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ABSTRACT

Friction stir welding (FSW) is a solid-state joining process that offers significant
advantages in efficiency, cost-effectiveness, and environmental impact compared to
traditional fusion welding techniques. This study focuses on the tribological and saltwater
corrosion behavior of dissimilar aluminum alloy AA5052 and AA6061 welded joints
produced using FSW, which are commonly used in marine applications due to their
mechanical properties and corrosion resistance. The primary objective of this project was
to comprehensively characterize the microstructure, mechanical properties, wear resistance,
and corrosion behavior of dissimilar AA5052-AA6061 FSW joints. Various
characterization techniques, including field-emission scanning electron microscopy
(FESEM) and energy-dispersive X-ray spectroscopy (EDX), tensile testing, microhardness
mapping, reciprocating pin-on-disk wear tests, and linear sweep voltammetry (LSV), were
employed to evaluate these properties. The results revealed that the dissimilar FSW joints
exhibited unique microstructural developments along the bond line, leading to higher
tensile strength and ductility compared to similar alloy joints. The tensile strength of the
dissimilar joints was slightly higher, but they demonstrated lower wear resistance due to
the formation of intermetallic compounds, such as Al3Mg2, at the weld interface.
Corrosion testing indicated that the dissimilar joints had a lower overall corrosion rate but
were susceptible to localized galvanic corrosion at the interface. This susceptibility was
attributed to changes in composition and the formation of a passive oxide film, which
dissolved at approximately -0.6V. The microstructural analysis showed significant
differences between the similar and dissimilar joints. The similar AA6061 joints exhibited
a uniform and defect-free surface with fine grains, whereas the dissimilar AA6061-
AA5052 joints displayed distinct regions corresponding to each alloy with a well-bonded
interface. The EDX analysis provided insights into the elemental distribution, revealing a
gradual transition in composition across the weld interface for the dissimilar joints,
indicating effective material mixing during the FSW process. The mechanical testing
results highlighted the superior performance of the dissimilar joints in terms of tensile
strength and ductility. However, the wear testing results indicated that the dissimilar joints
had lower wear resistance compared to the similar joints, which could be attributed to the
formation of intermetallic compounds at the weld interface. The corrosion testing using
LSV showed that while the dissimilar joints had a lower overall corrosion rate, they were
more susceptible to localized galvanic corrosion due to the differences in composition and
the formation of a passive oxide film. This project provides critical insights into optimizing
FSW parameters to mitigate corrosion challenges and enhance the mechanical performance
of dissimilar aluminum alloy joints. The findings have significant implications for the
development of lightweight, corrosion-resistant marine structures, contributing to
improved reliability and durability in harsh marine environments. The insights gained from
this research are expected to inform future advancements in the field, addressing both
performance and durability in practical applications.
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TRIBOLOGI DAN SIFAT KARAT BERUNSURKAN AIR GARAM TERHADAP

ALOI BERLAINAN JENIS DENGAN MENGGUNAKAN KIMPALAN KACAU

GESERAN (FSW)

ABSTRAK

Kimpalan kacau geseran (FSW) ialah proses penyambungan keadaan pepejal yang
menawarkan kelebihan ketara dalam kecekapan, penjimatan kos dan tidak memberi kesan
alam sekitar berbanding teknik kimpalan gabungan tradisional. Kajian ini memberi
tumpuan kepada sifat tribologi dan karat berunsurkan air garam bagi sambungan
kimpalan aloi aluminium AA5052 dan AA6061 yang tidak serupa yang dihasilkan
menggunakan FSW, yang biasanya digunakan dalam aplikasi marin kerana sifat
mekanikal dan rintangan kakisannya. Objektif utama projek ini adalah untuk mencirikan
secara menyeluruh struktur mikro, sifat mekanikal, rintangan haus, dan kelakuan kakisan
bagi sambungan AA5052-AA6061 FSW yang berbeza. Pelbagai teknik pencirian, termasuk
mikroskop elektron pengimbasan pelepasan medan (FESEM) dan spektroskopi sinar-X
(EDX) penyebaran tenaga, ujian tegangan, pemetaan kekerasan mikro, ujian kehausan
pin-pada-cakera salingan, dan voltammetri sapuan linear (LSV), telah digunakan untuk
menilai. Keputusan menunjukkan bahawa sambungan FSW yang berbeza mempamerkan
perkembangan mikrostruktur yang unik di sepanjang garis ikatan, membawa kepada
kekuatan tegangan dan kemuluran yang lebih tinggi berbanding dengan sambungan aloi
yang serupa. Kekuatan tegangan bagi sambungan yang berbeza adalah lebih tinggi sedikit,
tetapi ia menunjukkan rintangan haus yang lebih rendah disebabkan oleh pembentukan
sebatian antara logam, seperti Al3Mg2, pada antara muka kimpalan. Ujian kekaratan
menunjukkan bahawa sambungan yang tidak serupa mempunyai kadar kakisan
keseluruhan yang lebih rendah tetapi terdedah kepada kakisan galvanik setempat pada
antara muka. Kecenderungan ini disebabkan oleh perubahan dalam komposisi dan
pembentukan filem oksida pasif, yang terlarut pada kira-kira -0.6V. Analisis mikrostruktur
menunjukkan perbezaan yang ketara antara sendi yang serupa dan tidak serupa.
Sambungan AA6061 yang serupa mempamerkan permukaan yang seragam dan bebas
kecacatan dengan butiran halus, manakala sambungan AA6061-AA5052 yang berbeza
memaparkan kawasan yang berbeza sepadan dengan setiap aloi dengan antara muka yang
diikat dengan baik. Analisis EDX memberikan pandangan tentang pengedaran unsur,
mendedahkan peralihan beransur-ansur dalam komposisi merentas antara muka kimpalan
untuk sambungan yang berbeza, menunjukkan pencampuran bahan yang berkesan semasa
proses FSW. Keputusan ujian mekanikal menyerlahkan prestasi unggul sendi yang berbeza
dari segi kekuatan tegangan dan kemuluran. Walau bagaimanapun, keputusan ujian haus
menunjukkan bahawa sambungan yang tidak serupa mempunyai rintangan haus yang
lebih rendah berbanding dengan sambungan yang serupa, yang boleh dikaitkan dengan
pembentukan sebatian antara logam pada antara muka kimpalan. Ujian kakisan
menggunakan LSV menunjukkan bahawa walaupun sambungan yang tidak serupa
mempunyai kadar kakisan keseluruhan yang lebih rendah, mereka lebih mudah terdedah
kepada kakisan galvanik setempat disebabkan oleh perbezaan dalam komposisi dan
pembentukan filem oksida pasif.Projek ini memberikan pandangan kritikal untuk
mengoptimumkan parameter FSW untuk mengurangkan cabaran kekaratan..
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CHAPTER 1

INTRODUCTION

1.1 Background

Friction stir welding (FSW) has gained considerable attention in recent years due to

its many advantages over traditional fusion welding methods. FSW offers multiple benefits

such as improved mechanical properties, lowered environmental impact, and enhanced

corrosion resistance. The welding process produces joints with minimal defects and a

narrow heat-affected zone, making it suitable for welding dissimilar materials as show in

figure 1.1.

This study focuses on examining the tribological and saltwater corrosion behavior

of dissimilar alloy welding using FSW for brass and aluminum alloys. The goal is to

investigate the welding process, tribology, microstructure, mechanical properties, and

corrosion resistance of brass plate and aluminum alloy plate joints created using FSW.

Aluminum and its alloys are widely used across many industries because of

properties such as high strength-to-weight ratio and corrosion resistance. However,

welding aluminum alloys can be challenging due to their high thermal conductivity, low

melting point, and susceptibility to defects like porosity and cracking. Therefore, it is

important to develop reliable welding techniques that can produce high-quality joints with

minimal defects.

Welding dissimilar materials such as brass and aluminum alloys presents issues in

achieving strong and corrosion-resistant joints, particularly when exposed to salty

environments. FSW offers a unique solution to this problem by providing a welding

process that minimizes the heat-affected zone and produces joints with improved

mechanical properties.
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This chapter aims to briefly introduce the importance of welding techniques for

aluminum alloys and the significance of understanding welding processes for dissimilar

alloys. The chapter emphasizes the need for reliable and durable joints in aluminum

structures, especially in marine applications, and challenges related to welding dissimilar

aluminum alloys.

Figure 1.1: Friction stir welding (FSW) joining material process

At dissimilar alloy interface, the differences in mechanical properties lead to

complex abrasive, adhesive and surface fatigue wear mechanisms. The resultant wear rate

and friction depends on the effectiveness of material mixing and defect formation in the

weld nugget zone (S. et al., 2023). Galvanic corrosion is another major concern for

dissimilar aluminum welds in marine environments. The micro-galvanic couples formed

between the alloys, intermetallic particles, and variable weld zones result in localized

galvanic corrosion (Salavaravu and Dumpala, 2021).

While FSW is beneficial for aluminum welding, comprehensive understanding of

the HAZ microstructural evolution, weld surface characteristics, material mixing, defect

formation, wear behavior, and corrosion resistance in dissimilar aluminum FSW joints is
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currently lacking (Preethi and Daniel Das, 2021). This Project will address these gaps

through an in-depth investigation. The outcomes will facilitate optimizing FSW parameters

and advancing dissimilar aluminum welding for demanding marine structural applications.

Figure 1.2: The FSW process is illustration

1.2 Background Study

Friction stir welding (FSW) is a solid-state joining process that has gained

significant attention in recent years due to its numerous advantages over traditional fusion

welding methods as show in figure 1.2. FSW offers several benefits, such as improved

mechanical properties, reduced environmental impact, and enhanced corrosion resistance.

The welding process produces joints with minimal defects and a narrow heat-affected zone,

making it suitable for welding dissimilar materials. The focus of this study is on the

tribological and saltwater corrosion behavior of dissimilar alloy welding using FSW for

brass and aluminum alloys. The study aims to investigate the welding process,

microstructure, mechanical properties, and corrosion resistance of brass plate and

aluminum alloy plate joints produced using FSW.
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Aluminum and its alloys are widely used in various industries due to their favorable

properties, such as high strength-to-weight ratio and corrosion resistance. However,

welding of aluminum alloys can be challenging due to their high thermal conductivity, low

melting point, and susceptibility to defects such as porosity and cracking. Therefore, it is

essential to develop reliable welding techniques that can produce high-quality joints with

minimal defects.

The welding of dissimilar materials, such as brass and aluminum alloys, presents

challenges in terms of achieving strong and corrosion-resistant joints, particularly when

exposed to saltwater environments. FSW offers a unique solution to this problem by

providing a welding process that minimizes the heat-affected zone and produces joints with

improved mechanical properties. This chapter provides a brief overview of the importance

of welding techniques for aluminum alloys and the significance of understanding the

welding processes for dissimilar alloys and its tribiology behaviour in saltwater.

1.3 Problem Statement

The provided problem statement is comprehensive and well-articulated. It

addresses the challenges and significance of friction stir welding (FSW) of dissimilar

aluminum alloys, particularly the AA5052 and AA6061 alloys, and highlights the need to

understand the tribological behavior, corrosion resistance, and joint integrity of the welded

joints, especially under saline operating conditions. The statement also emphasizes the

importance of investigating the microstructure, mechanical properties, sliding wear

behavior, electrochemical corrosion kinetics, and resultant surface damage morphology of

the dissimilar weld as show in figure 1.3.
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Figure 1.3: Scanning electron microscope images of worn-out surfaces(M et al.,2021).

Furthermore, it outlines the specific experimental techniques and tests to be

conducted, such as pin-on-disk sliding wear tests, scanning electron microscopy,

electrochemical corrosion experiments, salt spray exposure, and immersion testing. The

statement also underlines the Project's objective to reveal optimal process parameters

through structure-property-performance relations, aiming to facilitate the greater adoption

of AA5052-AA6061 dissimilar aluminum FSW joints in lightweight engineering

applications requiring excellent wear and corrosion resistance.

The problem statement is well-supported by relevant Project, such as the

optimization of friction stir welding of dissimilar grades of aluminum alloy.(Rajesh et al.,

2022), the corrosion and tribological behavior of friction stir processed aluminum alloys

(Hari et al., 2022), and the effects of friction stir processing on the tribological, corrosion,

and erosion properties of steel (Ralls et al., 2021). These sources provide valuable insights

into the tribological, and corrosion properties of materials processed using friction stir

welding, supporting the need for a comprehensive investigation into the dissimilar alloy

welding process (Namboodiri et al., 2018).

Overall, the tribological properties of the dissimilar friction stir welding of

AA5052-AA6061 is less know. Thus, in this study of the tribiological properties of friction

stir welding are analyze using FESEM-EDX, tensile test, hardness and dry friction pin-on-

disk test.
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