

Institute of Technology Management and Entrepreneurship

Doctor of Philosophy

2023

A MODEL OF ARTIFICIAL INTELLIGENCE IN CYBER SECURITY OF SCADA TO ENHANCE PUBLIC SAFETY IN UAE

OMAR ALHASHMI

Institute of Technology Management and Entrepreneurship

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEDICATION

To my beloved mother and father

ABSTRACT

The dependence of industrial systems, including Supervisory Control and Data Acquisition (SCADA) systems, on AI technology is growing rapidly. Given the mandate of AI to achieve efficient and effective industrial supervisory systems, the pertinent threats resulting from both internal malfunctions and external cyber sabotage, and the defence mechanisms often installed internal and external to the systems, the time seems right for an all-inclusive model of AI critical evaluation threat-resilience model. This futuristic model places AI as the main actor and regresses the role of humans into a supportive position. The aim of the study is to critically examine the threat-resilience of AI-SCADA systems in ensuring improved public safety to arrive at critical implications to UAE cybersecurity governance. To address the research questions outlined, the study employs an explanatory sequential mixed methods design (Creswell & Plano Clark, 2011). The explanatory sequential mixed methods design encompasses the collection and analysis of quantitative data followed by qualitative data. The first stage of the study involves qualitative research, The first stage of this study involves a qualitative exploration followed by Qualitative findings informed the development of a survey instrument that was used to collect data from a larger population. The qualitative survey research employed empirical data from the three main groups of stakeholders: the regulators of key SCADA sectors, SCADA operators in the UAE, and clients of SCADA Systems. Critical attention is paid to the utility and oil and gas sectors as central to the use of SCADA systems in a context where public safety is most vulnerable. A sample of 380 SCADA-related project managers is considered sufficient to generalise the results to the study population, even though 219 were considered useful for empirical analysis after data cleansing. While for the Qualitative research, data were collected with the help of interviews, document analysis and observation. This phase involved the top 2 SCADA operators who control approximately 60% of all non-law enforcement-related systems and their respective clients. The Qualitative research was implemented in a leading role, whilst the qualitative survey research was applied to support the study findings in this regard. Findings from the Qualitative study and survey research are largely complementary. Exploratory evidence revealed three key security operationalisation areas: risk management, physical and environmental management, and user access management. Findings show that risk management of AI-based SCADA systems is optimal in both the utility and oil and gas sectors. However, physical and environmental management in the utility sector is at optimal levels even though the oil and gas sector is mainly lagging in system governance. Also, user access management in both the utility and oil and gas sectors is lagging in terms of governance and external defence systems. As part of the survey, findings reveal that human governance is a valid mediator of the model, whilst defence systems also significantly moderate the relationship between attack resilience and public safety. Evidence also shows that the utility and oil and gas sectors differ significantly in the operationalisation of the research model; moreover, the AI threat-resilience model was validated among the operational levels of the sector organisations. It is recommended that cybersecurity governance be made a mandatory policy for oil and gas companies, utility companies, and organisations that use AI-based SCADA systems.

.

MODEL KECERDASAN TIRUAN DALAM KESELAMATAN SIBER SCADA UNTUK MENINGKATKAN KESELAMATAN AWAM DI UAE

ABSTRAK

Kebergantungan sistem perindustrian pada teknologi kecerdasan buatan (AI) berkembang pesat, termasuk juga Sistem Kawalan Penyeliaan dan Pemerolehan Data (SCADA). Memandangkan tanggungjawab AI untuk mencapai sistem penyeliaan industri yang cekap dan berkesan, ancaman berkaitan yang berpunca daripada kerosakan dalaman, sabotaj siber luaran, dan mekanisme pertahanan sering dipasang secara dalaman dan luaran pada sistem, dan keperluan sekarang untuk model yang merangkumi semua seperti model penilaian kritikal ketahanan ancaman AI. Model futuristik ini meletakkan AI sebagai pelakon utama dan meletakkan peranan manusia sebagai sokongan. Matlamat kajian adalah untuk mengkaji secara kritis ketahanan ancaman sistem AI-SCADA dalam memastikan keselamatan awam yang telah dipertingkatkan untuk mencapai implikasi kritikal kepada tadbir urus keselamatan siber UAE. Untuk menangani persoalan kajian yang digariskan, kajian ini menggunakan penjelasan reka bentuk kaedah campuran berjujukan. Penjelasan reka bentuk kaedah campuran berurutan merangkumi pengumpulan dan analisis data kuantitatif diikuti oleh data kualitatif. Peringkat pertama kajian melibatkan penyelidikan kualitatif. Peringkat pertama kajian ini melibatkan penerokaan kualitatif diikuti dengan hasil dapatan kualitatif ini akan terlibat di dalam pembangunan tinjauan instrumen yang digunakan untuk mengumpul data daripada populasi yang lebih besar. Penyelidikan tinjauan kualitatif menggunakan data empirikal daripada tiga kumpulan utama: pengawal selia sektor utama SCADA, pengendali SCADA di UAE dan pelanggan Sistem SCADA. Perhatian kritikal diberikan kepada sektor utiliti dan sektor minyak dan gas kerana keselamatan awam paling terdedah pada sector ini dari konteks penggunaan sistem SCADA. Seramai 380 sampel pengurus projek berkaitan SCADA telah diperolehi dan ianya dianggap mencukupi untuk menyamaratakan keputusan kepada populasi kajian, walaupun 219 sampel dianggap mencukupi untuk analisis empirikal selepas proses pembersihan data. Manakala bagi kajian Kualitatif pula, data dikumpul secara temu bual, analisis dokumen dan pemerhatian. Fasa ini melibatkan 2 pengendali SCADA teratas yang mengawal kirakira 60% daripada semua sistem bukannya berkaitan dengan penguatkuasaan undangundang dan klien masing-masing. Kajian kualitatif merupakan kajian utama, manakala kajian tinjauan kualitatif digunakan untuk menyokong dapatan kajian ini. Penemuan daripada kajian Kualitatif dan kajian tinjauan sebahagian besarnya adalah saling melengkapi antara satu sama lain. Bukti penerokaan kajian mendedahkan tiga kunci utama di dalam bidang operasi keselamatan: pengurusan risiko, pengurusan fizikal dan alam sekitar, dan pengurusan akses pengguna. Penemuan menunjukkan bahawa pengurusan risiko sistem SCADA berasaskan AI adalah optimum dalam kedua-dua sektor utiliti dan sektor minyak dan gas. Walaubagaimanapun, pengurusan fizikal dan alam sekitar dalam sektor utiliti berada pada tahap optimum walaupun sektor minyak dan gas kebanyakannya ketinggalan dalam tadbir urus sistem. Selain itu, pengurusan akses pengguna dalam keduadua sektor utiliti dan sektor minyak dan gas adalah ketinggalan dari segi tadbir urus dan

sistem pertahanan luar. Sebagai sebahagian daripada tinjauan, penemuan mendedahkan bahawa tadbir urus manusia adalah pengantara yang sah bagi model tersebut, manakala sistem pertahanan juga menunjukkan signifikasi secara sederhana bagi perhubungan di antara daya tahan serangan dan keselamatan awam. Bukti juga menunjukkan bahawa sektor utiliti dan sektor minyak dan gas berbeza dengan ketara dalam pengoperasian model kajian; tambahan pula model ketahanan ancaman AI ini telah disahkan dalam kalangan peringkat operasi organisasi sektor. Adalah disyorkan agar tadbir urus keselamatan siber dijadikan dasar mandatori untuk syarikat minyak dan gas, syarikat utiliti dan organisasi yang menggunakan sistem SCADA berasaskan AI.

ACKNOWLEDGMENTS

In the name of Allah, the Most Gracious and the Most Merciful. Alhamdulillah, I praise and thank Allah SWT for His greatness and for giving me the strength and courage to complete this thesis.

First and foremost, I would like to express my deepest gratitude to my supervisor, Associate Professor Ts. Dr. Mohd Faizal Abdollah for his endless support and guidance throughout the period of my research.

I am grateful to all those who supported me in any way or form in the course of my research. I am most grateful to the case study organisations who granted me access to their premisses and other persons who broke protocol to let me on critical insight necessary for my study completion. Without them, the study could not have been completed successfully.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

TABLE OF CONTENT

DECLARATION

APPROVALDEDICATIONABSTRACTiABSTRAKiiiACKNOWLEDGEMENTSvTABLE OF CONTENTSviLIST OF TABLESxLIST OF FIGURESxiLIST OF APPENDICESxvLIST OF ABBREVIATIONxvLIST OF PUBLICATIONS				i iii v vi x xiii xv xvi xvi xviii
CI	IAPT	ER		
1.	INTI	RODUC	TION	1
	1.1	Introdu	iction	1
	1.2	Backgi	round of UAE smart government agenda and increased	1
	12	Droble	m statement (research gap)	10
	1.3 1Λ	Resear	ch questions	10
	1.4	Resear	ch objectives	12
	1.5	1.5.1	Main aim of the study	13
		1.5.2	Specific objectives of the study	13
	1.6	Signifi	cance of the study	13
		1.6.1	Addition to the body of knowledge on AI in cyber security	13
		1.6.2	Practical rationale of the study: the importance of the study	14
			to the UAE government and SCADA supported service delivery	
	1.7	Scope	of the study	15
	1.8	Organi	zation of the study	17
		1.8.1	Chapter One: Introduction	17
		1.8.2	Chapter Two: Literature review	17
		1.8.3	Chapter Three: Research methodology	18
		1.8.4	Chapter Four: Results and analysis	18
		1.8.5	Chapter Five: Conclusion and recommendations	18
2.	LITI	ERATU	RE REVIEW	19
	2.1	Introdu	action	19
	2.2	Definit	tion of key terms	19
	2.3	Theore	tical framework	21
		2.3.1	Complex adaptive systems theory to AI and public safety	22
		2.3.2	The cognitive science philosophy to artificial intelligence and public safety	27
		2.3.3	Activity theory to artificial intelligence and public safety	29

		2.3.4	Consolidation between the complex adaptive systems,	31
			cognitive science theory, and the activity theory to AI	
	2.4	Researc	ch philosophy	32
		2.4.1	Positivism paradigm	33
		2.4.2	Interpretivist paradigm	34
		2.4.3	Realism paradigm	36
	2.5	Literatu	ure themes and review	37
		2.5.1	The need for public safety in a world of complex adaptive	37
			systems	
		2.5.2	The evolution of cyber-attacks in the concept of conventional	40
		252	warfare	10
		2.5.3	Al and cyber troops of global states in the cyberwartare –	42
			external attack perspective	16
			2.5.5.1 The case of Estonia, Ukraine SCADA Cyber	40
			Attacks, and Europe cyber sabotage by the Bussian federation	
			2.5.3.2 USA cyber-attack on Iran from 2010 till date	49
			2.5.3.2 OSA cyber-attack on nan nom 2010 till date	-+) 51
			operations: a case of Israel	51
		254	AL internal malfunctions – internal attack perspective	52
		2.5.5	Artificial Intelligence in cyber defense – internal defense	54
		1	perspective	-
		2.5.6	The concept of cyber security governance and public safety	56
		2.5.7	The need for security of intelligent SCADA systems	58
		2.5.8	SCADA and public safety: a case of utility systems	61
		2.5.9	AI in cyber security and public safety in the UAE	65
	2.6	Conclu	sion to the conceptual framework and validation model	67
	2.7	Summa	ary	68
		الرك	اوىۋىرسىتى ئىكىتكى ملىستا م	
3.	RESI	EARCH	METHODOLOGY	69
	3.1	Introdu	CERSITI TEKNIKAL MALAYSIA MELAKA	69
	3.2	Researc	ch design	70
	3.3	Concep	Definition model	12
		3.3.1	Defining resilient SCADA systems as a second-order of	13
		227	AI threat resiliance of SCADA systems and public sefety	71
		3.3.2	AI cuber threat cubersecurity governance and public safety	74 74
		334	AI cyber threat, cyber defense and public safety	75
		335	AI cyber threat across sectors	76
	3.4	Source	s of data and measurement of variables	76
	011	3.4.1	Oualitative research	77
		3.4.2	Qualitative survey research strategy	79
	3.5	Instrum	nentation	81
		3.5.1	Instruments for the qualitative research	81
		3.5.2	Instruments for the qualitative survey research	83
	3.6	Populat	tion of study organizations	83
	3.7	Sampli	ng size and technique	84
		3.7.1	Sample size	84
		3.7.2	Sampling technique	85

	3.8	Pilot study		
		3.8.1	Reliability	86
		3.8.2	Validity	87
	3.9	Data co	ollection	88
	3.10	Data an	nalysis	88
		3.10.1	Qualitative research analysis	88
			3.10.1.1 Interview data analysis	89
			3.10.1.2 Observational analysis	90
			3.10.1.3 Document analysis	90
		3.10.2	Survey research analysis	90
			3.10.2.1 Data preparation and preliminary analysis	92
			3.10.2.2 Demographics and descriptive analysis	93
			3.10.2.3 Global and local tests for PLS-SEM	93
			3.10.2.4 Structural model and hypotheses testing (H1-H3)	94
	3.11	Anticip	ated limitations and ethical considerations	94
	3.12	Summa	ıry	95
4.	RESU	ULT AN	D ANALYSIS	97
	4.1	Introdu	ction	97
	4.2	Qualita	tive study data analysis	97
		4.2.1	Action research diagnosis	97
		S.	4.2.1.1 Overview of data from organisations	97
		E S	4.2.1.2 Interview data analysis	98
		F	4.2.1.3 Document analysis	101
		4.2.2	Action planning (definitions)	103
		25	4.2.2.1 Security information policies	104
			4.2.2.2 Security information mechanisms or programs	104
		del	4.2.2.3 Security and general staff identification in	105
		27	SCADA security policy implementation	
			4.2.2.4 Policy mechanism mapping to staff in security	106
		LININ	policy implementation	
		UNIN	4.2.2.5 Analytical model for information security policy	107
			implementation towards public safety	
		4.2.3	Action taking (qualitative study observational analysis)	108
			4.2.3.1 Oil and gas qualitative study observation	109
			4.2.3.2 Utility qualitative study observation	112
		4.2.4	Results evaluation and specific learning	115
	4.3	Survey	results and analysis	116
		4.3.1	Response rate and preliminary analysis	116
		4.3.2	Normality assessment and test for outliers	117
			4.3.2.1 Multi-collinearity and normality assessment	117
			4.3.2.2 Test for outliers	120
		4.3.3	Demographic analysis – individual	121
			4.3.3.1 Gender	121
			4.3.3.2 Age	122
			4.3.3.3 Level in organisation	123
			4.3.3.4 Technology/ SCADA related position in	124
			organisation	
		4.3.4	Demographic analysis – organisational	125

		4.3.4.1	Sector	125
		4.3.4.2	Operationalised SCADA system	126
	4.3.5	Descripti	ive statistics	127
	4.3.6	Global te	ests –quality criteria, reliability and validity	129
		4.3.6.1	Reliability analysis	129
		4.3.6.2	Validity analysis	131
	4.3.7	Model in	dices and local tests	134
	4.3.8	Structura	al equation model	135
		4.3.8.1	Main structural model	135
		4.3.8.2	Control group 1 – sector	140
		4.3.8.3	Control group 2 – managerial position (level)	142
	4.3.9	Hypothe	ses testing	145
		4.3.9.1	AI threat-resilience and public safety	145
		4.3.9.2	The mediatory role of human governance in AI-	146
		1202	Based SCADA systems	140
		4.3.9.3	The moderating role of AI-based internal-external	146
		1201	defence systems	1 47
		4.3.9.4	Control of AI across the utility and oil and gas	147
	C	AL AVAL	sector	1 47
4.4	Summ	ary	14.	147
5 CON	CLUSIC	N AND R	FCOMMENDATIONS	149
5.1 Introduction			149	
5.2	Summ	ary of find	ings	149
0.2	521	Summar	v of action research findings	150
	522	Summar	y of survey research findings	152
5.3	Discus	sion of res	nlts	154
5.4	Implic	ations and	contributions of findings	159
	5.4.1	Theoretic	cal implications of findings	159
	5.4.2	Practical	implications of findings	162
5.5	Conclu	ision		165
5.6	Recom	mendation	TEKNIKAL MALAYSIA MELAKA	167
	5.6.1	Recomm	endations to future researchers	167
	5.6.2	Recomm	endations to practitioner stakeholders	168
			1	
REFERI	ENCES			169
APPENI	DICES			190

LIST OF TABLES

TABLE	TITLE	PAGE
1.1	The generic threat matrix (Duggan et al., 2007; Mateski et al., 2012)	3
1.2	Perspective of AI in cybersecurity.	5
2.1	List of definitions	20
2.2	Automated bots and AI in global populist campaigns as of 2018	43
2.3	AI internal defence systems against cyber-attacks (Tyugu, 2011)	55
2.4	Classifications of studies on vulnerable utility systems	61
3.1	Measurement items for survey questionnaire	80
3.2	Reliability test results	87
3.3	وينوس سيني ني Comparison of Co-SEM and PLS-SEM	91
4.1	Observation results – internal attack resilience for Case 1	109
4.2	Observation results – external attack resilience for Case 1	109
4.3	Observation results – AI system governance by humans for Case 1	110
4.4	Attach resilience and governance observation results for Case 1	110
4.5	Observation results – internal defense for Case 1	111
4.6	Observation results – external defense for Case 1	111
4.7	System defense results for Case 1	111
4.8	Observation results – internal attack resilience for Case 2	112
4.9	Observation results – external attack resilience for Case 2	113

4.10	Observation results – AI system governance by humans for Case 2	113
4.11	Attack resilience and governance observation results for Case 2	113
4.12	Observation results - internal defense for Case 2	114
4.13	Observation results – external defense for Case 2	114
4.14	System defense results for Case 2	114
4.15	Collinearity statistics	117
4.16	Collinearity diagnosis	118
4.17	Outlier cases removed from the data	120
4.18	Gender	121
4.19	Age	122
4.20	Level in organisation	123
4.21	SCADA-related position	124
4.22	Sector	125
4.23	SCADA integration / operationalisation	126
4.24	اونيوم سيتي تيڪنيڪل Descriptive statistics	127
4.25	Composite reliability EKNIKAL MALAYSIA MELAKA	130
4.26	Rho_A reliability tests	130
4.27	Cronbach Alpha reliability test	131
4.28	Average variance extracted	132
4.29	Latent-variable correlations	133
4.30	Model fit indices	134
4.31	R-squared statistic	135
4.32	Adjusted R squared	135
4.33	Path coefficients	138

4.34	Specific indirect effects (test for mediation)	139
4.35	Control analysis for sector (original results and sig)	141
4.36	Control analysis for level (original results and sig)	144
5.1	Results from hypothesis test	153

LIST OF FIGURES

FIGURE	TITLE		
2.1	Model of public safety information sharing within complex	25	
	systems (Kożuch and Sienkiewicz-Małyjurek, 2015)		
2.2	Activity theory model (Engerstrom, 2001)	29	
2.3	Building blocks of the study (Crotty, 1998)	37	
2.4	Public safety system with broad and narrow perspective (Kożuch and Sienkiewicz-Małyjurek, 2014)	40	
2.5	Cyber threat landscape in Ukraine (Beach-Westmoreland et al., 2016)	49	
2.6	The multi-dimensional threat classification model of AI (Jouini et al., 2014)	53	
2.7	The sliding scale of cyber security (Lee et al., 2016)		
2.8	AI governance framework		
2.9	Four-stage cybersecurity governance or control process		
	(Sevounts, 2006)		
2.10	Classes of attacks on SCADA network control systems (Teixeira	61	
	et al., 2010b)		
2.11	State estimator under a cyber-attack (Teixeira et al., 2010)	64	
2.12	Validation research model (Adapted from Malak, 2005)		

3.1	AI in cybersecurity of Scada to endanger public safety	73
3.2	Instrument validation areas	86
4.1	Regression standardized residual plot	119
4.2	P-P plot test for normality	119
4.3	Scatter plot of Cook's distance	120
4.4	Gender	121
4.5	Age	122
4.6	Level in organisations	123
4.7	SCADA related position	124
4.8	Sector	125
4.9	SCADA integration / operationalization	126
4.10	PLS algorithm model	136
4.11	Bootstrapping model (5000 samples)	137
4.12	Control analysis - utility model	140
4.13	ويبوس سيني بن Control analysis - oil and gas model	141
4.14	Control analysis - operation level model	143
4.15	Control analysis - mid-top-level model	144

LIST OF APPENDICES

APPENDIX	X TITLE	PAGE
А	Information Sheet for Study Participants	190
В	Informed Consent Form	192
С	Survey Questionnaire	193
D	Study Guide UTERNA اونيونرسيتي تيڪنيڪل مليسيا ملاك	196
	UNIVERSITI TEKNIKAL MALAYSIA MELAKA	

LIST OF ABBREVIATION

ADNOC	-	Abu Dhabi National Oil Company (ADNOC)
ADWEA	-	Abu Dhabi Water and Electricity Authority
AI	-	Artificial Intelligence
CCTV	-	Closed-circuit television
CFA	MALAYSIA	Confirmation Factor Analysis
DELIA	-	Deep Learning Interface for Accounting
DEWA	₽ - '=	Dubai Electricity and Water Authority
EAR	You -	External Attack Resilience
EDS	shi t	External Defense System
EFA		Exploratory Factor Analysis
ENEC	UNIVERSIT	Emirates Nuclear Energy Corporation
FAHR	-	Federal Authority for Government Human Resources
FEWA	-	Federal Electricity and Water Authority
GCC	-	Gulf Corporation Council
GDP	-	Gross Domestic Product
GOV	-	System Governance
IAR	-	Internal Attack Resilience
ICT	-	Information Communication Technology
IDS	-	Internal Defense System

IP	-	Internet Protocol
ISC	-	Industrial Systems Control
MOE	-	Ministry of Energy
NCW	-	Network-Centric Warfare
NESA	-	Emirates National Electronic Security Authority
NGO	-	Non-Governmental Organisation
PS	-	Public Safety
SCADA	-	Supervisory Control and Data Acquisition
SD	-	Standard deviation
SEWA	MALAYSIA	Sharjah Electricity and Water Authority
UAE	-	United Arab Emirate
UK		United Kingdom
US	Yayanın .	United States
	بسيا ملاك	اونيومرسيتي تيكنيكل ملب
	UNIVERSIT	I TEKNIKAL MALAYSIA MELAKA

LIST OF PUBLICATIONS

- Alhashmi, O. A. R and Abdollah, M. F., 2019. Critical evidence on the implementation of SCADA in the UAE: Artificial Intelligence Mandate Vulnerability, and public safety. *International Conference in Management and Technology, Kuala Lumpur*. (Best Paper Award)
- Alhashmi, O. A. R and Abdollah, M. F., 2020. Critical evidence on the implementation of SCADA in the UAE: Artificial Intelligence Mandate Vulnerability, and public safety. *TEST Engineering and Management*, 83 (March - April 2020), pp. 931- 937.
- Alhashmi, O.A.R., Abdullah, M.F., Kamalrudin, M., 2022. The threat-resilience of AI-SCADA for improved public safety in UAE: The Moderating and Mediation Roles of Cyber-Defence and Governance. *NEUROQUANTOLOGY*, 20(11), pp. 4519-4536.

CHAPTER 1

INTRODUCTION

1.1 Introduction

Many of today's ICSs derive from the application of IT methods into existing physical systems, often replacing or integrating physical control mechanisms. For example, the built-in digital controls replaced the analog mechanical controls in rotating machines and motors. Both the cost and the performance improvements have encouraged this evolution, resulting in the introduction of many of today's "smart" technologies such as smart grids, smart transportation, smart buildings, and smart manufacturing. While on the one hand, this evolution increases the connectivity and criticality of these systems, on the other hand, it creates a greater need for their adaptability, resilience, security, and protection. Engineering models are evolving to address these emerging properties including safety, protection, privacy, and interdependencies on the environmental impact. However, the full TEKNIKAL MALAYSIA MELAKA RSITI understanding of SCADA systems, their structure, as well as their functionality is fundamental for the management of their security. SCADA systems are essential components of the production processes used in several sectors, from the control of machinery in nuclear power plants to the management of traffic lights and cameras in cities. Since SCADA systems are involved in very critical processes, any kind of vulnerability, if exploited, could have serious repercussions not only within the critical infrastructures themselves but also across the whole region. The introduction of IT capabilities into physical systems involves a change in the structure and behavior of those systems, with implications

for their security. These systems are constantly evolving, acquiring new functionalities in response to the new requirements of an increasingly connected world.

According to Patel and Sanyal (2008), "SCADA system is a computer-based process control system used by a nation's infrastructure utility systems, that permits control and monitoring of utilities by gathering field data from sensors and instruments located at remote sites, transmitting and displaying these data at a central site, and enabling engineers to send control commands to the field instruments".

These systems help control industrial machinery in charge of water supply, electric power generation and distribution, mass transportation, and oil and gas production and distribution systems (Patel and Sanyal, 2008). Control commands are sent to field instruments through information communication technology (ICT), usually over web-based systems that operate over the internet (Patel and Sanyal, 2008). Using these systems, a technician can control the traffic signal, water and gas pumps, among other industrial gadgets, from a distant location. With growing significance in today's national economies, the global SCADA market is estimated to reach 40.18 billion United States Dollars by 2024 (Research and Markets, 2018).

As the delivery of public service is automated using SCADA systems, artificial intelligence (AI) help expand the functionalities of these systems to improve their overall capabilities (Kadar et al., 1999). This leads to what Lange (2007) terms "intelligent SCADA systems". Industrial systems are becoming larger and complex, and AI is considered the best tool to conduct supervisor and control tasks efficiently and effectively possible. Incorporating AI expert systems with high operational capabilities, industrial plants are able to make up for personnel shortage, identify flaws in a system and fix these flaws automatically, manage information overload and manage plat interface, all in a combined interrelated attempt beyond what humans could ever accomplish.

On an elaborate background on the increasing role of AI in massive industry control systems in utilities, transportation, oil and gas and other critical infrastructure, their exposure to cyber threat remains an area of concern to public safety (Nicholson et al., 2012; Research and Markets, 2018). A number of global incidents and case studies have revealed that the threat to SCADA systems to create unthinkable damage to humans and infrastructure is real (Williams, 2007). Considering Mateski et al. (2012) and Duggan et al. (2007) generic threat matrix of cybersecurity, attacks on SCADA systems remain a level 1 threat with the highest level of intensity, stealth and time dedication to achieve threat outcome (Figure 1.1). Under human control, such a threat may take years to a decade to execute and require an enormous amount of knowledge on cyber, kinetic and access; however, with AI mounting these attacks, such threats are no longer superficial.

Table 1.1: The generic threat matrix (Duggan et al., 2007; Mateski et al., 2012)

	اونيوم سطايي THREAT PROFile مليسيا ملاك						
	UNIVICOMMITMENTIKAL MALAYSI RESOURCES						
THREAT					KNOW		
LEVEL	INTENSITY	STEALTH	TIME	TECHNICAL PERSONNEL	CYBER	KINETIC	ACCESS
1	Н	H	Years to Decades	Hundreds	Н	Н	Η
2	Н	I	Years to Decades	Tens of Tens	М	Н	М
3	Н	Н	Months to Years	Tens of Tens	Н	М	М
4	М	Н	Weeks to Months	Tens	Н	М	М
5	Н	М	Weeks to Months	Tens	М	М	М
6	М	М	Weeks to Months	Ones	М	М	L
7	М	М	Months to Years	Tens	L	L	L
8	L	L	Days to Weeks	Ones	L	L	L