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ABSTRACT 

 

 

Positioning systems can be utilized both indoors and outdoors, however their precision varies 

since the environment seems to have a significant influence on localization. There are 

positioning system for respective environments for example, at outdoor GPS is used whereas 

for indoor positioning Wi-Fi and BLE are used but there is no positioning system that can 

be adaptive to different types of environments which leads to huge positioning error. LoRa 

positioning has good performance in terms of accuracy however the positioning error is high 

due to the Received Signal Strength Indicator (RSSI) heavy fluctuations and the selection of 

the parameters depending on different the type of environment. In this research, an adaptive 

LoRa based Positioning system is developed which consists of LoRa Transmitters and LoRa 

Receiver. Next, RSSI and Signal-to-Noise Ratio (SNR) that is measured is being classified 

whether it is LoS or NLoS environment based on the sequence-based Bi-LSTM model. 

Furthermore, an analysis of classification using different sequence length is done. Then, a 

new positioning algorithm is developed which incorporates distance estimation, Kalman 

Filter and trilateration technique according to the classification with different sequence 

length data and the positioning error is being analysed. It is concluded, having a sequence 

length of 100 dataset gives 100% accuracy due to the length is shorter, it is faster to be 

trained. The CDF gives 90% of positioning error less than 2.9m in LoS scenario whereas 

NLoS scenario is less than 2.41m. Comparing with the traditional trilateration method, the 

proposed algorithm gives higher positioning accuracy in which the estimated positions are 

near to the actual position. Proposed method improves the positioning error up to 28.92% 

for the LoS scenario meanwhile for the NLoS scenario the positioning error is improved by 

32.68%. Meanwhile when the user moves from NLoS to LoS environment, the positioning 

error was improved to 72.16% whereas when it is was from LoS to NLoS environment, the 

accuracy improved 99.81%. 
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ALGORITHMA PENENTUDUDUKAN BAHARU BERASASKAN LORA 

MENGGUNAKAN TEKNIK URUTAN PEMBELAJARAN MENDALAM 

 

 

ABSTRAK 

 

 

Sistem penentududukan boleh digunakan di dalam dan di luar bangunan, tetapi keadaan 

persekitaran mempunyai pengaruh yang besar ke atas penentududukan seseorang. Sistem 

penentududukan semasa hanya untuk keadaan persekitaran spesifik; misalnya GPS 

digunakan di luar, Wi-Fi dan BLE digunakan di dalam bangunan. Walau bagaimanapun, 

tiada satu sistem penentuduukan yang boleh disesuaikan terhadap keadaan persekitaran 

yang berbeza dan ini menyumbangkan kepada ralat yang besar. Penentududukan LoRa 

mempunyai prestasi yang baik dari segi ketepatan, namun ralat penentududukan adalah 

tinggi disebabkan oleh turun-naik Indikator Kekuatan Isyarat yang Diterima (RSSI) dan 

pemilihan parameter berdasarkan jenis persekitaran yang berbeza. Dalam penyelidikan ini 

membangunkan pemancar LoRa dan penerima LoRa untuk sistem penentududukan LoRa 

yang adaptif. Berdasarkan model jujukan Bi-LSTM, RSSI dan nisbah isyarat-hingar (SNR) 

yang diukur diklasifikasikan sebagai persekitaran LoS atau NLoS. Selanjutnya analisis 

pengkelasan dilakukan dengan panjang jujukan yang berbeza. Kemudian, algoritma 

penentududukan baharu telah direkabentuk menggabungkan anggaran jarak, penapis 

Kalman dan teknik trilaterasi mengikut klasifikasi dengan data panjang jujukan yang 

berbeza. Rumusan awal mendapati bahawa dataset dengan panjang jujukan 100 

memberikan kejituan 100% dengan latihan rangkaian lebih cepat serta panjang jujukan 

yang lebih pendek. Dalam senario LoS, bacaan CDF 90% memberikan ralat 

penentududukan kurang daripada 2.9m, manakala dalam senario NLoS, ia adalah kurang 

daripada 2.41m. Berbanding dengan kaedah trilaterasi tradisional, algoritma yang 

dicadangkan memberikan ketepatan penentududukan yang lebih tinggi di mana kedudukan 

yang dianggarkan adalah lebih hamper kepada kedudukan sebenar. Ralat penetududukan 

dalam senario LoS bertambahbaik sebanyak 28.92% dengan kaedah yang dicadangkan, 

manakala dalam senario NLoS bertambahbaik sebanyak 32.68%. Apabila pengguna 

bergerak dari persekitaran NLoS ke LoS, ralat penentududukan bertambahbaik kepada 

72.16%, manakala kejituan meningkat sebanyak 99.81% apabila pengguna berpindah dari 

persekitaran NLoS ke persekitaran LoS. 
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CHAPTER 1  

 

INTRODUCTION 

 

1.1 Introduction  

To decide the location of an object at any place, a positioning scheme is necessary. 

Creations for this mission range from worldwide meter precision coverage to workspace 

surveillance with sub-millimeters accuracy. Positioning system has been used in many 

sectors such as navigation, military, tracking devices, logistic and health care monitoring 

(Zhuang et al., 2018). Positioning system can be used indoor as well as outdoor, but the 

accuracy will not be the same as the environment has a direct impact on localization. 

Signal Based Positioning System consists of different types of systems such as Satellite 

Based Positioning, Cellular Network, Wi-Fi based Positioning System, Bluetooth Low 

Energy (BLE) based Positioning and LoRa Positioning. Satellite based Positioning is 

mainly called the Global Navigation Satellite System (GNSS) where it has a few 

technologies which are the Global Positioning System (GPS), Global Navigation Satellite 

System (GLONASS) and BeiDou Navigation Satellite System (BDS)(Mendoza-Silva, 

Torres-Sospedra and Huerta, 2019). GPS has been one of the positioning technologies used 

for outdoor environment. GPS is recognized mostly as navigation satellite method for 

identifying the location of a user mostly on the ground. GPS receivers are included in 

several existing products such as automobiles, smartphones, smart watches and Geographic 

Information System (GIS) devices. Meanwhile the Wi-Fi-based, BLE-based and LoRa-

based positioning system is used with its own device for example Wi-Fi based positioning 

utilizes Access Point (AP) to transmit and receive data, BLE-based positioning utilizes 
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BLE beacons to send and receive signal while LoRa positioning system uses LoRa node to 

transmit and receive signals.  

LoRa is a Low-Power Wide-Area Network (LPWAN), a non-cellular networking 

technology that facilitates long-range communication through low-power, low-cost IoT 

devices and encourages machine-to-machine communication (M2M) network. Regardless 

of its low bandwidth limit, LPWAN connectivity is therefore perfectly suggested for long-

range wireless IoT applications. LoRa uses four types of frequencies worldwide which are 

433MHz, 868MHz, 915MHz and 923MHz. In Malaysia the allocation of LoRa frequency 

band is  915MHz (Lam, Cheung and Lee, 2019). LoRa enables a long-range transmission 

with a distance of 5 kilometers in urban areas while 15 kilometers in rural areas with low 

power consumption. There are only a number of research that comprehends LoRa 

technology’s efficiency and characterization in positioning system. Wi-Fi based 

positioning which is under WAN has the drawback of unstable transmission of data as it 

penetrates through heavy objects while BLE-based positioning that is under PAN can only 

be used in short range transmission of approximately 20 meters. 

As LoRa is a revolutionary technology throughout Malaysia, there are only a few 

studies to comprehend LoRa technology’s characterization and efficiency in positioning 

system. Most of the researchers used LoRa in development of their IoT network and 

utilized GPS to identify the location (Podevijn et al., 2018)(Choi et al., 2018). Previous 

researches in the positioning system have studied different techniques such as 

fingerprinting, Time of Arrival (ToA), Time-Difference of Arrival (TDoA) and 

trilateration. In development of LoRa positioning, usually trilateration and fingerprinting 

are the preferred techniques due to the easiest of development and implementation(Lin and 

Zeng, 2019)(Andersen et al., 2020). 
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1.2 Problem Statement 

The main drawback of GPS technology is its accuracy in critical environments such 

as indoor, tunnel and urban canyon. The reasons causing GPS technology to not work 

precisely are weak signal strength, attenuation of signal caused by multipath effect and 

signals sometimes are totally blocked by the building (Oderwald and Boucher, 2003). GPS 

signals are always blocked at high-rise buildings and there are not enough satellite signals 

available to locate a user’s position (Cui and Ge, 2001).  

There are a few types of alternative technologies to satellite based that are used in 

positioning system nowadays, for example Wi-Fi based positioning, BLE based 

positioning and LoRa based positioning. According to Wi-Fi based positioning system, it 

can cover a long-range making it the ideal option for indoor positioning system and also 

the data are more secured due to its advanced encryption method. However, Wi-Fi has a 

higher center frequency so it can penetrate through heavy objects like buildings causing it 

to be unstable due to its multipath fading effect or noise (Pascacio et al., 2021). Also, the 

ranging frequency’s connectivity of Wi-Fi is limited to approximately 45 meters. Whereas 

for BLE based positioning, which is initiated by Bluetooth special interest group, it uses 

less amount of energy in contrast to Wi-Fi positioning system. BLE’s usage has rapidly 

increased in various applications. The disadvantage of this system is that it can only be 

used in a short range transmission with a maximum of 20 meters with a small amount of 

data only (Kalbandhe and Patil, 2017). When tracking an asset in a large environment, 

BLE cannot be used as it cannot support long range transmission of data.  BLE and Wi-Fi 

technologies are only suitable for indoor transmission of data and not suitable for both 

indoor and outdoor environment as the range of data transmission is small. 

Another technology that is used in the positioning system is LoRa based positioning 

system. LoRa is a new technology which is mostly used for the industrial and geographical 
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type of IoT networks where its demand has been increasing nowadays. Moreover, it 

supports long range data transmission with low power consumption. Alternative solution 

for the indoor GPS detection is LoRa Positioning System. Basic LoRa positioning system 

gives a good performance in terms of accuracy but it also has the positioning error due to 

RSSI fluctuation and the environment plays a major part in estimating the position of  the 

object (Cui and Ge, 2001). The determination of LoS and NLoS scenarios is important as 

the path loss exponent affects the distance and location estimation. Looking at the trend of 

deep learning models for positioning, it mostly uses fingerprinting technique. This 

technique uses more manpower for collecting data at each point of the environment which 

is a major drawback. There is no single positioning algorithm that can adapt to different 

types of environment which leads to a huge positioning error. As LoRa is used in a long 

range transmission of data which ranges up to 5 kilometers, it can be used in both indoor 

and outdoor environment. Hence, the type of environment is crucial in order to have a high 

positioning accuracy or a small positioning error. Furthermore, basic trilateration technique 

mostly used in a static environment and not a for a dynamic environment. This technique 

depends on a fixed path loss exponent when evaluating the user’s position. Change of 

environment during the positioning analysis directly impacts the positioning accuracy.  To 

the best of the knowledge of the researcher, there is no single positioning algorithm that 

adapts both indoor and outdoor environment condition. 

 

1.3 Research Objectives 

This research is developed with the aid of the three objectives which are: 

• To design a deep learning layer based on sequence-based Bi-LSTM to classify Line-

of-Sight (LoS) and Non-Line-of-Sight (NLoS). 

• To integrate sequence-based Bi-LSTM model with Kalman Filter and trilateration 

technique. 


