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ABSTRACT 

 

The semiconductor and electronics industries of micro-to-nano downscaling refer to the 

trend of miniaturizing electronic devices. The goal of this downscaling is to increase 

performance while reducing power consumption. However, it has become more complex 

because of their downscaling limit which possibilities to produce a short channel effect. 

To address this issue, an additional kind of MOSFET architecture with a double-gate 

design has been proposed to replace the single-gate MOSFET including replacing the 

SiO2/polysilicon gate with a high-k/metal gate to reduce the power consumption of the 

device. The implementation of bilayer graphene is employed to create a band gap, 

resulting in a greater on-off ratio. The purpose of this research is to develop the Bi-GFET 

horizontal double gate NMOS and PMOS device by using Silvaco Software's ATHENA 

and ATLAS modules and optimize it by using Taguchi-based grey relational analysis 

(GRA) with an artificial neural network (ANN). For the NMOS device, hafnium dioxide 

(HfO2) with tungsten silicide (WSix) will be utilized to examine the performance of the 

characteristics of the threshold voltage (VTH), drive current (ION), and leakage current 

(IOFF). Meanwhile, HfO2 with titanium silicide (TiSix) will be utilized in the PMOS 

device. In order to optimize the NMOS and PMOS device, the process parameters of VTH 

adjustment implant dose, VTH adjustment implant energy, S/D implant dose, and S/D 

implant energy were studied. The full potential of the Taguchi method as a tool for 

optimizing the performance of processes with a wide range of input variables has been 

realized. Based on the Taguchi results, S/D adjustment implant energy is identified as the 

dominant factor in the NMOS device with a contributing factor effect percentage of 

89.77%, while VTH adjustment implant energy is identified as the dominant factor in the 

PMOS with a contributing factor percentage of 55.91%. To solve optimization problems 

with multiple responses of VTH, ION, and IOFF, GRA is used in conjunction with the 

Taguchi method in NMOS and PMOS devices. After optimization by using Taguchi-

based GRA, the VTH, ION, and IOFF of the NMOS devices are observed to be at 0.20849 

V, 5192.22 μA/μm, and 0.56513 nA/μm respectively. Meanwhile, the VTH, ION, and IOFF 

of the PMOS devices are observed to be at 0.19793 V, 167.873 μA/μm, and 32.5728 

nA/μm respectively. The grey relational grade (GRG) of NMOS devices increased 

slightly by 3.44%, while the PMOS device was reduced by 0.86%. To forecast optimal 

optimization outcomes for the NMOS and PMOS devices a well-trained ANN is 

developed using the Levenberg-Marquardt algorithm. Results showed that VTH, IOFF, and 

ION values for NMOS devices met the prediction of the International Technology 

Roadmap Semiconductor (ITRS) with a value of 0.20987 V, 4979.58 μA/μm, and 

0.10375 nA/μm respectively. For the PMOS device, VTH and IOFF met the prediction of 

the ITRS with the value of 0.20452 V, and 20.3584 nA/μm respectively, while the ION 

value is lower than the prediction with the value of 153.996 μA/μm due to the higher 

mobility of electrons resulting in a higher drain current.  
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PEMBANGUNAN DAN PENGOPTIMUMAN BI-GFET MENGGUNAKAN ANALISIS 

HUBUNGAN KELABU BERASASKAN TAGUCHI DENGAN RANGKAIAN NEURAL 

BUATAN 

ABSTRAK 

 

Industri semikonduktor dan elektronik penurunan skala mikro-ke-nano merujuk kepada tren 

meminimumkan peranti elektronik. Matlamat penurunan ini adalah untuk meningkatkan 

prestasi sambil mengurangkan penggunaan kuasa. Walau bagaimanapun, ia telah menjadi 

lebih kompleks kerana had penurunan yang berkemungkinan menghasilkan kesan saluran 

pendek. Untuk menangani isu ini, jenis seni bina MOSFET tambahan dengan reka bentuk dua 

get telah dicadangkan untuk menggantikan MOSFET satu get termasuk menggantikan 

SiO2/polisilikon get dengan get tinggi-k/logam untuk mengurangkan penggunaan kuasa 

peranti. Pelaksanaan grafin dwilapisan digunakan untuk mewujudkan jurang jalur, 

menghasilkan nisbah ON/OFF yang lebih besar. Tujuan penyelidikan ini adalah untuk 

membangunkan peranti NMOS dan PMOS dua get mendatar Bi-GFET dengan menggunakan 

modul ATHENA dan ATLAS daripada perisian Silvaco dan mengoptimumkannya dengan 

menggunakan analisis hubungan kelabu (GRA) berasaskan Taguchi dengan rangkaian neural 

tiruan (ANN). Untuk peranti NMOS, hafnium dioksida (HfO2) dengan tungsten silicid (WSix) 

akan digunakan untuk mengkaji prestasi ciri-ciri voltan ambang (VTH), arus pemacu (ION), 

dan arus bocor (IOFF). Sementara itu, HfO2 dengan titanium silicid (TiSix) akan digunakan 

dalam peranti PMOS. Untuk mengoptimumkan peranti NMOS dan PMOS, parameter proses 

dos implan pelarasan VTH, tenaga implan pelarasan VTH, dos implan S/D, dan tenaga implan 

S/D telah dikaji. Potensi penuh kaedah Taguchi sebagai alat untuk mengoptimumkan prestasi 

proses dengan pelbagai pembolehubah input telah direalisasikan. Berdasarkan keputusan 

Taguchi, tenaga implan pelarasan S/D dikenal pasti sebagai faktor dominan dalam peranti 

NMOS dengan peratusan kesan faktor penyumbang sebanyak 89.77%, manakala tenaga 

implan pelarasan VTH dikenal pasti sebagai faktor dominan dalam PMOS dengan peratusan 

faktor penyumbang sebanyak 55.91%. Untuk menyelesaikan masalah pengoptimuman dengan 

pelbagai respons, GRA digunakan bersama dengan kaedah Taguchi dalam peranti NMOS dan 

PMOS. Selepas pengoptimuman dengan menggunakan GRA berasaskan Taguchi, VTH, ION, 

dan IOFF peranti NMOS diperhatikan berada pada 0.20849 V, 5192.22 μA/μm, dan 0.56513 

nA/μm masing-masing. Sementara itu, VTH, ION, dan IOFF peranti PMOS diperhatikan masing-

masing pada 0.19793 V, 167.873 μA/μm, dan 32.5728 nA/μm. GRA peranti NMOS meningkat 

sedikit sebanyak 3.44%, manakala peranti PMOS dikurangkan sebanyak 0.86%. Untuk 

meramalkan hasil pengoptimuman optimum untuk peranti NMOS dan PMOS, ANN yang 

terlatih dibangunkan menggunakan algoritma Levenberg-Marquardt. Keputusan 

menunjukkan bahawa nilai VTH, IOFF, dan ION untuk peranti NMOS memenuhi ramalan  ITRS 

dengan nilai 0.20987 V, 4979.58 μA/μm, dan 0.10375 nA /μm masing-masing. Bagi peranti 

PMOS, VTH dan IOFF menepati ITRS dengan nilai 0.20452 V, dan 20.3584 nA/μm masing-

masing, manakala nilai ION adalah lebih rendah daripada ramalan dengan nilai 153.996 

μA/μm kerana mobiliti yang lebih tinggi, elektron menghasilkan arus saliran yang lebih tinggi. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

With the advancing technology of the semiconductor industry, the feature size of 

Metal Oxide Semiconductor Field Effect Transistors (MOSFET) has been dramatically 

reduced. Moore’s Law producing a proper operating ultra-small transistor becomes 

extremely important as silicon approaches atomic resolution and reaches its physical and 

electrical constraints. The International Technology Roadmap Semiconductor (ITRS) 

prediction the idea of scaling up devices over the next 15 years. To resolve this challenge, 

researchers have been working on new materials that can be utilized to produce transistors 

as an alternative to silicon. Due to various outstanding electrical properties of graphene, it is 

possible to do significant research on graphene field effect transistor (GFET) devices with a 

variety of structures. 

Moore's Law, formulated by Gordon Moore, a co-founder of Intel Corporation, in 

1965, forecasts that the quantity of transistors packed onto a microchip would roughly double 

every couple of years. This exponential growth trend has resulted in significant boosts in 

computing capabilities while concurrently driving down the expense per transistor. Over 

time, Moore's observation has remained remarkably accurate, catalyzing the swift evolution 

of the electronics sector and enhancing the potency and availability of computing resources. 

The law is often cited as an example of exponential technological progress and has become 

a guiding principle for the semiconductor industry (Thompson and Parthasarathy, 2006). 
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While the pace of progress has slowed somewhat in recent years, due in part to the physical 

limitations of miniaturizing transistors, the fundamental trend predicted by Moore's Law 

continues to drive innovation and growth in the field of computing and technology (Waldrop, 

2016).  

In order to produce a reliable design and high-performance device, the majority of 

device modelling and particularly MOSFET's design require an appropriate optimization 

strategy. For MOSFET channel engineering specifically, such precise dopant control is 

essential. Reduced silicon substrate atom number corresponds to decreasing MOSFET 

dimensions. Because of this, regulating dopant concentrations and localization will become 

essential (Lu, Lu and Taur, 2008). Statistical variance in several process parameters is 

necessary due to the difficulty of perfect control during the MOSFET manufacturing process. 

Maintaining single gate of complementary metal oxide semiconductor (CMOS) 

devices on target for 20 nm node technology is one of the critical downsizing issues (Afifah 

Maheran et al., 2016). To counteract this short channel effect (SCE), multi gate with high 

performance has been implemented in this research. Previous research were conducted to 

incorporate a double gate architecture into the MOSFET design, which is expected to be very 

effective in lowering the short channel effects (SCE) (Kaharudin et al., 2014; Mendiratta and 

Tripathi, 2021). Moreover, several studies have been conducted to enhance the performance 

of devices by controlling the doping profile in the channel region.  

1.2 Problem Statement 

Although traditional MOSFET devices have dominated the semiconductor industry 

for decades, keeping up with Moore’s Law has become more difficult due to the various 
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challenges provided by exceedingly small feature sizes. Shrinking the conventional 

MOSFET requires innovation to circumvent barriers due to the fundamental physics (Sood 

et al., 2018). Due to the presence of SCEs in ultra-small field effect transistor (FETs), scaling 

device of the oxide thickness might result in a high tunneling current and a lower ION/IOFF 

ratio, resulting in poor power consumption.  

Traditional poly-Si/SiO2 technology could be utilized in smaller MOSFET devices 

to satisfy the low power technology standards set by ITRS 2013. Nevertheless, the 

effectiveness of classic Poly-Si/SiO2 technology diminishes below the 22 nm technology 

node due to issues like short channel effects and poly depletion effects, which negatively 

impact transistor performance. Consequently, for semiconductor devices at the nanoscale, 

there has been consideration of using high-k dielectrics as a substitute for SiO2 as the gate 

dielectric material.  

In recent years, there has been significant interest in graphene owing to its 

exceptional electrical characteristics (Hamam et al., 2018; Novodchuk et al., 2020).  

Reports indicate that intrinsic graphene possesses elevated levels of carrier mobility, 

carrier density, thermal conductivity, and durability (Wang et al., 2019). GFET are 

challenging to be used in digital logic despite their outstanding electronic properties because 

graphene does not have a band gap in its normal form, making them difficult to turn off. As 

a result, bilayer graphene was used in this research to address this problem. With this method, 

the graphene channel in the transistor is able to induce a band gap leading to higher on-off 

ratio (Chin et al., 2014; Hamam et al., 2018).  

Scaling down the MOSFET will cause SCE. Thus, another kind of MOSFET 

architecture that has been used to address the problems caused by the SCE is the double gate 

variety. For the simple reason that increasing the channel's gate count enhances electrostatic 


