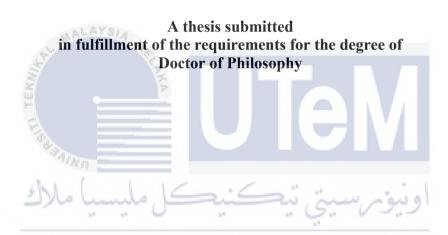


OPTIMIZATION OF POLYETHYLENE TEREPHTHALATE RESIN-BRICK FORMULATION AND DESIGN ANALYSIS FOR SUSTAINABLE CONSTRUCTION MATERIAL

DOCTOR OF PHILOSOPHY

2024

Faculty of Industrial and Manufacturing Technology and Engineering


Okka Adiyanto

Doctor of Philosophy

2024

OPTIMIZATION OF POLYETHYLENE TEREPHTHALATE RESIN-BRICK FORMULATION AND DESIGN ANALYSIS FOR SUSTAINABLE CONSTRUCTION MATERIAL

OKKA ADIYANTO

Faculty of Industrial and Manufacturing Technology and Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEDICATION

To my wife, mother and beloved family

Fina Yuni Farida

Sarliyah

Eroh

"Thank you for your patience and support"

ABSTRACT

Construction materials have embraced the use of recycled and renewable materials to meet sustainability goals, including plastic waste in the construction sector. One such use is in the creation of eco-bricks, which are environmentally friendly bricks made from waste materials. The primary raw material used in making eco-bricks is waste materials. With the increasing population and urbanization, plastic waste is on the rise and further processing is necessary to produce eco-friendly products like eco-bricks. However, a weakness in making eco-bricks lies in the adhesive or mixture used. Currently, some eco-bricks still use cement or clav as a binder. which requires further processing for drying and to increase compressive strength. A solution to this is using another type of adhesive that can improve the strength of eco-bricks, such as epoxy resin. Epoxy resin has high strength, durability, and the ability to protect against corrosion. It is also flexible and can be easily applied to different surfaces and with other materials. Therefore, in this research, a new type of eco-brick is made, namely PET-resin brick (PR-brick). PR-bricks are made using another type of adhesive, epoxy resin. The aim of this research is to optimize the material formulation and processing variables of PR-brick production and validate the performance, analyze the mechanical and thermal properties of the PR-brick and last is analyze environment impact of the production process of PR-brick. The method used in this research is RSM for formula optimization and processing variables of PRbrick. After the accuracy evaluation, PR-brick performance optimization statistical model has been developed. In this experiment Factor of Safety (FoS) and thermal properties were carried out on a base stand using Finite Element Method (FEM). The structural design and FEM analysis was carried out using SolidWorks software. In addition, LCA analysis is also used to analyze the impact of PR-Bricks on the environment. LCA Analysis adopted a gate-to-gate approach. This research aligns with the sustainable development goals (SDGs) program by promoting the use of environmentally friendly products through recycling. For the RSM is to determine the optimal mixture proportions in terms of ratio (%), particle size (mm), and drying time (days). The results show that the most suitable parameters for PR-brick production are a PET particle size of 1.14 mm, a mixing ratio of 89.97% and 6.92-days drying time based on RSM. Size 200x100x100 mm has a maximum FoS value than other shape. Size 200x100x100 has a value 6.544 for FoS. From the LCA PR-brick use of epoxy resin and PET as raw materials for eco-tiles has an impact on ozone formation (OF) of 118 m² UES*ppm*hours, which is due to the use of epoxy resin chemicals as adhesives in the production of PR-Brick. The research indicates that this material mixture has a high potential for improving the compressive strength of PR-Brick. The results of the study indicate the use of epoxy resin and recycled PET in PR-Brick production does not pose excessive environmental risks and does not significantly reduce the environmental profile.

PENGOPTIMUMAN FORMULASI DAN ANALISIS REKABENTUK RESIN POLIETILENA TEREFTALAT-BATA UNTUK BAHAN BINAAN LESTARI

ABSTRAK

Bahan binaan telah menerima penggunaan bahan kitar semula dan boleh diperbaharui untuk memenuhi matlamat kemampanan, termasuk sisa plastik dalam sektor pembinaan. Salah satu penggunaan sedemikian adalah dalam penciptaan eko-bata, yang merupakan bata mesra alam vang diperbuat daripada bahan buangan. Bahan mentah utama yang digunakan untuk membuat eko-bata adalah bahan buangan. Dengan pertambahan penduduk dan pembandaran, sisa plastik semakin meningkat dan pemprosesan selanjutnya adalah perlu untuk menghasilkan produk mesra alam seperti eko-bata. Walau bagaimanapun, kelemahan dalam membuat eko-bata terletak pada pelekat atau campuran yang digunakan. Pada masa ini, beberapa eko-bata masih menggunakan simen atau tanah liat sebagai pengikat, yang memerlukan pemprosesan lanjut untuk pengeringan dan untuk meningkatkan kekuatan mampatan. Penvelesaian untuk ini ialah menggunakan pelekat lain vang boleh meningkatkan kekuatan eko-bata, seperti resin epoksi. Resin epoksi mempunyai kekuatan tinggi, ketahanan, dan keupayaan untuk melindungi daripada kakisan. Ia juga fleksibel dan boleh digunakan dengan mudah pada permukaan yang berbeza dan dengan bahan lain. Oleh itu, dalam penvelidikan ini, satu jenis eko-bata baru telah dibuat iaitu bata PET-resin (bata-PR). Bata PR dibuat menggunakan jenis pelekat lain, resin epoksi. Matlamat penyelidikan ini adalah untuk mengoptimumkan pembolehubah rumusan dan pemprosesan bahan pengeluaran bata-PR dan mengesahkan prestasi, menganalisis sifat mekanikal dan haba bata-PR dan akhirnya menganalisis kesan alam sekitar proses pengeluaran bata-PR. Kaedah yang digunakan dalam penyelidikan ini ialah kaedah rangsanganpPermukaan (RSM) untuk pengoptimuman formula dan pembolehubah pemprosesan bata-PR. Selepas penilaian ketepatan, model statistik pengoptimuman prestasi bata-PR telah dibangunkan. Dalam eksperimen ini Faktor Keselamatan (FoS) dan sifat terma telah dijalankan pada dirian tapak menggunakan kaedah elemen terhingga (FEM). *Reka bentuk struktur dan analisis FEM telah dijalankan menggunakan perisian SolidWorks.* Selain itu, penilaian kitaran hayat (LCA) juga digunakan untuk menganalisis kesan bata-PR terhadap alam sekitar. Penilaian LCA menggunakan pendekatan pintu ke pintu. Penyelidikan ini sejajar dengan program matlamat pembangunan mampan (SDGs) dengan mempromosikan penggunaan produk mesra alam melalui kitar semula. Untuk RSM adalah untuk menentukan bahagian campuran optimum dari segi nisbah (%), saiz zarah (mm), dan masa pengeringan (hari). Keputusan menunjukkan bahawa parameter yang paling sesuai untuk pengeluaran bata PR ialah saiz zarah PET 1.14 mm, nisbah campuran 89.97% dan masa pengeringan 6.92 hari berdasarkan RSM. Saiz 200x100x100 mm mempunyai nilai FoS maksimum daripada bentuk lain. Saiz 200x100x100 mempunyai nilai 6.544 untuk FoS. Daripada LCA bata-PR penggunaan resin epoksi dan PET sebagai bahan mentah untuk eko-jubin memberi kesan kepada pembentukan ozon (OF) sebanyak 118 m2 UES*ppm*jam, yang disebabkan oleh penggunaan bahan kimia resin epoksi sebagai pelekat dalam pengeluaran bata-PR. Penyelidikan menunjukkan bahawa campuran bahan ini mempunyai potensi tinggi untuk meningkatkan kekuatan mampatan bata-PR. Hasil kajian menunjukkan penggunaan resin epoksi dan PET kitar semula dalam pengeluaran bata-PR tidak menimbulkan risiko alam sekitar yang berlebihan dan tidak mengurangkan profil alam sekitar dengan ketara.

ACKNOWLEDGEMENT

In the Name of Allah, the Most Gracious, and the Most Merciful

My deepest gratitude to Allah, the God Almighty for his blessings that allows and enables me to complate this research and prepare this thesis successfully

First and foremost, I would like to take this opportunity to express my fullest appreciation and most sincewe thanks to my supervisor, Professor. Ts. Dr. Effendi Mohamad for his patience, unwavering supports, continous encouragement, invalauable guidence and excellent advice throughout my studies. His guidence helped me in all the time of research and writing of this thesis. Iam greatly indebted to the Universitas Ahmad Dahlan and Universiti Teknikal Malaysia Melaka (UTeM) for giving me to oportunity and financial support to pursue my doctoral study.

Last but not least, I would like to thanks to all my family for supporting me spiritually throughout writing this thesis and my life in general. Especially my wife, thanks for your love, trust, patience and understanding. I dedicate this achievement to you.

TABLE OF CONTENTS

DEC	LARATI(ON	
APPI	ROVAL		
DED	ICATION	J	
ABS	ГКАСТ		i
ABS	ГRAK		ii
ACK	NOWLEI	DGEMENT	iii
TAB	LE OF CO	ONTENTS	iv
LIST	OF TAB	LES	vii
LIST	OF FIGU	URES	ix
LIST	OF ABB	REVIATIONS	xi
LIST	OF SYM	IBOLS	xiii
		ENDICES	xiv
LIST	OF PUB	LICATIONS	XV
	EKA		
СНА	PTER		
	E		
1.	INTE	RODUCTION	1
	1.1	Overview	1
	1.2	Research Background	1
	1.3	Problem Statement	6
	LIN	1.3.1 Waste problem MALAYSIA MELAKA	6
	UN	1.3.2 Eco-brick problem	9
	1.4	Rationale of research	13
		Research Questions	14
	1.5	Research Objective	14
	1.6	Scope of Research	15
	1.7	Thesis Outline	16
2.		ERATURE REVIEW	17
	2.1	Overview	17
	2.2	Plastic Waste Management	17
	2.3	Classification of Plastic Waste	19
	2.4	Environmental impact of plastic	23
	2.5	Challenges and Current Application	24
	2.6	Green Product	26
	2.7	Plastic waste material substitution	28
	2.8	Plastic waste for eco-brick	33

2.9	Epoxy Resin material36					
2.10	Design of Experiment (DoE) 3					
2.11	Response Surface Method (RSM)4					
2.12	Central Composite Design (CCD)					
2.13	Mechanical Testing	45				
	2.13.1 Compression test	45				
	2.13.2 Tensile Testing	46				
2.14	Finite Element Method (FEM)	47				
2.15	Circular Economy (CE)	49				
2.16	Life cycle Assessment (LCA)	50				
2.17	The role of eco-bricks in sustainability policies	53				
	2.17.1 Waste bank as community as an opportunity for socio-					
• • •	technical innovation in rural areas	56				
2.18	Research gap discussion	59				
NORM		(0)				
	IODOLOGY	69				
3.1	Overview	69				
3.2	Research Design	69				
Ea	3.2.1 Phase 1-Optimization Phase	71				
43	3.2.2 Phase 2-The analyze the material	71				
2 2	3.2.3 Phase 3-The validating the experiment	71				
3.3	Materials 3.3.1 Epoxy Resin material	72				
-		72				
3.4	-3.3.2 PET Recycled Aggregat Experimental Design	73 75				
5.4	3.4.1 Design of Experiment	75				
	3.4.2 Parameters Setting	76				
	3.4.3 Statistical Analysis	78				
3.5	Mechanical Testing	79				
5.5	3.5.1 Compressive strength test	79				
	3.5.2 Tensile testing	80				
3.6	Thermal property test	81				
3.7	Modelling of PR-Brick	82				
5.7	3.7.1 Geometrical modelling of eco-brick	82				
	3.7.2 Material Properties	84				
2 0	Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray	01				
3.8	(EDX)	86				
3.9	LCA Analysis	87				
	3.9.1 Goal and scope definition	88				
	3.9.2 Functional Unit	89				
	3.9.3 System Boundaries	90				

3.

		3.9.4	Assumption and limitation	91
		3.9.5	Life Cycle Inventory (LCI)	92
		3.9.6	Life Cycle Impact Assessment (LCIA)	95
4.	RESU	LTS AN	D DISCUSSION	97
	4.1	Overvie	ew	97
	4.2	Optimiz	zation of material formulation for PR-brick	97
		4.2.1	Model fitting and ANOVA Assessment	98
		4.2.2	Residual plot adequacy assessment for composite	102
		4.2.3	Surface and response surface contour plot	105
		4.2.4	Residual plot adequacy analysis for PR-brick	112
		4.2.5	Optimization of PR-Brick	113
		4.2.6	Validation optimization	116
		4.2.7	Microstructure Analysis of PR-brick materials	119
	4.3	Static S	imulation	123
	3	4.3.1	Thermal simulation	127
	K	4.3.2	Wall unit structure	131
	4.4	Life cyc	cle impact assessment (LCIA)results for PR-brick	133
	E	4.4.1	Comparative LCIA results of eco-brick based on epoxy	
	03	AIND	resin-PET, Clay-PET, and Cement-PET	137
5.	CON	CLUSIO	NS	140
	5.1	Overvie		140
	5.2	Conclu		141
	5.3 N		ution to knowledge MALAYSIA MELAKA	143
	5.4		mendation	145
REFF	RENCES	1		146
	NDICES			140

APPENDICES

LIST OF TABLES

TABLE

TITLE

PAGE

Table 2.1	Classification and application of plastic waste (Kumar et al., 2018) 20			
Table 2.2	Groups of publication 30			
Table 2.3	Usage of various plastic wastes in numerous end products 3			
Table 2.4	Eco-brick studies 3			
Table 2.5	Material properties of epoxy resin adhesive (Sciarretta and Russo, 2019) 3			
Table 2.6	Previous research about the Central Composite Design (CCD)	45		
Table 2.7	Previous research mechanical testing	47		
Table 2.8	Composition of brick	60		
Table 2.9	types of brick using mixture of plastic waste	63		
Table 2.10	Comparison of adhesive eco-brick	64		
Table 2.11	Epoxy resin in building materials	65		
Table 2.12	Research position to consider the influence of Epoxy resin and PET particle	66		
Table 3.1	Physico-chemical characteristics of epoxy resin	72		
Table 3.2	Physical properties of PET	73		
Table 3.3	The level of factors 70			
Table 3.4	Expriment of factors	77		
Table 3.5	Factors and range of variation	77		
Table 3.6	Factors references EKNIKAL MALAYSIA MELAKA	77		
Table 3.7	Full factorial central composite design for the optimization	78		
Table 3.8	Size of eco-brick	82		
Table 3.9	Geometry of the PR-Brick	83		
Table 3.10	Properties of PR-Brick	84		
Table 3.11	Material Results of tensile strength	85		
Table 3.12	Material property of PR-Brick	86		
Table 3.13	Scenario of study LCA	89		
Table 3.14	Scenario of study	90		
Table 3.15	Scenario 1 PET-epoxy resin	93		
Table 3.16	Scenario 2 PET- Clay	93		
Table 3.17	Scenario 3 PET-Cement	93		
Table 3.18	Impact categories	96		
Table 4.1	Experimental runs and results	98		
Table 4.2	Emperical and predicted data	99		
Table 4.3	ANOVA Assessment Outcomes	100		
Table 4.4	Model summary statistic	101		

Table 4.5	Coefficient estimate of the model	102
Table 4.6	Range of factor and expected target of response	114
Table 4.7	Validation optimization based on experimental results	116
Table 4.8	RSM model validation data set for compressive strength response	117
Table 4.9	Comparison of eco-brick production based on compressive strength	118
Table 4.10	EDX results of eco-brick	123
Table 4.11	Von Mises Stress results	125
Table 4.12	Factor of Safety (FOS) results	126
Table 4.13	Thermal conductivity test	130
Table 4.14	Potential environmental impacts of the PR-brick (Epoxy resin-PET)	133
Table 4.15	Potential environmental impacts of the eco-brick (Clay-PET)	134
Table 4.16	Potential environmental impacts of the eco-brick (Cement-PET)	134
Table 4.17	Results of the characterization	138

LIST OF FIGURES

FIGURE

TITLE

PAGE

Figure 1.1	Waste management in Indonesia7				
Figure 1.2	example of eco-brick 10				
Figure 2.1	Distribution of the socio-economic group with regards to plastic waste management (Kumar et al., 2018) 21				
Figure 2.2	Rate of plastic waste generated by different socio-economic groups (Kumar et al., 2018)	22			
Figure 2.3	Use of polymers in applications that generate hard and plastic film wastes (Faraca and Astrup, 2019)	23			
Figure 2.4	Sustainablity development framework (Opoku et al., 2022)	27			
Figure 2.5	Number of publications	29			
Figure 2.6	Types of Publication	30			
Figure 2.7	Number of publications published by different Journals	31			
Figure 2.8	Epoxy ring (Paluvai et al., 2014)	36			
Figure 2.9	Design of Experiment (DoE) study area (David and Jensen, 2022)	38			
Figure 2.10	Central Composite Design (Hou et al., 2020)	44			
Figure 2.11	Stages on LCA (Quintana et al., 2018)	51			
Figure 2.12	The Sustainable Development Goals (Global education Magazine, 2015).	54			
Figure 2.13	Framework sustainability (Akhimien et al., 2020)	55			
Figure 2.14—	A model of socio-technical system (Yin et al., 2019)	58			
Figure 2.15	Ecobrick (a) PET bottle and (b) PET Particle	63			
Figure 2.16	K-Chart Research	68			
Figure 3.1	Flow chart of the research	70			
Figure 3.2	epoxy resin and hardener	73			
Figure 3.3	Plastic particles	74			
Figure 3.4	The materials after dry	74			
Figure 3.5	Grading curve of PET particles	75			
Figure 3.6	Modelling process	76			
Figure 3.7	Universal Testing Machine for compression test	79			
Figure 3.8	Universal Testing Machine for tensile test	80			
Figure 3.9	Tensile strenght test	80			
Figure 3.10	Speciment test procedure	81			
Figure 3.11	Conductivity test preparation	81			
Figure 3.12	Thermal conductivity analysis	82			
Figure 3.13	SEM-EDX machine Phenom Desktop ProX	87			
Figure 3.14	boundary of LCIA	88			
Figure 3.15	System boundaries of this research	91			

Figure 3.16	Life Cycle assessment modelling Epoxy resin-PET	94
Figure 3.17	Life Cycle assessment modelling Clay-PET	94
Figure 3.18	Life Cycle assessment modelling Cement-PET	95
Figure 4.1	Normal probability vs. external residual plot	103
Figure 4.2	Estimated vs. Actual Values	104
Figure 4.3	Residual vs. predicted values	105
Figure 4.4	2D contour plot ratio vs. Size	106
Figure 4.5	3D contour plot ratio vs. Size	106
Figure 4.6	2D contour plot ratio vs. Curing time	107
Figure 4.7	3D contour plot ratio vs. Curing time	108
Figure 4.8	2D contour plot Size vs. Curing period	109
Figure 4.9	3D contour plot Size vs. Curing period	109
Figure 4.10	Ratio vs. compression assessment	111
Figure 4.11	PET particle size vs. compression assessment	111
Figure 4.12	Curing duration vs. Compression assessment	112
Figure 4.13	Perturbation plot	113
Figure 4.14	Ramp type - optimal operating conditions	114
Figure 4.15	Cube type - optimal operating conditions	115
Figure 4.16	Compressive strength comparison of PR-brick	119
Figure 4.17	SEM analysis on PR-brick with magnification 1000x	120
Figure 4.18	SEM analysis on Ecobrick with magnification 2000x	120
Figure 4.19	SEM image of PR-brick material	121
Figure 4.20	EDX graph	122
Figure 4.21	Von Mises Stress result size 1	123
Figure 4.22	Von Mises Stress Result Size 2	124
Figure 4.23	Von Mises Stress Result Size 3	124
Figure 4.24	Von Mises Stress Result Size 4	125
Figure 4.25	Thermal simulation of size 1	127
Figure 4.26	Thermal simulation of size 2	128
Figure 4.27	Thermal simulation of size 3	128
Figure 4.28	Thermal simulation of size 4	129
Figure 4.29	wall unit structure	131
Figure 4.30	Static simulation from wall unit structure	130
Figure 4.31	wall unit thermal simulation	133
Figure 4.32	LCIA diagram (Acidification Potential)	135
Figure 4.33	LCIA diagram (Global warming impact)	135
Figure 4.34	LCIA diagram Photochemical ozone formation (impact on human health and materials)	136
Figure 4.35	LCIA diagram Photochemical ozone formation (impact on vegetable)	136
Figure 4.36	LCIA diagram (Stratospheric ozone depletion)	137
Figure 4.37	Environmental impact of eco-brick production	139

LIST OF ABBREVIATIONS

Е	- Modulus elasticity
AP	- Acidification Potential
CE	- Circular Economy
OF	- Ozone formation
PC	- Polycarbonate
PP	- Polypropylene
PS	- Polystyrene
PU	- Polyurethane
BMI	Body Mass Index
CAD	- Computer Aided Design
CCD	- Central Composite Design
DoE	- Design of experiment
ECH	- Epichlorohydrin
EDX	- Energy Dispersive X-ray
EPA	Environmental Protection Agency
FEA	- Finite element analysis
FEM	UNIVERFinite Element Method MALAYSIA MELAKA
GWP	- Global warming
ISO	- International Organization for Standardization
LBP	- Low Back Pain
LCA	- Life Cycle Assessment
LCI	- Life Cycle Inventory
MFR	- Melt Flow Rate
NBM	- Nordic Body Map
OPC	- Ordinary Portland cement
PET	- Polyethylene terephthalate
POF	- Photochemical ozone formation
PVC	- Polyvinyl chloride
RBD	- Red brick dust

RSM	-	Response Surface Method
SEM	-	Scanning Electron Microscopy
SNI	-	Indonesian Standard (Standar Nasional Indonesia)
SOD	-	Stratospheric ozone depletion
STS	-	Socio-technical System
TDH	-	Terephthalic dihydrazide
WHO	-	World Health Organization
ASTM	-	American Society for Testing and Materials
CBWM	-	Community-based waste management
EDIP	-	Environmental Design of Industrial Products
HDPE	-	High-Density Polyethylene
HSEG	AT MA	Higher SocioEconomic Group
LCIA	- 18	Life Cycle Impact Assessment
LDPE	- 1	Low density polyethylene
LSEG	Ela -	Lower SocioEconomic Group
MSDs	S SATINI	Musculoskeletal Disorder
MSEG	sh1-	Middle SocioEconomic Group
NGOs	المارك	Non-Governmental Organizations
PUPR	UNIVE	Ministry of Public Works and People Housing
DGEBA	_	Diglycidyl ether of bis-phenol A
ANOVA	-	Analysis of variance

LIST OF SYMBOLS

x_i ; x_i ; x_i ;	-	Indepedent variables of factors
$\beta_0; \beta_i; \beta_{ii}; \beta_{ij}$	-	Regression coefficient
3	-	Strain
σ	-	Stress

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

182

APPENDIX A Open Questionnaire

UTERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF PUBLICATIONS

JOURNAL

Adiyanto, Okka, Effendi Mohamad, Irianto, Rosidah Jaafar, Muhammad Faishal, and Muhammad Izzudin Rasyid, 2023. Optimization of PET Particle-Reinforced Epoxy Resin Composite for Eco-Brick Application Using the Response Surface Methodology.*Sustanability*, 15(5), 42-71. (Scopus, WoS)

Adiyanto, Okka, Effendi Mohamad, Rosidah Jaafar, Muhammad Faishal, 2023. Life cycle asessment of eco-brick production using PET particle reinforced epoxy resin composites. *Multidisciplinary Science Journal*, 5(3), 1-10. (Scopus, WoS)

Adiyanto, Okka, Effendi Mohamad, Rosidah Jaafar, Muhammad Faishal, Supriyanto. 2023. Design of Biomass Fired Dryer Using Integrating Design Thinking And Triz Method, *Journal of Advanced Manufacturing Technology (JAMT)*, 17(1), 1-14. (Scopus, WoS)

Adiyanto, Okka, Effendi Mohamad, Rosidah Jaafar, and Muhammad Faishal, 2023. Identification of Musculoskeletal Disorder anong Eco-brick Workers in Indonesia. International Journal of Occupational Safety and Helath, 13(1),29-40. (Scopus)

Adiyanto, Okka, Effendi Mohamad., and Razak, J.A, 2022. Systematic Review of Plastic Waste as Eco-friendly Aggregate for Sustainable Construction. *International Journal of Sustainable Construction Engineering and Technology*, 2(13), 243-257. (Scopus, WoS)

Adiyanto, Okka, Effendi Mohamad., Choi, Wonsik, 2022. Tribological characteristics of piston ring and cylinder linear application of low friction TiN nanocomposite coatings. *Jurnal Tribology*, 34 (2), 98-107. (Scopus, WoS)

Adiyanto, Okka, Effendi Mohamad., Rosidah Jaafar, Farid Ma'ruf., Anggraeni, A, and Muhammad Faishal, 2022. Application of Nordic Body Map and Rapid Upper Limb Assessment for Assessing Work Related Musculoskeletal Disoreder. A case study in Small and Medium Enterprises. *International Journal of Integrated Engineering*, 14(4), 10-19. (Scopus, WoS)

Adiyanto, Okka, Effendi Mohamad., Rosidah Jaafar, Mutia Mulaicin, and Muhammad Faishal, 2022. Integrated self report and observational risk Assessment for Work related Musculoskeletal Disorder in Small and Medium Enterprises. *Engineering and Applied Science Research*, 49(1), 73-80. (Scopus)

Mohamad, Effendi, Muhammad Faishal, Azrul Azwan Abdul Rahman, Shabilla Desviane, Alfian Ramawan, Mohamad Ridzuan Jamli, and **Okka Adiyanto**, 2021. Safety and Quality Improvement of Street Food Packaging Design Using Quality Function Deployment. *International Journal of Integrated Engineering*, 13(1), 19-28.(Scopus, WoS)

Faishal, Muhammad, Effendi Mohamad, Rosidah Jaafar, Azrul Abdul Rahman, **Okka Adiyanto**, Hapsoro A. Jatmiko, and Ijmal Novera, 2021. Integrated approach to customer requirement using quality function deployment and Kansei engineering to improve packaging design. *Asia-Pacific Journal of Science and Technology*, 26(2), 1-10. (Scopus, WoS)

Faishal, Muhammad, Effendi Mohamad, Hayati Mukti Asih, Azrul Azwan Abdul Rahman, Astaman Zul Ibrahim, **Okka Adiyanto**, 2023. The use of Lean Six Sigma to improve the quality of coconut shell briquette products. *Multidisciplinary Science Journal*, 6(1), 1-10. (Scopus, WoS)

CONFERENCE

Adiyanto, Okka, Effendi Mohamad., Choi, Wonsik, 2020. Experimental of Friction characteristic properties of TiN coating. *MeRD (Mechanical Engineering Research Day)*.

Adiyanto, Okka, Effendi Mohamad, Rosidah Jaafar, Muhammad Faishal, Supriyanto, 2020. Design of Biomass Fired Dryer For Drying Wood Products. *IDECON (International Conference on Design and Concurrent Engineering)*.

Adiyanto, Okka, Effendi Mohamad., Rosidah Jaafar, Mutia Mulaicin, and Muhammad Faishal, 2021. Integrated Self-Report and Observational Risk Assessment for Work-related Musculoskeletal Disorder in Small and Medium Enterprises. *KKU International Engineering Conference 2021 (KKU-IENC 2021)*.

Faishal, Muhammad, Effendi Mohamad, Hayati Mukti Asih, Azrul Azwan Abdul Rahman, Astaman Zul Ibrahim, **Okka Adiyanto**, 202 . Integrating DMAIC Approach and Lean Six Sigma Concept to Improve Quality and Reducing Waste. *1st Central American and Caribbean International Conference on Industrial Engineering and Operations Management, IEOM 2021.*

CHAPTER 1

INTRODUCTION

1.1 Overview

This chapter describe the formulation of the problem. This introductory chapter explain the research rationale, research question, objective, and the scope of the research.

1.2 Research Background

Bricks have been known since the earliest civilizations (Kadir and Mohajerani, 2011. Bricks are one of the most sought-after materials used in building construction (Afzal et al., 2020). Bricks are made of clay and sand mixed in appropriate proportions by adding a binder (Murmu and Patel, 2018). Brick is one of the common and widely used products in buildings (Muntohar, 2011). Unfortunately, in the last 20 years, the market for brick products in construction has reached a saturation point (Crespo-López and Cultrone, 2022). Therefore, the brick manufacturing industry is diversifying its products by utilizing waste as an additional ingredient in brick manufacturing (Adazabra et al., 2023; Ramakrishnan et al., 2023).

One way to develop the concept of green ecology and energy conservation is to make permeable bricks (Antunes et al., 2018; Wang et al., 2019; Shafiquzzaman et al., 2022). Permeable bricks have advantages including reducing the effect of heat, absorbing noise, and improving the anti-skid performance (Smith et al., 2001). One way to make permeable bricks is to use additional plastic waste. This plastic waste will make it eco-friendly (Zhou, 2018)

Waste can cause problems in the environment, including soil pollution and causing a dirty environment, and it also has an impact on health (Kholil and Jumhur, 2018; Tekler et

al., 2019). Nowadays, the amount of waste is increasing along with the increases in population, activity level, life pattern, socio-economic level, and technological progress, growing increasingly (Xue, Cao and Li, 2015). Waste needs to be managed in order to be used as part of a useful product. Waste management has become an important issue in recent years. Waste management is required to identify the source of waste, how waste management is appropriate, and the design of the waste treatment equipment. Inorganic waste such as paper or plastic can be recycled and significantly contribute to the economy of the community (Daspereira, and Fernandino, 2019; Yusuf et al., 2019).

Waste can trigger ecological problems such as a filthy environment, soil pollution, and health concerns (Kholil and Jumhur, 2018; Owusu-Nimo et al., 2019). Furthermore, waste harms the environment (Ishak et al., 2018). The volume of waste is likely to increase with the rise in the populace, as well as changing life patterns, socio-economic level, activity level, and technological advancements (Setyowati and Mulasari, 2013; Boysan et al., 2015; Mohamad et al., 2019). Waste has to be managed so then it can be used as a worthwhile product. This has emerged as a key concern in recent times (Boysan et al., 2015).

Waste can be classified into organic and inorganic waste (Anjum et al., 2022). Inorganic waste like plastic or paper can be recycled and go on to make a considerable contribution to the economy (Asteria and Heruman, 2016; Ishak et al., 2017).). One of the concerns faced by emerging nations such as Indonesia is the management of waste (Abdel-Shafy and Mansour, 2018a). Plastic waste, which is dangerous and tough to manage, is a key aspect that causes ecological harm. This continues to be a concern for Indonesians (Lestari and Trihadiningrum, 2019; Fatimah et al., 2020; Kamaruddin et al., 2022). Plastic bags, a widely-used commodity for people around the world, when discarded, take tens and sometimes hundreds of years to disintegrate (Utami et al., 2019). To mitigate the critical problem of plastic waste, recycling is a necessary measure. The efficacy of inorganic waste

recycling initiatives can be impacted by many aspects like appropriate service facilities and the efficient management of waste. Waste management begins with waste sorting and gathering, followed by processing (Boysan et al., 2015).

The recycling process can be categorized into four types, namely primary, secondary, tertiary and quaternary recycling (Neo et al., 2021). Primary recycling is also known as closed-loop recycling where plastic waste products are recycled back into the same product. Secondary recycling is known as open-loop recycling, where plastic waste is converted into other products. Tertiary recycling is also known as raw material recycling, where chemicals break down the plastic into monomers or other small molecules. Finally, quaternary recycling involves energy changes where waste is burned to become energy. In this research, the polyethelen (PET) recycling process uses open-loop recycling, where PET waste is developed into a composite called an eco-brick. This eco-brick is a mixture of PET particles and epoxy resin. Composite materials will provide excellent strength with resulting mechanical properties of being lightweight, having a resistance to corrosion, and high durability (Junid et al., 2021).

PET is the plastic used to make bottles and containers. Recently, efforts have been made to use the plastic waste generated in different applications in civil engineering to divert the amount of plastic waste going to landfills. The addition of plastic waste to granular pavement material can significantly affect the strength and deformation properties of said material, which needs to be fully understood before its widespread use in the construction of pavement/subbase layers (Ghorbani et al., 2021). The utilization of plastic waste can be used as a mixture for making bricks. The types of plastics widely used to make plastic bricks include PET, LDPE, and HDPE (Bhushaiah et al., 2008; Sellakutty, 2016; Akinwumi et al., 2019; Intan and Santosa, 2019; Limami et al., 2020a).

Material selection is essential in building construction because it impacts building performance. Suitable materials can help to reduce the energy contained in the building (Venkatarama Reddy and Jagadish, 2003; Thormark, 2006; Cherian et al., 2020). In addition, the correct selection of materials will also affect carbon dioxide emissions into the environment, energy use in the production process, environmental impacts during the life cycle, energy consumption, and air quality disturbances (Florez and Castro-Lacouture, 2013). Several factors such as cost, mechanical properties, environmental performance, physical properties, and safety are often included as part of making the material so then it is optimal (Giudice et al. 2005; Abeysundara et al. 2009; Chen et al., 2019; Ferrari et al., 2020; Ilbeigi et al.2020).

Currently, the brick industry contributes significantly to environmental degradation (Ahmed, 2023). The firing process in brick manufacturing emits about 70-282 g of carbon dioxide, 0.001-0.29 g of black carbon, 0.29-5.78 g of carbon monoxide (CO), and 0.15-1.56 g of particulate matter per kilogram of brick burned, depending on the type of kiln and fuel used. In addition, it consumes about 0.54-3.14 MJ of specific energy per kilogram of bricks produced, depending on the type of kiln and fuel (Barros et al., 2020a). Therefore, it is necessary to produce environmentally-friendly bricks by not using the firing process.

Industries and communities are developing environmentally friendly bricks (Anjum et al., 2022). Bricks made from a mixture of waste are being widely-developed, ranging from organic to plastic waste (Chua-Chil et al., 2012; Akinwumi et al., 2019). PET bottles are filled with clay and then arranged into buildings. One advantage of this brick model is that the cost of the eco-bricks is zero because they use leftover materials and waste from around the environment. However, there is a drawback of bricks made from PET bottles, which is that they are prone to fire. Edike (2020) and Chien et al.'s (2022) research also discuss eco-bricks containing PET bottles and tiny plastic pieces (Edike et al.2020a; Mei Chien et