

Faculty of Electronic and Computer Technology and Engineering

Master of Science in Electronic Engineering

2024

OPTIMIZATION OF DUAL-BAND CPW PENTAGONAL PATCH ANTENNA WITH SLOTS FOR WIMAX AND WLAN APPLICATIONS

AMIER HAFIZUN BIN AB RASHID

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2024

DEDICATION

Dedicated to ALLAH Almighty, my loving wife, parents and all my family's members for your infinite and unfading love, sacrifice, best wishes, patience and encouragement.

ABSTRACT

Beside low cost and easy to fabricate, there isn't enough bandwidth in any single antenna to accommodate all frequency ranges for basic rectangular antenna. The antenna with dual band frequency is proposed. This research presents various co-planar waveguide pentagonal microstrip patch antenna designs with multiple slots structure (MSS) techniques for dualband 3.5 GHz Worldwide Interoperability for Microwave Access (WiMAX) and 5.8 GHz Wireless Local Area Networks (WLAN) application. The simulation work is applied using CST Microwave Studio software while the fabricated antenna design in laboratory using FR-4 substrate material ($\varepsilon_r = 4.4$, tan $\delta = 0.019$). The work started with Antenna A with basic square patch antenna shapes. Then the Antenna B1, Antenna B2, Antenna B3, Antenna B4 with different shaped of patch including circular, triangular, square and pentagonal with coplanar waveguide (CPW) technique. Antenna C1 and Antenna C2 applied the first and second stage of multiple slot structure. The next stage of Antenna D1, Antenna D2 and Antenna D3 with CPW pentagonal island patch antenna with first, second and third stage of multiple slot structure. It then proceeds to the final stage of Antenna E1 and Antenna E2, CPW antenna with some modifications design mini pentagonal island and multiple slot's structure. Besides that, the parametric study on a dual band CPW Pentagonal patch antenna for WiMAX and WLAN applications with multiple slot structure is presented in this work. As a result of the antenna's designs, the performance of the return loss, gain, and radiation pattern was impacted by the first and second multiple slot's structure. For the last proposed design of Antenna E2, it shows that, the antenna is operate at two different point at 3.5 GHz and 5.9 GHz with return losses of – 25.662 dB and – 28.815 dB, respectively. For both resonant frequency points, it shows the bandwidth performance of 1.58 GHz (from 2.57 GHz to 4.15 GHz) and 2.4 GHz (from 5.13 GHz to 7.53 GHz). For antenna gain, it shows a 2.24 dB and 4.47 dB for each resonant frequency, respectively.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

PENGOPTIMUMAN ANTENA TAMPALAN DWI-JALUR GELOMBANG CO-PLANAR BERBENTUK PENTAGONAL DENGAN STRUKTUR SLOT BERBILANG UNTUK APLIKASI WIMAX DAN WLAN

ABSTRAK

Selain kos rendah dan mudah dibuat, tidak ada lebar jalur yang mencukupi dalam manamana antena tunggal untuk menampung semua julat frekuensi untuk antena segi empat tepat asas. Antena dengan frekuensi dwi jalur dicadangkan. Kajian ini mempersembahkan pelbagai reka bentuk antena tampalan jalur mikro pentagonal dengan teknik struktur pelbagai slot (MSS) untuk dwi-jalur 3.5 GHz Saling Kendalian Seluruh Dunia untuk Akses Gelombang Mikro (WiMAX) dan aplikasi Rangkaian Kawasan Setempat Tanpa Wayar (WLAN) 5.8 GHz. Kerja simulasi diaplikasikan menggunakan perisian CST Microwave Studio manakala reka bentuk antena fabrikasi di makmal menggunakan bahan substrat FR-4 ($\varepsilon r = 4.4$, tan $\delta = 0.019$). Kerja dimulakan dengan Antena A dengan bentuk antena tampalan empat segi asas. Kemudian Antena B1, Antena B2, Antena B3, Antena B4 dengan bentuk tampalan yang berbeza termasuk bulatan, segi tiga, segi empat dan pentagonal dengan teknik pandu gelombang co-planar (CPW). Antena C1 dan Antena C2 menggunakan peringkat pertama dan kedua struktur slot berbilang. Peringkat seterusnya Antena D1, Antena D2 dan Antena D3 dengan antena tampalan pulau pentagonal CPW dengan peringkat pertama, kedua dan ketiga struktur slot berbilang. Ia kemudiannya meneruskan ke peringkat akhir Antena E1 dan Antena E2, antena CPW dengan beberapa reka bentuk pengubahsuaian pulau pentagonal mini dan struktur slot berbilang. Selain itu, kajian parametrik ke atas antena tampalan untuk aplikasi WiMAX dan WLAN dengan struktur slot berbilang dibentangkan dalam kerja ini. Hasil daripada reka bentuk antena, prestasi kehilangan pulangan, keuntungan dan corak sinaran telah dipengaruhi oleh struktur slot berbilang tahap yang pertama dan kedua. Untuk reka bentuk terakhir Antena E2 yang dicadangkan, ia menunjukkan bahawa, antena beroperasi pada dua titik berbeza pada 3.5 GHz dan 5.9 GHz dengan kerugian pulangan masing-masing - 25.662 dB dan - 28.815 dB. Untuk kedua-dua titik frekuensi resonan, ia menunjukkan prestasi lebar jalur 1.58 GHz (dari 2.57 GHz hingga 4.15 GHz) dan 2.4 GHz (daripada 5.13 GHz hingga 7.53 GHz). Untuk kekuatan Antena, ia menunjukkan 2.24 dB dan 4.47 dB untuk setiap frekuensi resonans, masing-masing.

ACKNOWLEDGEMENTS

In the Name of Allah, Most Merciful, Most Gracious,

First and foremost, I would like to thank ALLAH for giving me with strength and courage to complete this thesis. Who gave me an opportunity, courage and patience to carry out this work. I feel privileged to glory His name in the sincerest way through this small accomplishment. I seek His mercy, favor and forgiveness.

I would like to express my deepest gratitude to my Supervisor, Profesor Ir. Dr. Badrul Hisham Ahmad and Prof Madya Dr. Mohamad Zoinol Abidin Abd Aziz for his constant support, patience and constructive guidance for this project. I would also like to thank the technician at Laboratory for his support and cooperation.

اونىۋىرىسىتى تىكنىكل ملىسىا ملاك

Last but not least, I would like to express my appreciation to my beloved wife, Sabarina binti Ramlan, parents, and my family for the unconditional support and love that let me through the toughest days in my life. To all my who shared a lot of information and ideas to make my thesis better, I hope we can have a good grade for our effort. For those who not stated here, I would like to thank for their friendship, help and countless support to me. May Allah S.W.T. bless all of them for their kindness and support.

TABLE OF CONTENTS

DECLARATION	
APPROVAL	
DEDICATION	
ABSTRACT	i
ABSTRAK	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	ix
LIST OF ABBREVIATIONS	xvi
LIST OF PUBLICATIONS	xvii

CHAPTER

1.	INTR	ODUC'	TION	1
	1.1 Re	search	Overview	1
	1.2 Re	search	Background	2
	1.3	Proble	m Statements	2
	1.4	Object	tives of the Research	6
	1.5	Hypot	hesis	6
	1.6	Scope	of Research	6
	1.7	Contri	bution of Project	7
	1.8	Organ	ization of Thesis	7
2.	LITE	RATU	RE REVIEW	9
	2.1	Introd	uction	9
	2.2	Anten	na Design and Application ALAYSIA MELAKA	11
		2.2.1	Wireless Local Area Network (WLAN)	11
		2.2.2	Worldwide Interoperability for Microwave Access	
			(WiMAX)	13
	2.3	Anten	na Types	14
		2.3.1	Basic Microstrip Antenna	15
		2.3.2	Dual Band Antenna	17
		2.3.3	CPW Antenna	19
		2.3.4	Wideband Antenna	21
		2.3.5	Pentagonal Microstrip Antenna	23
		2.3.6	Slot on Antenna	25
		2.3.7	Fractal Slots on Antenna	27
		2.3.8	Pentagonal Antenna with Fractal Slots	37
	2.4	Anten	na Parameter	39
		2.4.1	Return Loss and Resonant Frequency	40
		2.4.2	Radiation pattern	42
		2.4.3	Gain	42
		2.4.4	Directivity	44
		2.4.5	Bandwidth	44

	2.5	Feeding Technique	44
		2.5.1 Coaxial Probe Feed	46
		2.5.2 Microstrip line feed	47
		2.5.3 Aperture Coupled Feed	48
		2.5.4 Proximity Coupled Microstrip Feed Line	49
	2 (2.5.5 Coplanar Wave Guide (CPW) Feeding	50
	2.6	Summary	51
3.	MET	THODOLOGY	53
	3.1	Background	53
	3.2	Antenna Specification	55
	3.3	Multiple Pentagonal Slot Design	56
	3.4	Simulation Setup of Antenna	57
	3.5	Simulation of Antenna Design	62
		3.5.1 Antenna A	64
		3.5.2 Antenna B	66
		3.5.3 Antenna C	68
		3.5.4 Antenna D	69
		3.5.5 Antenna E	71
	2.6	3.5.6 Antenna E_2	72
	3.6	Fabrication of Antenna Design	73
	3./	Measurement of Patch Antenna	/6 77
	3.8	Summary	//
4	DECI	ULT AND DISCUSSION	70
4.	KESU 4 1	ULI AND DISCUSSION	/ð 70
	4.1	Antonno 4	70
	4.2	Antenna A	79
	13	Antenna R	81
	ч.J	A 3 1 Antenna <i>B1</i>	84 84
		$4.3.2$ Antenna B^2	89
	1.17	433 PAntenna B3 NIKAL MALAVSIA MELAKA	92
	01	434 Antenna <i>B4</i>	95
	4.4	Antenna C	102
		4.4.1 Antenna Cl	102
		4.4.2 Antenna C2	108
	4.5	Antenna D	113
		4.5.1 Antenna D1	113
		4.5.2 Antenna D2	118
		4.5.3 Antenna D3	123
	4.6	Antenna E	128
		4.6.1 Antenna <i>E1</i>	128
		4.6.2 Antenna <i>E2</i>	134
	4.7	Summary	140
5.	CON	CLUSION	141
	5.1	Conclusion	141
	5.2	Suggestions for future work	143
REF	ERENG	∼F.S	144
			1.1.1

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Wi-Fi standards of 802.11 based on its designation	13
2.2	Example of dual band antenna of WLAN and WiMAX	18
2.3	Previous studies of CPW antenna	21
2.4	Example of wideband antenna of WLAN and WiMAX	23
2.5	Advantages and disadvantages of slot antenna technique	27
2.6 2.7	Example antenna design with Sierpienski Gasket Structure added Example of antenna design with Sierpienski Carpet	33
	Structure	36
2.8	Example of Pentagonal antenna with fractal slot geometry	39
2.9	Advantages and disadvantages of feeding technique	46
3.1	Design specifications	55
3.2	Material specification of substrate	56
3.3	Multiple pentagonal slots design stage	57
3.4	Dimension of Antenna A1	66
3.5	Dimension of the Antenna B	68
3.6	Dimension of the Antenna C	69
3.7	Dimensions of Antenna D1, Antenna D2 and Antenna D3	70
3.8	Dimensions of Antenna E1	71
3.9	Dimensions of Antenna E2	72
4.1	Different performance results of Antenna A1	81

4.2	Radiation pattern of Antenna A1 at $\phi = 0^{\circ}$ and $\phi = 90^{\circ}$	82
4.3	Surface current of Antenna A1	83
4.4	Different performance results of Antenna B1	85
4.5	Radiation pattern of Antenna <i>B1</i> at $\phi = 0^0$ and $\phi = 90^0$	87
4.6	Surface current of Antenna <i>B1</i>	88
4.7	Different performance results of Antenna B2	90
4.8	Radiation pattern of Antenna <i>B2</i> at $\phi = 0^{\circ}$ and $\phi = 90^{\circ}$	91
4.9	Surface current of Antenna B2	92
4.10	Different performance results of Antenna B3	94
4.11	Radiation pattern of Antenna <i>B3</i> at $\phi = 0^{\circ}$ and $\phi = 90^{\circ}$	94
4.12	Surface current of Antenna B3 at 2.41 GHz	95
4.13	Performance results of Antenna B4	96
4.14	Radiation pattern of Antenna <i>B4</i> at $\phi = 0^\circ$ and $\phi = 90^\circ$	97
4.15	Surface current of Antenna B4	98
4.16	Performance results of Antenna B	101
4.17	Performance results of Antenna Cl	104
4.18	Radiation pattern of Antenna <i>C1</i> at $\phi = 0^{\circ}$ and $\phi = 90^{\circ}$	105
4.19	Surface current of Antenna Cl	106
4.20	Performance results of Antenna Cl	110
4.21	Antenna <i>C2</i> at $\phi = 0^\circ$ and $\phi = 90^\circ$	111
4.22	Surface current of Antenna C2	112
4.23	Performance results of Antenna C	113
4.24	Performance results of Antenna D1	115
4.25	Antenna DI at $\phi = 0^{\circ}$ and $\phi = 90^{\circ}$	116
4.26	Surface current of Antenna D1	117

4.27	Performance results of Antenna D2	119
4.28	Radiation pattern of Antenna <i>D2</i> at $\phi = 0^{\circ}$ and $\phi = 90^{\circ}$	121
4.29	Surface current of Antenna D2	122
4.30	Performance results of Antenna D3	124
4.31	Antenna <i>D3</i> at $\phi = 0^\circ$ and $\phi = 90^\circ$	125
4.32	Surface current of Antenna D3	126
4.33	Performance results of Antenna D	128
4.34	Performance results of Antenna E1	130
4.35	Antenna <i>E1</i> at $\phi = 0^\circ$ and $\phi = 90^\circ$	131
4.36	Surface current of Antenna E1	132
4.37	Performance results of Antenna E2	136
4.38	Antenna E2 at $\phi = 0^{\circ}$ and $\phi = 90^{\circ}$	137
4.39	Surface current of Antenna E2	138
4.40	Performance results of Antenna E	139
	اونيومرسيتي تيكنيكل مليسيا ملاك	
	UNIVERSITI TEKNIKAL MALAYSIA MELAKA	

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Wide range application of the WiMAX and WLAN (Kim,	
	et al., 2011)	4
1.2	Polygon MSAs design (a) Top and (b) Side views of	
	CMSAs, (c) ETMSA, (d) SMSA, (e) P-MSA, (f) Hexagonal	
	MSA, (g) Septagon MSA and (h) Octagon MSA	
	(Deskmukh and Chavali, 2021)	5
2.1	Antenna concept as energy transducer, dispersing EM	
	energy into free space or capturing it from space	11
2.2	Speed vs. mobility of wireless systems (The Potential of	
	WiMAX : Short Trip to the Wireless World)	14
2.3	Basic shapes in the use of microstrip patch antenna	15
2.4	Microstrip patch antenna component	16
2.5	Dual band antenna of WLAN and WiMAX, (a) Naik, 2018,	
	(b) Sonak, 2019, (c) Christydass, 2021, (d) Thanki, 2021	17
2.6	Basic coplanar waveguide (CPW structure in cross section	19
2.7	CPW antenna, (a)Daniel, 2021, (b)Alsariera, 2020, (c) Saha	
	et al, 2020, (d)Maity et al, 2020, (e) Maity et al, 2020	20
2.8	Wideband antenna of WLAN and WiMAX	22

2.9	Example of pentagonal with dual-band and wideband effect,	
	(a) Viraja et al, 2018, (b) Rawat et al, 2016, (c) Datta and	
	Mukherjee, 2019, (d) Tecpoyotl - Torres et al, 2010	25
2.10	Types of slot on antenna, (a) Coaxial line, (b) waveguide,	
	(c) two-wire feed line (Bhaysar, 2023)	26
2.11	Differentaial current flow on the antenna, (a) microstrip	
	antenna with slots, wire antenna (Bhaysar 2023)	26
2.12	Hexagonal Koch Fractal slots shape with a CPW-fed ultra-	
	wideband antenna, (a) basic hexagonal, (b) 6 mini hexagons	
	added, (c) insertion of the first iteration of the Koch fractal	
	slots, (d) two external hexagon added, (e) first iteration of	
	Koch is inserted in the edge of the central hexagon, 9f) the	
	two external hexagons are groove	28
2.13	The sierpienski iteration development stage, (a) triangular,	
	اونيوم,سيتي تيڪنيڪل مليهsquare (b) ک	30
2.14	Equilateral triangular Sierpinski gasket conductor structure	
	(Puente et al., 1996)	25
2.15	Hexagonal modified Sierpinski carpet fractal slots antenna:	
	(a) basic hexagonal form, (b) First iteration and (c) Second	
	Iteration	31
2.16	Multiband microstrip-fed printed antenna with circular	
	nested triangle structure fractal slots, (a) basic geometry of	
	first-order fractal slots, (b) second order inscribed circle on	
	the triangle gap and nest a triangular gao, (c) third order, (d)	
	final configuration.	32

х

2.17	Sierpinski gasket antenna, (b) Durbhakula & rao, 2018, (b)	
	Devesh et al, 2018	32
2.18	Step-by-step development of the Sierpinski carpet, (a) Zero	
	iteration, (b) first iteration, (c) second iteration, (d) third	
	iteration	34
2.19	Hexagonal fractal slots on triangular patch antenna	
	(Chaouche et al, 2019), (a) initial triangular antenna, (b)	
	first iteration, (c) second iteration, and (d) third iteration	34
2.20	UWB coplanar waveguide-fed modified hexagonal slots	
	Sierpinski carpet fractal slots antenna	35
2.21	Antenna design with Sierpinksi carpet structure, (a) Yadav	
	et al., 2018, (b) Sankhe, 2018, (c) Maharana et al., 2017	36
2.22	Ring fractal antenna development stage, (a) first iteration,	
	(b) second iteration, (c) third iteration	37
2.23	Multiband Koch pentagonal fractal slots antenna	
	development stage, (a) pentagonal fractal slots geometry, (b)	
	Koch embedded pentagonal fractal slots geometry	38
2.24	Pentagonal antenna with fractal slots geometry	38
2.25	Three-Dimentional Radiation pattern (Balanis, 2005)	42
2 26	Two-Dimentional Radiation Pattern (a) Field pattern in	
2.20	Linear Scale (b) Power pattern in Linear Scale and (c)	
	Linear Scale, (b) rower pattern in Linear Scale, and (c)	
	Power pattern in Decibel (Balanis, 2005)	43

2.27	Feeding technique, (a) coaxial probe feed, (b) Microstrip	
	line feed, (c) Aperture coupled feed, (d) Proximity coupled	
	microstrip feed line, (e) Coplanar waveguide (CPW)	
	feeding	45
2.28	Dual-polarized microstrip Yagi antenna based on coaxial	
	back feed (Liang et al., 2020)	47
2.29	Equilateral triangular patch antenna using AgHT-8 with	
	copper feedline (Borah and Bezboruah, 2018)	48
2.30	Example of aperture coupled feed, (a) Brauner et al., 2003,	
	(b) Anandkumar & Sangeta, 2020	49
2.31	Example of Proximity coupled microstrip feed line, (a)	
	Kumari and Kumar, 2016, (b) Casula et al., 2016	50
2.32	Example of coplanar waveguide (CPW) feeding technique,	
	Dayo et al., 2020	51
3.1	Flow chart of the research development	54
3.2	A flow chart illustrates the simulation configuration for the	
	antenna in CST	58
3.3	The CST Microwave Studio simulation software's material	
	collection	60
3.4	The new material creates in material library of CST	60
3.5	The antenna setp in CST Microwave Studio	61
3.6	Domain setup in CST Microwave Studio	62
3.7	Design stage of Antenna	63
3.8	Design stage of Antenna A1	64

3.9	Design stage of Antenna B , (a) Antenna $B1$, (b) Antenna $B2$,	
	(c) Antenna <i>B3</i> , (d) Antenna <i>B4</i>	67
3.10	Design stage of Antenna C, (a) Antenna Cl, (b) Antenna	
	C2	68
3.11	Design stage of Antenna D1, Antenna D2, Antenna D3	70
3.12	Design stage of CPW pentagonal island patch antenna	
	structure with mini pentagonal island Antenna E1	71
3.13	Design stage of Antenna E2	72
3.14	The process of fabrication antenna	73
3.15	The .dxf file printed layout, (b) Ultraviolet exposure	74
3.16	Developing process	74
3.17	Etching prosess, (a) antenna before etching, (b) etching machine	75
3.18	اونيوس سيتي تيڪنيڪsoldering process	75
3.19	The return loss measurement setup, (a) vector network	
	analyzer and coaxial cable, (b) antenna under test - Antenna	
	B4, Antenna C1, Antenna C2, Antenna D3, Antenna E1 and	
	Antenna E2	76
3.20	Radiation pattern measurement of proposed antenna	77
4.1	Schematic diagram of Antenna A1: (a) front view shape and	
	(b) side view	79
4.2	Return loss of Antenna A1	80
4.3	Schematic diagram of Antenna B1: (a) front view shape and	
	(b) side view	84

4.4	Return loss of Antenna B1 (simulation)	85
4.5	Schematic diagram of Antenna B2: (a) front view shape and	
	(b) side view	89
4.6	Return loss of Antenna B2 (simulation)	90
4.7	Schematic diagram of Antenna B3: (a) front view shape and	
	(b) side view	93
4.8	Return loss of Antenna B3 (simulation)	93
4.9	Schematic diagram of the Antenna A4: (a) front view shape	
	and (b) side view	95
4.10	Return loss of Antenna B4 (simulation)	96
4.11	Parametric study of return loss for Antenna B4 with	
	different patch length dimension	99
4.12	Parametric study of return loss for Antenna B4 with	
	different patch width	100
4.13	Comparison of return loss for Antenna B	101
4.14	Measurement of antenna CI MALAYSIA MELAKA	102
4.15	Return loss of Antenna Cl	103
4.16	Parametric study of return loss for Antenna C1 with	
	different feedline and CPW gap dimension	107
4.17	Parametric study of return loss for of Antenna C1 with	
	different feedline length.	108
4.18	Parametric study of return loss for Antenna C1 with	
	different slot width	109
4.19	Schematic diagram of the Antenna C2	109
4.20	Return loss of Antenna C2	110

4.21	Comparison of return loss for antenna C	113	
4.22	Schematic diagram of the Antenna D1	114	
4.23	Return loss of Antenna D1	115	
4.24	Schematic diagram of the Antenna D2	118	
4.25	Return loss of Antenna D2	119	
4.26	Schematic diagram of the Antenna D3 1		
4.27	Return loss of Antenna D3	124	
4.28	Comparison of return loss for Antenna D	127	
4.29	Schematic diagram of the Antenna El (a) simulation, (b)		
	fabrication	129	
4.30	Return loss of Antenna E1	129	
4.31	Return loss of Antenna <i>E1</i> with different mini pentagonal island length dimension	133	
4.32	Return loss of Antenna E1 with different mini pentagonal		
	اونیوم سینی نیکنیsland width dimension	134	
4.33	Schematic diagram of the Antenna $E2$, (a) simulation, (b)		
	fabrication	145	
4.34	Return loss of Antenna E2	146	
4.35	Comparison of return loss for Antenna E	109	

LIST OF ABBREVIATIONS

CPW	-	Coplanar waveguide
CST	-	Computer Simulation Technology
FCC	-	Federal Communication Commission
MSS	-	Multiple Slots structures
FSS	-	frequency selective surfaces
GPS	-	Global Positioning System
LTE	-	Long Term Evolution
PRFPA	ALT: MO	pentagonal ring fractal patch antenna
RF	TEKN	Radio Frequency
SMA	110	Sub Miniature Version A
VNA	PATH	Vector Network Analyser
WiMAX	ملاك	Worldwide Interoperability for Microwave Access
WLAN	UNIVE	Wireless Local Area Network

LIST OF PUBLICATIONS

The research papers produced and published during this research are as follows:

1. Journal :

- A. H. A. Rashid, B. H. Ahmad, M. Z. A. A. Aziz, N. Hassan, 2023. CPW Fractal Antenna with Third Iteration of Pentagonal Sierpinski Gasket Island for 3.5 GHz WiMAX and 5.2 GHz WLAN Applications, *International Journal of Electrical and Computer Engineering Systems* vol. 14 (2), pp. 129-134. DOI: https://doi.org/10.32985/ijeces.14.2.2
- A. H. A. Rashid, B. H. Ahmad, M. Z. A. A. Aziz, N. Hassan, M.Mazlan 2023. Parametric Study of CPW Pentagonal Sierpienski Gasket Fractal Patch Antenna, *Przeglad Elektrotechniczny* vol. 07/2023, pp. 186. ISSN 0033-2097, R. 99 NR 7/2023 http://pe.org.pl/articles/2023/7/34.pdf DOI: 15199/48.2023.07.34

2. Technical Conference

3. A. H. A. Rashid, B. H. Ahmad, M. Z. A. A. Aziz and N. Hassan, 2022. Dual Band CPW Fractal Geometry Shaped of Pentagonal Island for WLAN and WiMAX, *IEEE International RF and Microwave Conference (RFM 2022), Kuala Lumpur* 4. A. H. A. Rashid, B. H. Ahmad, M. Z. A. Abd Aziz and N. Hassan, 2022. Effect of Different Dimension of CPW Pentagonal Island Antenna with Sierpinski Gasket Fractal. Presented and accepted at The 6th International Conference for Electronic Design (ICED 2022), Perlis

https://doi.org/10.1063/5.0192220

- 5. A. H. A. Rashid, B. H. Ahmad, M. Z. A. Aziz, N. Hassan, M. Mazalan, N. Mahmod, Dual Band CPW Pentagonal Island Antenna With Modified Sierpinski Gasket Structure At 3.5 GHz AND 5.8 GHz, Presented and accepted at 2023 IEEE International Symposium On Antennas And Propagation (ISAP2023), Kuala Lumpur
- 6. A. H. A. Rashid, B. H. Ahmad, M. Z. A. Aziz, N. Hassan, M. Mazalan, N. Mahmod, CPW Pentagonal Patch Antenna With Multiple Slots Effect For WLAN And WiMAX Applications, Presented and accepted at 2023 *IEEE International Symposium On Antennas And Propagation (ISAP2023), Kuala Lumpur*

3. Book Chapter

7. A. H. A. Rashid, B. H. Ahmad, N. Hassan, Sierpinski Gasket Fractal on CPW Pentagonal Antenna Design for WiMAX and WLAN Application, 2023, Reconfigurable Antenna for Wireless Communication System, Chapter 10, *Penerbit UTM* 8. A. H. A. Rashid, B. H. Ahmad, M. Z. A. A. Aziz and N. Hassan, Dual Band CPW Pentagonal Sierpinski Gasket Fractal Patch Antenna for WiMAX And WLAN *Applications, Progress in Engineering technology VI 2024 (accepted), Springer*

CHAPTER 1

INTRODUCTION

1.1 Research Overview

Due to the growing demand for efficient, low-profile, and cost-effective production in wireless frequency applications on a device, a small planar antenna is an optimal choice for dual-band frequency resonance for 3.5 GHz WiMAX and 5.8 GHz WLAN applications. Therefore, this research proposed a dual-band, pentagonal-shaped, multiple slots patch antenna. It also used an FR-4 substrate with a dielectric constant of r = 4.4 and an electrical conductivity tangent loss of tan = 0.019. Based on the reference design of the fundamental square patch antenna, this research designed a pentagonal-shaped patch antenna.

1.2 Research Background

JNIVERSITI TEKNIKAL MALAYSIA MELAKA

ېتى ئېكنىك

Compact, multi-functional applications, low-cost materials and components, and easy-to-fabricate antennas are always in high demand in the revolutionary era of modern technology. Even though the proposed antenna meets these standards, there is always the need to lower the antenna's size while improving performance metrics. Because technological advancement is a never-ending process, there is always room for enhancement by several techniques.

However, modern wireless communications necessitate antennas that can operate in multiple frequency bands, such as 1575.42 MHz/ 1227.60 MHz/ 1176.45 MHz for the Global Positioning System (GPS) (Mishra et al., 2019), 900/1800 MHz for the Global System for Mobile Communication (GSM), 2.4 GHz/ 5.2 GHz/ 5.8 GHz for Wireless Local Area Networks (WLANs), 2.5 GHz/ 3.5 GHz/ 5.5 GHz for Interoperability for Microwave Access (WiMAX), and 700 MHz/ 2300 MHz/ 2600 MHz for Long Term Evolution (LTE) (Hamid et al., 2022).

Antennas with dual band or multiband and lower dimensions, such as dualband antenna than previously conceivable, are required for current communications systems. Much attention has been focused on how much more multiband antennas are needed because the Federal Communication Commission (FCC) has made it illegal to use frequencies between 3.1 GHz and 10.6 GHz.

Each antenna has typically followed on a single, with different antennas required for different purposes (Praveena et al., 2022). This will result in difficulty with restricted material used, location of the antenna and also antenna size. To solve this difficulty, a multiband or dual band antenna can be implemented, which allows a single antenna to work across many frequency bands. Wideband impedance matching, thermal cooling, structural strength, good isolation, and low design complexity are all advantages of coplanar waveguide feed (Singhal et al, 2017).

1.3 Problem Statements

Microstrip patch antennas are simple and convenient antennas for microwave communications. It provides numerous benefits, such as reduced weight, size, volume occupancy, and cost. It has long been popular in wireless applications because of its inexpensive cost and low profile, but its main drawback is its limited impedance bandwidth. In addition, there are several problems with the basic microstrip patch antenna performance. This antenna maybe can have a good performance in low frequency. However, when frequencies increase, typical patch antenna designs suffer