ATE electrical test. The area under the TDR curve together 

with the regression equation model can be used to predict the gap between wire sweep which 

is useful since it is a non-destructive method.
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PEMBANGUNAN KAEDAH PEMANTULAN DOMAIN MASA UNTUK MENGESAN 

KECACATAN SAPUAN WAYAR DALAM KEADAAN HAMPIR LITAR PINTAS 

 

 

ABSTRAK 

 

 

Sapuan wayar merupakan kecacatan biasa dalam pembuatan peranti semikonduktor kuasa 

terutamanya apabila menggunakan wayar aluminium yang halus (< 100µm). Kaedah 

konvensional yang digunakan untuk mengesan kecacatan sapuan wayar adalah dengan 

menggunakan Pemeriksaan Optik Automatik (AOI), Sinaran-X dan Peralatan Ujian 

Automatik (ATE). Namun, ketiga-tiga kaedah tersebut mempunyai kelemahan dalam 

mengesan kecacatan sapuan wayar terutama dalam keadaan hampir litar pintas. Objektif 

penyelidikan ini adalah untuk mencari kaedah alternatif baru bagi mengesan kecacatan 

sapuan wayar dengan menggunakan Pemantulan Domain Masa (TDR). Fokus jenis 

kecacatan sapuan wayar adalah pada sapuan wayar-wayar dan sapuan wayar-pin. 

Penyelidikan ini menggunakan peranti semikonduktor kuasa yang diikat dengan wayar 

aluminium halus 75µm sebagai sampel ujian dan mempunyai tiga fasa penyiasatan dan satu 

kajian kes. Penyelidikan pertama adalah untuk menentukan teknik pengukuran TDR terbaik 

yang boleh digunakan untuk mengesan kegagalan berkaitan wayar di dalam peranti 

semikonduktor kuasa. Penyelidikan kedua adalah melakukan kajian untuk mengetahui sama 

ada TDR dapat mengesan dan bertindak balas apabila terdapat kecacatan sapuan wayar 

dalam peranti semikonduktor kuasa. Penyelidikan terakhir adalah untuk mencirikan tindak 

balas TDR dengan cara menganalisa data secara statistik dan mewujudkan persamaan 

regresi yang dapat digunakan untuk meramalkan jarak di antara sapuan wayar. Akhir 

sekali, kajian kes dilakukan untuk mengesahkan sama ada TDR dapat mengesan dan 

menganggarkan jurang sapuan wayar. Pengukuran TDR dilaksanakan dengan 

menggunakan kaedah Pembumian Pin Tunggal pada pin yang mempunyai kecacatan 

sapuan wayar, dan menghitung kawasan keluasan di bawah graf TDR dengan tempoh 

4pSec. Didapati graf TDR beralih secara signifikan (nilai p ≤ 0.05) ke impedan yang lebih 

rendah jika dibandingkan dengan sampel yang baik. Ini menunjukkan bahawa kaedah 

pengesanan yang dicadangkan dengan menggunakan TDR mampu mengesan kedua-dua 

jenis kecacatan sapuan wayar. Dengan memasukkan nilai untuk keluasan di bawah graf 

TDR ke dalam persamaan regresi, didapati ia dapat menganggarkan jurang sapuan wayar 

dengan toleransi sebanyak +/- 10%. Dari penyelidikan ini, jelas ditunjukkan bahawa TDR 

dapat mengesan kecacatan sapuan wayar pada peranti semikonduktor kuasa yang diikat 

dengan wayar aluminium halus dan dalam keadaan hampir litar pintas. Dengan ini, TDR 

dapat mengatasi kelemahan kaedah konvensional menggunakan AOI, sinaran-X dan ATE. 

Selain itu, kawasan di bawah graf TDR bersama dengan persamaan regresi dapat 

digunakan untuk meramalkan jurang antara sapuan wayar secara tidak merosakkan peranti 

semikonduktor kuasa. 
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INTRODUCTION 

1.1 Background 

Figure 1.1 is showing the typical manufacturing flow in producing semiconductor 

devices with wire bonding as one of the important processes (Bard et al., 2015; Park et al.; 

Ye N., 2020). The purpose of wire bonding is to provide electrical connections in 

microelectronics as shown in Figure 1.2 (Harman, 2010). During wire bonding, the wire is 

attached to a bond pad or lead post by applying large amounts of heat or ultrasonic vibration 

(depending on wire bonding types), pressure and high force over a limited period on the wire 

(Shannon, 2019). Nowadays, wire bonding is performed with the wire bonder machine to 

achieve good bonding quality and high throughput (Levine, 2016). 

 

Figure 1.1 Typical semiconductor device manufacturing flow 
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There are three main types of wires used for wire bonding, namely: gold (Au) wire, 

copper (Cu) wire and aluminium (Al) wire (Harman, 2010; Lee, H. et al., 2019). 

Aluminium wire is widely used for wire bonding in power semiconductor devices because 

of its advantages over gold and copper wires (Pecht et al., 2017). With the shrinkage in 

size and increased integration density of semiconductor IC (integrated circuit), the pitch 

between bond pads is becoming closer and there is a need to use thinner wire during the 

wire bonding (van Driel, 2009). A thin wire is known to have a lower wire sweep resistance 

(Teh, S.S et al., 2010).  Lower wire sweep resistance means the wires prone to shift during 

the manufacturing processes; before the semiconductor IC is being covered and protected 

with the plastic moulding compound. This is leading to one of the critical defects in the 

wire bonding process that is known as the wire sweep defect and is shown in Figure 1.3 

(Liu, P. et al., 2012). If the wire sweeps and comes into contact with other wires, it will 

cause the device electrically to malfunction and fail at the final electrical test (Chen, H.S 

et al., 2008). However, if the wire only sweeps in proximity to neighbouring wires (known 

as a nearly short condition), this defective device may not always be able to remove during 

the final electrical test (Ming et al., 2015). As a result, it ends up with reliability failure 

where the defective semiconductor device failed later in the field applications (Tummala 

et al., 2013; Qu, F. et al., 2021). The worst-case scenario is the defective semiconductor 

device with a wire sweep defect failed in the field application and leads to the casualty of 

human life (Yun, G et al., 2018). For example, the malfunction of a semiconductor device 

used in automotive applications such as anti-lock braking systems (ABS) can cause serious 

car accidents. Therefore, the detection of a defective semiconductor device with a wire 

sweep defect in the nearly short condition is important. 
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Figure 1.2 Semiconductor device bonded with wire bonding 

 

 

 

Figure 1.3 Semiconductor device with wire sweep defect 

 

1.2 Problem Statement 

There are three common methods used for detecting the wire sweep defect in a 

semiconductor device during the manufacturing process. These methods are by using 

Automatic Optical Inspection (AOI), Real-Time X-ray and Automatic Test Equipment 


