

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

A NEW LORA BASED POSITIONING ALGORITHM UTILIZING SEQUENCE BASED DEEP LEARNING TECHNIQUE AKA

KAVETHA A/P SUSEENTHIRAN

MASTER OF SCIENCE IN ELECTRONIC ENGINEERING

Faculty of Electronics and Computer Technology and Engineering

Kavetha a/p Suseenthiran

Master of Science in Electronic Engineering

2023

A NEW LORA BASED POSITIONING ALGORITHM UTILIZING SEQUENCE BASED DEEP LEARNING TECHNIQUE

KAVETHA A/P SUSEENTHIRAN

Faculty of Electronics and Computer Technology and Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEDICATION

I dedicate this thesis to my supervisor Ts. Dr. Abd Shukur Ja'afar who was the backbone in helping me throughout the journey. Next is to my beloved parents who have always given a big support for me to complete my research. Besides that, I would like to dedicate this thesis my friends who had always motivated me whenever I'm down.

ABSTRACT

Positioning systems can be utilized both indoors and outdoors, however their precision varies since the environment seems to have a significant influence on localization. There are positioning system for respective environments for example, at outdoor GPS is used whereas for indoor positioning Wi-Fi and BLE are used but there is no positioning system that can be adaptive to different types of environments which leads to huge positioning error. LoRa positioning has good performance in terms of accuracy however the positioning error is high due to the Received Signal Strength Indicator (RSSI) heavy fluctuations and the selection of the parameters depending on different the type of environment. In this research, an adaptive LoRa based Positioning system is developed which consists of LoRa Transmitters and LoRa Receiver. Next, RSSI and Signal-to-Noise Ratio (SNR) that is measured is being classified whether it is LoS or NLoS environment based on the sequence-based Bi-LSTM model. Furthermore, an analysis of classification using different sequence length is done. Then, a new positioning algorithm is developed which incorporates distance estimation, Kalman Filter and trilateration technique according to the classification with different sequence length data and the positioning error is being analysed. It is concluded, having a sequence length of 100 dataset gives 100% accuracy due to the length is shorter, it is faster to be trained. The CDF gives 90% of positioning error less than 2.9m in LoS scenario whereas NLoS scenario is less than 2.41m. Comparing with the traditional trilateration method, the proposed algorithm gives higher positioning accuracy in which the estimated positions are near to the actual position. Proposed method improves the positioning error up to 28.92% for the LoS scenario meanwhile for the NLoS scenario the positioning error is improved by 32.68%. Meanwhile when the user moves from NLoS to LoS environment, the positioning error was improved to 72.16% whereas when it is was from LoS to NLoS environment, the accuracy improved 99.81%.

ALGORITHMA PENENTUDUDUKAN BAHARU BERASASKAN LORA MENGGUNAKAN TEKNIK URUTAN PEMBELAJARAN MENDALAM

ABSTRAK

Sistem penentududukan boleh digunakan di dalam dan di luar bangunan, tetapi keadaan persekitaran mempunyai pengaruh yang besar ke atas penentududukan seseorang. Sistem penentududukan semasa hanya untuk keadaan persekitaran spesifik; misalnya GPS digunakan di luar, Wi-Fi dan BLE digunakan di dalam bangunan. Walau bagaimanapun, tiada satu sistem penentuduukan yang boleh disesuaikan terhadap keadaan persekitaran yang berbeza dan ini menyumbangkan kepada ralat yang besar. Penentududukan LoRa mempunyai prestasi yang baik dari segi ketepatan, namun ralat penentududukan adalah tinggi disebabkan oleh turun-naik Indikator Kekuatan Isyarat yang Diterima (RSSI) dan pemilihan parameter berdasarkan jenis persekitaran yang berbeza. Dalam penyelidikan ini membangunkan pemancar LoRa dan penerima LoRa untuk sistem penentududukan LoRa yang adaptif. Berdasarkan model jujukan Bi-LSTM, RSSI dan nisbah isyarat-hingar (SNR) yang diukur diklasifikasikan sebagai persekitaran LoS atau NLoS. Selanjutnya analisis pengkelasan dilakukan dengan panjang jujukan yang berbeza. Kemudian, algoritma penentududukan baharu telah direkabentuk menggabungkan anggaran jarak, penapis Kalman dan teknik trilaterasi mengikut klasifikasi dengan data panjang jujukan yang berbeza. Rumusan awal mendapati bahawa dataset dengan panjang jujukan 100 memberikan kejituan 100% dengan latihan rangkaian lebih cepat serta panjang jujukan yang lebih pendek. Dalam senario LoS, bacaan CDF 90% memberikan ralat penentududukan kurang daripada 2.9m, manakala dalam senario NLoS, ia adalah kurang daripada 2.41m. Berbanding dengan kaedah trilaterasi tradisional, algoritma yang dicadangkan memberikan ketepatan penentududukan yang lebih tinggi di mana kedudukan yang dianggarkan adalah lebih hamper kepada kedudukan sebenar. Ralat penetududukan dalam senario LoS bertambahbaik sebanyak 28.92% dengan kaedah yang dicadangkan, manakala dalam senario NLoS bertambahbaik sebanyak 32.68%. Apabila pengguna bergerak dari persekitaran NLoS ke LoS, ralat penentududukan bertambahbaik kepada 72.16%, manakala kejituan meningkat sebanyak 99.81% apabila pengguna berpindah dari persekitaran NLoS ke persekitaran LoS.

ACKNOWLEDGEMENTS

Firstly, I would like to thank God for giving me the strength to complete this research successfully. Next, I would like to express my deepest gratitude to my supervisor, Ts. Dr. Abd Shukur Ja'afar and my co-supervisor Profesor Madya Dr. Zoinol Abidin Abd Aziz from the Faculty of Electronics and Computer Engineering, Universiti Teknikal Malaysia Melaka (UTeM) who has been guiding and giving me knowledge throughout this journey as well as giving me continuous support. It was an honour to work and study under his guidance.

Next, I would like to convey my thanks to my parents as I could not done this without their support. My mother, Mdm Sumathi a/p Renggasamy who continuously encourage and advising me and my late father, Mr Suseenthiran a/l Subramaniam who showered his blessings from the heaven. Not forgetting my sisters, S. Aberame and S. Heeraa who has been there to cheer me up always and my grandmother Mdm Jeyaletchimi a/p Dorasamy who was showering her love always.

- ahund all

Thank you to my friends who was constantly helping me and being there for me from the beginning of this journey till the end. Last but not the least, I would like to express my gratitude to everyone who contributed directly and indirectly in completing this research successfully.

ويوم ست تح

TABLE OF CONTENTS

DEC		RATIO	N				
DFI	DICA	TION					
ARS	STRA				i		
ABS	STRA	K			ii		
ACI	KNO	WLED	GEMEN	TS	iii		
TAI	BLE (OF CO	NTENTS		iv		
LIS	T OF	TABL	ES		vii		
LIS	T OF	FIGUI	RES		ix		
LIS	T OF	ABBR	EVIATI	ONS	xii		
LIS	T OF	SYMB	OLS		xiv		
LIS	T OF	APPE	NDICES		XV		
LIS	T OF	PUBL	ICATIO	NS	xvi		
CH	APTE	ER					
1.	IN	FRODU	CTION	SIA A	1		
	1.1	Introd	uction		1		
	1.2	Proble	m Staten	ient	3		
	1.3	Resea	rch Objec	tives P	4		
	1.4	Resea	rch Scope	ilution	5		
1.5 Research Contribution				Ibution	5		
	1.0	Thesis	⁴ / _{Mn}		0		
2.	LIT	ERAT	URE RE	VIEW	8		
	2.1	Fundamental Location Positioning Techniques					
		2.1.1	Angle o	f Arrival (AoA)	8		
		2.1.2	Time of	Arrival (ToA) AL MALAYSIA MELAK	10		
		2.1.3	Time D	ifference of Arrival (TDoA)	11		
		2.1.4	Receive	d Signal Strength Indicator (RSSI)	12		
		2.1.5	Fingerp	rinting RSSI	13		
		2.1.6	Trilater	ation	15		
	2.2	Outdo	or Positio	oning	16		
		2.2.1	Satellite	-Based Positioning	17		
	• •	2.2.2	Cellular	-Based Positioning	17		
	2.3	Indoor	r Position	ing	18		
		2.3.1	W1-F1 P	ositioning System	20		
		2.3.2 BLE Positioning System					
	2.4	2.5.5 Loka Positioning System					
	2.4			igence (AI)	20		
		2.4.1	2411	arning Wodels	27		
			2.4.1.1	Aruncial Neural Network (ANN)	21		
			2.4.1.2	Convolutional Neural Network (CNN)	2ð 20		
			2.4.1.3	Long Short Term Momery (LSTM)	5U 21		
			2.4.1.4	Bi directional Long Short Term Momery	51		
			2.4.1.3	(Bit STM)	22		
					55		

	2.5	Deep Learning Implementation on Positioning 3.				
		2.5.1 Deep Learning Implementation on Wi-Fi Positioning				
		2.5.2	Deep Learning Implementation on BLE Positioning	37		
		2.5.3	Deep Learning Implementation on LoRa Positioning	39		
	2.6	6 Kalman Filter				
	2.7	Compo	onents Used	43		
		2.7.1	Node MCU ESP8266	43		
		2.7.2	Dragino LoRa Bee Module	44		
	2.8	Resear	ch Gap in LoRa based positioning using deep learning			
		technic	que	45		
	2.9	Chapte	er Conclusion	46		
3.	MET	ГНОДО	DLOGY	47		
	3.1	System	n Overview	47		
	3.2	System	n Development	48		
	3.3	Circuit	Connection	50		
	3.4	Data C	Collection	50		
	3.5	Flowch	nart of the System	53		
	3.6	Design	ing network for classification on LoS and NLoS	58		
	3.7	Distan	ce Estimation	61		
	3.8	Kalma	n Filter Implementation	62		
	3.9	Trilate	ration	62		
	3.10	Positio	ning Error and Accuracy	65		
		3.10.1	Root Mean Square Error	65		
		3.10.2	Cumulative Distribution Function	65		
	3.11	Chapte	er Conclusion	65		
			10N0			
4.	RES	ULT A	ND DISCUSSION	67		
	4.1	Classif	ication of different signal propagation path	67		
		4.1.1	Train-Test	67		
		4.1.2	Creating a training network	71		
	4.2	Classif	ication	73		
		4.2.1	1000 Sequence Length on LoS Scenario	73		
		4.2.2	1000 Sequence Length on NLoS Scenario	75		
		4.2.3	200 Sequence Length on LoS Scenario	76		
		4.2.4	200 Sequence Length on NLoS Scenario	77		
		4.2.5	100 Sequence Length on LoS Scenario	78		
		4.2.6	100 Sequence Length on NLoS Scenario	79		
	4.3	Analys	sis on Distance Estimation	81		
	4.4	Locatio	on Estimation	83		
		4.4.1	LoS Scenario with 1000 Sequence Length	83		
			4.4.1.1 Overall System Positioning Error	89		
		4.4.2	NLoS Scenario with 1000 Sequence Length	90		
			4.4.2.1 Overall System Positioning Error	96		
		4.4.3	LoS Scenario with 200 Sequence Length	97		
			4.4.3.1 Overall System Positioning Error	99		
		4.4.4	NLoS Scenario with 200 Sequence Length	99		
			4.4.4.1 Overall System Positioning Error	101		
		4.4.5	LoS Scenario with 100 Sequence Length	102		
			4.4.5.1 Overall System Positioning Error	103		

		4.4.6 NLoS Scenario with 100 Sequence Length	104
		4.4.6.1 Overall System Positioning Error	106
	4.5 Adaptive Positioning Algorithm on Different Type of		
		Environment	107
		4.5.1 Scenario 1 (From NLoS to LoS condition)	107
		4.5.2 Scenario 2 (From LoS to NLoS condition)	109
	4.6	Chapter Conclusion	111
5.	CO	NCLUSION AND RECOMMENDATIONS	113
5.	COI FOI	NCLUSION AND RECOMMENDATIONS R FUTURE RESEARCH	113
5.	CO FO 5.1	NCLUSION AND RECOMMENDATIONS R FUTURE RESEARCH Conclusion	113 113
5.	COI FOI 5.1 5.2	NCLUSION AND RECOMMENDATIONS R FUTURE RESEARCH Conclusion Recommendations	113 113 114

LIST OF TABLES

TABLE	TITLE		
2.1	Method used in positioning technique		
2.2	Method used in positioning technique for deep learning		
	implementation	40	
3.1	LoRa's specification		
3.2	Pin Connection between LoRa Module and Node MCU		
	ESP8266	50	
3.3	Path Loss Exponent	61	
4.1	Classification on LoS with sequence length of 1000	75	
4.2	Classification on NLoS with sequence length of 1000	76	
4.3	Classification on LoS with sequence length of 200	76	
4.4	Classification on NLoS with sequence length of 200	77	
4.5	Classification on LoS with sequence length of 100		
4.6	Classification on NLoS with sequence length of 100		
4.7	Comparison of RMSE for Rx1 at LoS scenario		
4.8	Comparison of RMSE for Rx2 at LoS scenario		
4.9	Comparison of RMSE for Rx3 at LoS scenario		
4.10	Comparison of RMSE for Rx4 at LoS scenario		
4.11	Comparison of RMSE for Rx5 at LoS scenario		
4.12	Positioning error at 90% of LoS with sequence length of 1000		
4.13	Comparison of RMSE for Rx1 at NLoS scenario		
4.14	Comparison of RMSE for Rx2 at NLoS scenario		
4.15	Comparison of RMSE for Rx3 at NLoS scenario		

4.16	Comparison of RMSE for Rx4 at NLoS scenario		
4.17	Comparison of RMSE for Rx5 at NLoS scenario		
4.18	Positioning error at 90% of NLoS with sequence length of 1000		
4.19	Comparison of RMSE for LoS scenario with sequence length		
	of 200	98	
4.20	Positioning error at 90% of LoS with sequence length of 200	99	
4.21	Comparison of RMSE for NLoS scenario with sequence length		
	of 200	101	
4.22	Positioning error at 90% of NLoS with sequence length of 200	102	
4.23 Comparison of RMSE for LoS scenario with sequence length			
	of 100	103	
4.24	Positioning error at 90% of LoS with sequence length of 100	104	
4.25	Comparison of RMSE for NLoS scenario with sequence length		
	of 100	105	
4.26	Positioning error at 90% of NLoS with sequence length of 100	106	
4.27	Comparison of RMSE for Scenario 1	108	
4.28	Positioning error at 90% of Scenario 1	109	
4.29	Comparison of RMSE for Scenario 2	110	
4.30	Positioning error at 90% of Scenario 2	111	
	UNIVERSITI TEKNIKAL MALAYSIA MELAKA		

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	AOA Technique	9
2.2	TOA Technique	10
2.3	Fingerprinting Technique	14
2.4	Trilateration Technique	16
2.5	ANN model structure	28
2.6	CNN model structure	29
2.7	RNN model's overview	30
2.8	RNN model structure	31
2.9	LSTM model structure	32
2.10	LSTM cell structure	33
2.11	Bi-LSTM model structure	34
2.12	Deep Neural Network (DNN) model	38
2.13	Convolutional Neural Network (CNN) model	38
2.14	Kalman Filter Process	43
2.15	Node MCU (ESP8266)	44
2.16	Dragino LoRa Module (SX1278)	45
3.1	Overall Block Diagram of System	48
3.2	LoRa Transmitter / Receiver	49
3.3	Circuit Connection between Node MCU ESP8266 and LoRa	
	Module	50
3.4	Measurement of data at LoS scenario	51
3.5	Measurement of data at NLoS scenario	51

3.6	Measured data with sequence length of 1000	51
3.7	Line-of-Sight (LoS) scenario at football field	52
3.8	Non-Line-of-Sight (NLoS) scenario at MRG research lab	53
3.9	Flowchart of LoRa Positioning System	55
3.10	Proposed Algorithm Block Diagram	56
3.11	Deep learning model layer	57
3.12	Deep learning model architecture	58
3.13	Segmentation of dataset	59
3.14	Proposed Algorithm Flowchart	60
3.15	Trilateration Concept	63
4.1	Training graph of training dataset 5 and 10 meters	68
4.2	Confusion matrix of training dataset 5 and 10 meters	68
4.3	Confusion matrix of test dataset 5 and 10 meters	70
4.4	Confusion matrix of test dataset of distance at 8 meters	70
4.5	Confusion matrix of input test dataset of 12m (beyond range	
	of training)	71
4.6	Training accuracy of training dataset with sequence length of	
	1000	72
4.7	Confusion matrix of training dataset with sequence length of	
	U1000 ERSITI TEKNIKAL MALAYSIA MELAKA	72
4.8	Confusion matrix of test dataset with sequence length of 1000	73
4.9	LoS scenario	74
4.10	NLoS scenario	75
4.11	Fluctuation of RSSI	82
4.12	Distance Estimation with and without Kalman Filter	82
4.13	Trilateration LoS for Rx1	84
4.14	Trilateration LoS for Rx2	85
4.15	Trilateration LoS for Rx3	86
4.16	Trilateration LoS for Rx4	87
4.17	Trilateration LoS for Rx5	88
4.18	Boxplot distribution for all Rx points in LoS scenario	89
4.19	CDF of overall LoS with sequence length of 1000	90

4.20	Trilateration NLoS for Rx1	91	
4.21	Trilateration NLoS for Rx2	92	
4.22	Trilateration NLoS for Rx3	93	
4.23	Trilateration NLoS for Rx4	94	
4.24	Trilateration NLoS for Rx5	95	
4.25	Boxplot distribution for all Rx points in NLoS scenario		
4.26	CDF of overall NLoS with sequence length of 1000	97	
4.27	Boxplot distribution for all Rx points in LoS scenario with		
	200 sequence length	98	
4.28	CDF of overall LoS with sequence length of 200	99	
4.29	Boxplot distribution for all Rx points in NLoS scenario with		
	200 sequence length	100	
4.30	CDF of overall NLoS with sequence length of 200	101	
4.31	Boxplot distribution for all Rx points in LoS scenario with		
	100 sequence length	102	
4.32	CDF of overall LoS with sequence length of 100	104	
4.33	Boxplot distribution for all Rx points in NLoS scenario with		
	100 sequence length	105	
4.34	CDF of overall NLoS with sequence length of 100	106	
4.35	User moving from NLoS to LoS environment	107	
4.36	Overall CDF of Scenario 1	109	
4.37	User moving from LoS to NLoS environment	109	
4.38	Overall CDF of Scenario 2	111	

LIST OF ABBREVIATIONS

AI	-	Artificial Intelligence
ANN	-	Artificial Neural Network
AoA	-	Angle of Arrival
AP	-	Access Point
BDS	- 1	Bei Dou Navigation System
Bi-LSTM		Bidirectional Long Short-Term Memory
BLE	S-	Bluetooth Low Energy
CDF	E.	Cumulative Distribution Function
CNN	-23	Convolutional Neural Network
DNN		Deep Neural Network
GNSS	LL.	Global Navigation Satellite System
GPS	-	Global Positioning System
GRU	UNIV	Gated Recurrent Unit L MALAYSIA MELAKA
LoRa	-	Long-Range Low Power Network Technology
LoRa LoS	-	Long-Range Low Power Network Technology Line-of-Sight
LoRa LoS LPWAN	- - -	Long-Range Low Power Network Technology Line-of-Sight Low Power Wide Area Network
LoRa LoS LPWAN LSTM	- - -	Long-Range Low Power Network Technology Line-of-Sight Low Power Wide Area Network Long Short-Term Memory
LoRa LoS LPWAN LSTM NLoS	- - -	Long-Range Low Power Network Technology Line-of-Sight Low Power Wide Area Network Long Short-Term Memory Non-Line-of-Sight
LoRa LoS LPWAN LSTM NLoS PAN	- - - -	Long-Range Low Power Network Technology Line-of-Sight Low Power Wide Area Network Long Short-Term Memory Non-Line-of-Sight Personal Area Network
LoRa LoS LPWAN LSTM NLoS PAN RMSE	- - - -	Long-Range Low Power Network Technology Line-of-Sight Low Power Wide Area Network Long Short-Term Memory Non-Line-of-Sight Personal Area Network Root Mean Square Error
LoRa LoS LPWAN LSTM NLoS PAN RMSE RNN		 Long-Range Low Power Network Technology Line-of-Sight Low Power Wide Area Network Long Short-Term Memory Non-Line-of-Sight Personal Area Network Root Mean Square Error Recurrent Neural Network
LoRa LoS LPWAN LSTM NLoS PAN RMSE RNN RSSI		 Long-Range Low Power Network Technology Line-of-Sight Low Power Wide Area Network Long Short-Term Memory Non-Line-of-Sight Personal Area Network Root Mean Square Error Recurrent Neural Network Received Signal Strength Indicator
LoRa LoS LPWAN LSTM NLoS PAN RMSE RNN RSSI SF		 Long-Range Low Power Network Technology Line-of-Sight Low Power Wide Area Network Long Short-Term Memory Non-Line-of-Sight Personal Area Network Root Mean Square Error Recurrent Neural Network Received Signal Strength Indicator Spreading Factor
LoRa LoS LPWAN LSTM NLoS PAN RMSE RNN RSSI SF SNR		 Long-Range Low Power Network Technology Line-of-Sight Low Power Wide Area Network Long Short-Term Memory Non-Line-of-Sight Personal Area Network Root Mean Square Error Recurrent Neural Network Received Signal Strength Indicator Spreading Factor Signal-to-Noise Ratio
LoRa LoS LPWAN LSTM NLoS PAN RMSE RNN RSSI SF SNR TDoA		 Long-Range Low Power Network Technology Line-of-Sight Low Power Wide Area Network Long Short-Term Memory Non-Line-of-Sight Personal Area Network Root Mean Square Error Recurrent Neural Network Received Signal Strength Indicator Spreading Factor Signal-to-Noise Ratio Time-Difference of Arrival

WAN	-	Wide Area Network
Wi-Fi	-	Wireless Fidelity

LIST OF SYMBOLS

- reference value of RSSI at 1m away Α _
- d distance _
- Path Loss Exponent п _
- total number of sampled data Ν _
- coordinate at X-axis Х -
- у

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF APPENDICES

LIST OF PUBLICATIONS

- Ja'afar, A. S., Suseenthiran, K., Saipullah, K. M., Aziz, M. Z. A. A., Khang, A. W. Y. and Salleh, A. 2023. Development of real-time monitoring BLE-LoRa positioning system based on RSSI for non-line-of-sight condition. *Indonesian Journal of Electrical Engineering and Computer Science*, 30(2), pp. 972–981. doi: 10.11591/ijeecs.v30.i2.pp972-981
- Kavetha, S., Ja'afar, A. S., Aziz, M. Z. A. A., Isa, A. A. M., Johal, M. S. and Hashim, N. M. Z. 2022. Development of Location Estimation Algorithm Utilizing Rssi for Lora Positioning System. *Jurnal Teknologi*, 84(1), pp. 97–105. doi: 10.11113/jurnalteknologi.v84.17153.
- Suseenthiran, K., Ja'afar, A. S., Heng, K. W., Aziz, M. Z. A. A., Isa, A. A. M., Husin, S. H. and Hashim, N. M. Z. 2021. Indoor positioning utilizing bluetooth low energy (BLE) RSSI on LoRa system. Indonesian Journal of Electrical Engineering and Computer Science, 23(2), pp. 927–937. doi: 10.11591/ijeecs.v23.i2.pp927-937.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

CHAPTER 1

INTRODUCTION

1.1 Introduction

To decide the location of an object at any place, a positioning scheme is necessary. Creations for this mission range from worldwide meter precision coverage to workspace surveillance with sub-millimeters accuracy. Positioning system has been used in many sectors such as navigation, military, tracking devices, logistic and health care monitoring (Zhuang et al., 2018). Positioning system can be used indoor as well as outdoor, but the accuracy will not be the same as the environment has a direct impact on localization. Signal Based Positioning System consists of different types of systems such as Satellite Based Positioning, Cellular Network, Wi-Fi based Positioning System, Bluetooth Low Energy (BLE) based Positioning and LoRa Positioning. Satellite based Positioning is mainly called the Global Navigation Satellite System (GNSS) where it has a few sia n technologies which are the Global Positioning System (GPS), Global Navigation Satellite System (GLONASS) and BeiDou Navigation Satellite System (BDS)(Mendoza-Silva, Torres-Sospedra and Huerta, 2019). GPS has been one of the positioning technologies used for outdoor environment. GPS is recognized mostly as navigation satellite method for identifying the location of a user mostly on the ground. GPS receivers are included in several existing products such as automobiles, smartphones, smart watches and Geographic Information System (GIS) devices. Meanwhile the Wi-Fi-based, BLE-based and LoRabased positioning system is used with its own device for example Wi-Fi based positioning utilizes Access Point (AP) to transmit and receive data, BLE-based positioning utilizes

BLE beacons to send and receive signal while LoRa positioning system uses LoRa node to transmit and receive signals.

LoRa is a Low-Power Wide-Area Network (LPWAN), a non-cellular networking technology that facilitates long-range communication through low-power, low-cost IoT devices and encourages machine-to-machine communication (M2M) network. Regardless of its low bandwidth limit, LPWAN connectivity is therefore perfectly suggested for long-range wireless IoT applications. LoRa uses four types of frequencies worldwide which are 433MHz, 868MHz, 915MHz and 923MHz. In Malaysia the allocation of LoRa frequency band is 915MHz (Lam, Cheung and Lee, 2019). LoRa enables a long-range transmission with a distance of 5 kilometers in urban areas while 15 kilometers in rural areas with low power consumption. There are only a number of research that comprehends LoRa technology's efficiency and characterization in positioning system. Wi-Fi based positioning which is under WAN has the drawback of unstable transmission of data as it penetrates through heavy objects while BLE-based positioning that is under PAN can only be used in short range transmission of approximately 20 meters.

As LoRa is a revolutionary technology throughout Malaysia, there are only a few studies to comprehend LoRa technology's characterization and efficiency in positioning system. Most of the researchers used LoRa in development of their IoT network and utilized GPS to identify the location (Podevijn et al., 2018)(Choi et al., 2018). Previous researches in the positioning system have studied different techniques such as fingerprinting, Time of Arrival (ToA), Time-Difference of Arrival (TDoA) and trilateration. In development of LoRa positioning, usually trilateration and fingerprinting are the preferred techniques due to the easiest of development and implementation(Lin and Zeng, 2019)(Andersen et al., 2020).

1.2 Problem Statement

The main drawback of GPS technology is its accuracy in critical environments such as indoor, tunnel and urban canyon. The reasons causing GPS technology to not work precisely are weak signal strength, attenuation of signal caused by multipath effect and signals sometimes are totally blocked by the building (Oderwald and Boucher, 2003). GPS signals are always blocked at high-rise buildings and there are not enough satellite signals available to locate a user's position (Cui and Ge, 2001).

There are a few types of alternative technologies to satellite based that are used in positioning system nowadays, for example Wi-Fi based positioning, BLE based positioning and LoRa based positioning. According to Wi-Fi based positioning system, it can cover a long-range making it the ideal option for indoor positioning system and also the data are more secured due to its advanced encryption method. However, Wi-Fi has a higher center frequency so it can penetrate through heavy objects like buildings causing it to be unstable due to its multipath fading effect or noise (Pascacio et al., 2021). Also, the ranging frequency's connectivity of Wi-Fi is limited to approximately 45 meters. Whereas for BLE based positioning, which is initiated by Bluetooth special interest group, it uses less amount of energy in contrast to Wi-Fi positioning system. BLE's usage has rapidly increased in various applications. The disadvantage of this system is that it can only be used in a short range transmission with a maximum of 20 meters with a small amount of data only (Kalbandhe and Patil, 2017). When tracking an asset in a large environment, BLE cannot be used as it cannot support long range transmission of data. BLE and Wi-Fi technologies are only suitable for indoor transmission of data and not suitable for both indoor and outdoor environment as the range of data transmission is small.

Another technology that is used in the positioning system is LoRa based positioning system. LoRa is a new technology which is mostly used for the industrial and geographical

type of IoT networks where its demand has been increasing nowadays. Moreover, it supports long range data transmission with low power consumption. Alternative solution for the indoor GPS detection is LoRa Positioning System. Basic LoRa positioning system gives a good performance in terms of accuracy but it also has the positioning error due to RSSI fluctuation and the environment plays a major part in estimating the position of the object (Cui and Ge, 2001). The determination of LoS and NLoS scenarios is important as the path loss exponent affects the distance and location estimation. Looking at the trend of deep learning models for positioning, it mostly uses fingerprinting technique. This technique uses more manpower for collecting data at each point of the environment which is a major drawback. There is no single positioning algorithm that can adapt to different types of environment which leads to a huge positioning error. As LoRa is used in a long range transmission of data which ranges up to 5 kilometers, it can be used in both indoor and outdoor environment. Hence, the type of environment is crucial in order to have a high positioning accuracy or a small positioning error. Furthermore, basic trilateration technique mostly used in a static environment and not a for a dynamic environment. This technique depends on a fixed path loss exponent when evaluating the user's position. Change of environment during the positioning analysis directly impacts the positioning accuracy. To the best of the knowledge of the researcher, there is no single positioning algorithm that adapts both indoor and outdoor environment condition.

1.3 Research Objectives

This research is developed with the aid of the three objectives which are:

- To design a deep learning layer based on sequence-based Bi-LSTM to classify Lineof-Sight (LoS) and Non-Line-of-Sight (NLoS).
- To integrate sequence-based Bi-LSTM model with Kalman Filter and trilateration technique.