

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

CLAY REINFORCED RECYCLED BIAXIALLY-ORIENTED POLYPROPYLENE COMPOSITES THROUGH WATER-ASSISTED MELT COMPOUNDING FOR CONCRETE FINE AGGREGATES

MASTER OF SCIENCE IN MANUFACTURING ENGINEERING

Faculty of Industrial and Manufacturing Technology and Engineering

CLAY REINFORCED RECYCLED BIAXIALLY-ORIENTED POLYPROPYLENE COMPOSITES THROUGH WATER-ASSISTED MELT COMPOUNDING FOR CONCRETE FINE AGGREGATES

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Anis Aqilah binti Abd Ghani

Master of Science in Manufacturing Engineering

CLAY REINFORCED RECYCLED BIAXIALLY-ORIENTED POLYPROPYLENE COMPOSITES THROUGH WATER-ASSISTED MELT COMPOUNDING FOR CONCRETE FINE AGGREGATES

ANIS AQILAH BINTI ABD GHANI

Faculty of Industrial and Manufacturing Technology and Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEDICATION

To my beloved husband, Ammar Fakhrullah bin Arifin

My caring mother, Noorfizam binti Omar

My appreciated father, Abd Ghani bin Sha'ari

My adored sister, Intan Hanani binti Abd Ghani

For giving words of inspiration and encouragement me on the pursuit of excellence, moral

support, money, cooperation and also understandings. Thank you for all you did. This work is

dedicated to all of you.

ونيونر سيتي تيڪنيڪل مليسيا ملاك

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ABSTRACT

Natural aggregate depletion has becoming a global problem despite increased structural construction demands. Besides, accumulating plastic waste is a big challenge people face worldwide. Transforming waste plastics into construction aggregates appeared to be a sensible solution to both problems. However, 1) the low interaction between plastic aggregates with organic cement lowers the strength of concretes, and 2) the high temperature of the conventional melt compounding process of plastic aggregates becomes the ultimate concern that needs to be addressed further. This study used recycled biaxially-oriented polypropylene (rBOPP) waste provided by San Miguel Plastic Film Sdn. Bhd. In Stage 1, the rBOPP was compounded with kaolin clay using a water-assisted compounding process. The process parameters (temperature: 130 to 180 °C; time: 5 to 10 minutes) and formulation (% clay: 0 to 10 wt%; % water: 0 to 10 wt%) were optimized with the help of the Response Surface Methodology (RSM) using a twolevel factorial design. The optimum parameters to produce plastic composite aggregates (PCA) were 1 wt% kaolin clay, 10 wt% water at a temperature of 180°C and a time of 5 minutes with a tensile strength of ~32MPa. Then, the PCA and rBOPP without clay (PWA) were bulk produced in a plastic factory and further validated for physical and mechanical properties. The PCA and PWA were tested for physical and mechanical properties per standards ASTM D792, ASTM D1895, ASTM D2240 and ASTM D638. The PCA had enhanced tensile strength and tensile modulus with an increment of 1.2 and 8 % compared to PWA. The properties were supported with morphological analysis through scanning electron microscopy (SEM), compositional analysis through Fourier-transform infrared spectroscopy (FTIR) and structural analysis through X-ray diffractometry (XRD). In Stage 2, the optimum formulation of PCA at different ratios (10 wt%, 15 wt% and 20 wt%) was tested for the workability and compressive strength of M20 concrete mixtures against the natural aggregates (NA) and PWA. The M20 mixed concretes were produced by hand and tested using a slump test and compression test according to the BS standard of EN 2390-3: 2019 and BS EN 12390: 3: 2000. It was found that PCA concrete using 10 wt% showed a slump value of 27 mm and compressive strength of 29 MPa. The data were supported by morphological characteristics and stability of concrete structures through camera images, optical microscopy (OM) and SEM. The optimum amount of PCA is proven to produce concrete with good workability and significant compressive strength. It is also proven that PCA aggregates with clay particles can strengthen the concrete by 30% compared to PWA. The finding of this study is an alternative to solve both issues of natural aggregate depletion and plastic pollution. It benefits construction and plastic manufacturers to adopt green materials and greener waste management.

KOMPOSIT POLIPROPILENA BERORIENTASI-DWIPAKSI BERTETULANG TANAH LIAT DIKITAR SEMULA MELALUI PENYEBATIAN LEBUR TERBANTU AIR UNTUK AGREGAT HALUS KONKRIT

ABSTRAK

Penyusutan agregat semulajadi menjadi masalah global walaupun permintaan pembinaan struktur meningkat. Selain itu, pengumpulan sisa plastik merupakan cabaran besar yang dihadapi oleh manusia di seluruh dunia. Mengubah sisa plastik kepada agregat pembinaan nampaknya merupakan penyelesaian yang wajar untuk kedua-dua masalah. Walau bagaimanapun, 1) interaksi rendah antara agregat plastik dengan simen organik merendahkan kekuatan konkrit dan 2) suhu tinggi proses pengkompaunan cair konvensional agregat plastik menjadi kebimbangan utama yang perlu ditangani lebih lanjut lagi. Kajian ini menggunakan bahan buangan polipropilena berorientasi-dwipaksi kitar semula (rBOPP) yang disediakan oleh San Miguel Plastic Film Sdn. Bhd. Pada Peringkat 1, rBOPP telah disebatikan dengan tanah liat kaolin menggunakan proses pengkompaunan berbantukan air. Parameter proses (suhu: 130 hingga 180 °C; masa: 5 hingga 10 minit) dan perumusan (% tanah liat: 0 hingga 10 % berat; % air: 0 hingga 10 % berat) telah dioptimumkan dengan bantuan Metodologi Permukaan Sambutan (RSM) menggunakan reka bentuk faktorial dua peringkat. Parameter optimum untuk menghasilkan agregat komposit plastik (PCA) ialah 1% berat tanah liat kaolin, 10% berat air pada suhu 180 °C dan masa 5 minit dengan kekuatan tegangan ~ 32 MPa. Kemudian, PCA dan rBOPP tanpa tanah liat (PWA) dihasilkan secara pukal di kilang plastik dan seterusnya disahkan untuk sifat fizikal dan mekanikal. PCA dan PWA telah diuji untuk sifat fizikal dan mekanikal mengikut piawaian ASTM D792, ASTM D1895, ASTM D2240 dan ASTM D638. PCA telah meningkatkan kekuatan tegangan dan modulus tegangan dengan peningkatan sebanyak 1.2 dan 8 % berbandig PWA. Ciri-ciri tersebut disokong dengan analisis morfologi melalui pengimbasan mikroskop elektron (SEM), analisis komposisi melalui fourier mengubah inframerah spektroskopi (FTIR) dan analisis struktur melalui difraktometri sinar-X (XRD). Pada peringkat 2, formulasi optimum PCA pada nisbah yang berbeza (10% berat, 15% berat dan 20% berat) telah diuji untuk kebolehkerjaan dan kekuatan mampatan campuran konkrit M20 terhadap agregat semulajadi (NA) dan PWA. Konkrit campuran M20 dihasilkan dengan tangan dan diuji menggunakan ujian jatuhan dan ujian mampatan mengikut piawaian BS EN 2390-3: 2019 dan BS EN 12390: 3: 2000. Didapati konkrit PCA menggunakan 10% berat menunjukkan nilai kemerosotan 27 mm dan kekuatan mampatan 29 MPa. Data tersebut disokong oleh ciri morfologi dan kestabilan struktur konkrit melalui imej kamera mikroskop cahaya (OM) dan SEM. Jumlah optimum PCA terbukti menghasilkan konkrit dengan kebolehkerjaan yang baik dan kekuatan mampatan yang ketara. Ia membuktikan bahawa agregat PCA dengan zarah tanah liat boleh mengukuhkan konkrit sebanyak kenaikan 30% berbanding dengan PWA. Dapatan kajian ini merupakan alternatif untuk menyelesaikan keduadua isu penyusuran agregat semulajadi dan pencemaran plastik. Ia memberi manfaat kepada pengeluar pembinaan dan plastik untuk menggunakan bahan hijau dan pengurusan sisa yang lebih hijau.

ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious and the Most Merciful, with the highest praise to Allah S.W.T., I have successfully completed this research despite various difficulties.

First and foremost, I would like to take this opportunity to express my deep and sincere acknowledgement to my supervisor, Associate Professor Dr. Noraiham binti Mohamad, for her patience, excellent mentoring, kind supervision advice, and invaluable guidance throughout this research. Her dynamism, vision, sincerity and motivation have deeply inspired me.

I would like to express my greatest gratitude to Dr. Se Sian Meng and San Miguel Yamamura Plastic Films Sdn. Bhd. for the assistance and raw materials supplies during this research. Not to forget, Dr. Lum Yip Hing from Pegasus Polymers Pte. Ltd., Plastflute Manufacturing Sdn. Bhd. and Politeknik Melaka for assistance, materials and facilities. Thank you so much to Universiti Teknikal Malaysia Melaka (UTeM) for the financial support through the PJP/2020/FKP/PP/S01780 grant funding throughout this project.

Particularly, I would also like to express my deepest gratitude to all assistant engineers of the Faculty of Industrial and Manufacturing Technology and Engineering (FTKIP) and the Faculty of Mechanical Technology and Engineering (FTKM) for their assistance and efforts in laboratory work. I would also like to express my greatest gratitude to Mr. Hairul Effendy bin Ab Maulod and Assoc. Prof. Ir. Dr. Mohd Amran bin Md. Ali from FTKIP, thank you for your advice, suggestions, and favour. I sincerely thank Marvrick Anak Anen, Mohamad Ismail Anuar bin Mohamad Sufian, and Muhammad Arif Afif bin Amran for their devoted help.

Not to forget, special thanks to my family and friends for their moral support, love and patience in completing this degree. For all the experiences and struggles throughout these past few years, times of success reminded me of happiness and times of failure reminded me of my weakness. Thanks to my beloved husband for the concern. Lastly, thank you to everyone who had been associated with the crucial parts of the realization of this project. Thank you!

TABLE OF CONTENTS

	PAG
DECLARATION	
APPROVAL	
DEDICATION	
ABSTRACT	i
ABSTRAK	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv

TABLE OF CONTENTS	iv
LIST OF TABLES	viii
LIST OF FIGURES	X
LIST OF SYMBOLS	XV
LIST OF ABBREVIATIONS	xvi
LIST OF PUBLICATIONS	xviii

CHA	PTER		
1.	INT	RODUCTION	1
	1.1	Research Background	1
	1.2	Problem Statement	3
	1.3	Objectives	6
	1.4	Scopes	6
	1.5	Thesis Overview	8
2.	LITI	ERATURE REVIEW	9
	2.1	Plastic Waste	9
		2.1.1 Types of Plastic Waste	11
		2.1.2 Types of Polymer	13
		2.1.3 Recycling	15
		2.1.3.1 Recycling of Plastic Waste	15
		2.1.4 Recycling Method KAL MALAYS A MELAKA	17
		2.1.4.1 Mechanical Recycling	17
		2.1.4.2 Chemical Recycling or Feedstock Recycling	18
		2.1.4.3 Thermal Recycling	19
		2.1.5 Recycling of Plastic for Construction Industry	19
	2.2	Conventional Concrete	21
		2.2.1 Types of Concrete	23
		2.2.2 General Component of Concrete and Concrete Grade	24
		2.2.3 Types of Aggregate in Concrete	26
		2.2.3.1 Natural Aggregates	26
		2.2.3.2 Synthetic Aggregates	27
		2.2.3.3 Physical and Mechanical Requirements of	29
		Commercial Aggregates	
	2.3	Plastic Aggregates for Concrete	30
		2.3.1 Types of Plastic Aggregates	33
		2.3.2 Size of Plastic Aggregates	36
		2.3.3 Ratio of Plastic Aggregates	37

	2.3.4	Polypropylene as Polymer Matrix in Polymeric Composite	38	
2.4	Clay-R	einforced Plastic Composites 39		
2.5	2.5 Processing Method of Plastic Aggregates			
	2.5.1	Melt Compounding	46	
	2.5.2	Solution-Mediated Mixing	48	
	2.5.3	Water-Assisted Compounding	49	
	2.5.4	In-Situ Polymerization	53	
2.6	Physic	omechanical of Plastic Waste Aggregates	53	
	2.6.1	Physical Properties	54	
		2.6.1.1 Density	54	
		2.6.1.2 Bulk Density	56	
		2.6.1.3 Size Distribution	57	
	2.6.2	Mechanical Properties	58	
		2.6.2.1 Hardness	59	
		2.6.2.2 Tensile Strength	59	
		2.6.2.3 Compressive Strength	63	
	2.6.3	Morphological Properties	66	
	2.6.4	Compositional Characteristics	67	
	2.6.5	Structural Characteristics	69	
2.7	Design	of Experiment (DOE)	70	
	2.7.1	Response Surface Methodology (RSM)	71	
ME	THODOL	LOGY	74	
3.1	Introdu	iction	74	
3.2	Overvi	ew	74 76	
3.3	Stage 1	1: Optimization of the water-Assisted Meit Processing and	/0	
	2 2 1	Ration Parameters of IBOPP-based Aggregates	76	
	3.3.1	Design of Experiment using Perspense Surface	70 79	
	5.5.2	Methodology (RSM)	70	
	333	Preparation of rBOPP-based Compounds via Water-	79	
	5.5.5	Assisted Melt Compounding	1)	
	334	Crushing	79	
	3.3.5	Hot Pressing	81	
	3.3.6	Cutting	81	
	3.3.7	Physical Testing	83	
		3.3.7.1 Density Measurement of rBOPP-based Compounds	83	
	3.3.8	Mechanical Testing	84	
		3.3.8.1 Hardness Measurement of rBOPP-based	84	
		Compounds		
		3.3.8.2 Tensile Strength of rBOPP-based Compounds	85	
	3.3.9	Designing the Numerical Optimization using Response	85	
		Surface Methodology (RSM)		
	3.3.10	Morphological Analysis using Scanning Electron	87	
		Microscopy (SEM)		
	3.3.11	Compositional Analysis using Fourier Transform Infrared	88	
		Spectroscopy (FTIR)		

3.

	3.3.12	Structural Analysis using X-ray Diffraction Analysis (XRD)	89
3.4	Stage 2	2: Workability and Compressive Strength of M20 Concrete	90
	Mixtur	res Produced from Natural Aggregates (NA), Plastic Waste	
	Aggreg	gates (PWA) and Plastic Composite Aggregates (PCA)	
	3.4.1	Mechanical and Physical Testing for Validation of NA.	92
	- · ·	PWA and PCA	-
		3.4.1.1 Size Grading of Natural Aggregates (NA). Plastic	92
		Waste Aggregates (PWA) and Plastic Composite	
		Aggregates (PCA)	
		3.4.1.2 Bulk Density of Natural Aggregate (NA). Plastic	93
		Waste Aggregates (PWA) and Plastic Composite	
		Aggregates (PCA)	
	3.4.2	Raw Materials and Preparation	94
		3.4.2.1 Cement and Water	94
		3.4.2.2 Sand and Natural Aggregates	95
	3.4.3	Design of Experiment and Specimens Preparation	95
	-0	3.4.3.1 Concrete Mix Proportion	95
	~	3.4.3.2 Mixing Procedure	96
	S.	3.4.3.3 Physical and Mechanical Testing	97
	3.4.4	Morphological Analysis	100
	F	3.4.4.1 Scanning Electron Microscopy (SEM) and Energy	101
	F	Dispersion X-ray (EDX)	
	2	3.4.4.2 Optical Microscopy (OM)	102
	411	Wn	
RES	ULTS A	ND DISCUSSION	103
4.1	Introdu	اوية مستر يتكنيكا ملس	103
4.2	Stage 1	1: Optimization of the Water-Assisted Melt Processing	103
	Parame	eters and Formulation of rBOPP Aggregates	
	4.2.1	Half Normal Plot and Effect List of Tensile Strength A	105
	4.2.2	Regression Model and R ² Values of Tensile Strength	109
	4.2.3	Interaction between Variables for Tensile Strength	110
	4.2.4	Hardness and Density of rBOPP Compounds	118
	4.2.5	Morphological Characteristics using Scanning Electron	122
	D1	Microscopy (SEM)	100
4.3	Physic D	al and Mechanical Properties of PWA and PCA Produced	123
	By Bu	Ik Manufacturing	101
	4.3.1	Physical Properties	124
	4.3.2	Mechanical Properties	126
		4.3.2.1 Hardness	126
		4.3.2.2 Tensile Strength	128
	4.3.3	Compositional Characteristics using Fourier Transform	132
	101	Intrared Spectroscopy (FTIR)	10.4
	4.3.4	Structural Characteristics using X-ray Diffraction	134
	4 2 5	Analysis (XKD)	107
	4.3.5	Morphological Characteristics using Scanning Electron	137
		MICROSCOPY (SEM)	

4.

	4.4 Stage 2: Workability and Compressive Strength of the M20 Concrete Mixes			
 4.4.1 Size Grading and Bulk Density of Natural Aggregates (NA), Plastic Waste Aggregates (PWA) and Plastic 			142	
4.4.2 Concrete's Workability				
	443 Concrete's Compressive Strength			
	4.4.4 Unit Weight/ Density			
	4.4.5 Morphological Analysis of Concrete			
	4.4.5.1 Physical Fracture Criteria (Effect of Aggregate			
		Types)		
		4.4.5.2 Optical Microscopy (Effect of Aggregate Types)	153	
		4.4.5.3 SEM and EDX Analysis (Effect of Aggregate	154	
		Types)		
5.	CON	CLUSIONS AND RECOMMENDATIONS	164	
	5.1	Conclusions	164	
	5.2	Recommendations for Future Research	166	
REFE	RENC		167	
		اونيۈم سيتي تيڪنيڪل مليسيا ملاك		

LIST OF TABLES

TABLE	TITLE	PAGE	
2.1	Recycled and virgin application, description and recyclability of the plastic polymer (Almeshal et al., 2020)	12	
2.2	Plastic aggregates were employed in previous experiments (Almeshal		
2.3	The physical qualities of recycled plastic varieties and their potential for use in a building (Awovera et al. 2021)	20	
2.4	Types of concrete (Penhall, 2020)	23	
2.5	Concrete grades and compressive strength (Base Concrete, 2023)	25	
2.6	General properties of fine and coarse aggregates (Ullah et al., 2022)	29	
2.7	Type, processing and physical characteristics of plastic aggregates (Mohamad et al. 2022)	35	
2.8	Summarization of clay-reinforced plastic composites	41	
2.9	Mix proportion of high-performance concrete, HPC (kg/m^3) (Du and Pang 2020)	45	
2.10	X-Ray Fluorescence (XRF) spectroscopy was used to determine the chemical compositions of OPC, Class F fly ash and silica fume (Schaefer et al. 2018)	68	
2.11	Chemical compositions of ordinary Portland cement, silica fume,		
3.1	General specification for BOPP received from San Miguel Plastic Film		
32	General specification for kaolin clay	77	
33	Level for each factor	78	
3.4	Design of Experiment (DOE) using Response Surface Methodology (RSM)		
3.5	Hot press parameter	82	
3.6	2^4 factorial design matrix used for Stage 1	86	
3.7	Experimental matrix and output response table	87	
3.8	Formulation and properties of Portland cement	95	
3.9	Design matrix of Stage 2	96	
4.1	Experimental matrix and output response table	104	
4.2	Effect of list for each term		
4.3	ANOVA for the selected factorial model of tensile strength		
4.4	Experimental and predicted tensile strength	108	
4.5	Regression coefficients and <i>P</i> -values of significant terms as calculated from the model	109	

4.6	Optimized parameters for PCA and PWA compounds	118
4.7	Experimental matrix and output responses	
4.8	Optimized parameters for PCA and PWA compounds	120
4.9	Density of PP, PWA and PCA with standard deviation	126
4.10	The hardness of PP, PWA and PCA including standard deviation	128
4.11	Peak and functional group of PP, PWA and PCA	133
4.12	XRD highest peak	137
4.13	Nominal dimensions of US Standard Sieves – AASHTO M92 (Technology and (CEAT), 2016)	143
4.14	Sieve analysis of PCA, PWA and NA	143
4.15	Bulk density	144
4.16	Slump value of fresh concrete	146
4.17	Compression strength of concrete	150

LIST OF FIGURES

FIGURE	TITLE	PAGE
2.1	Percentage increase in the generation of plastic waste in Malaysia from 1975 to 2021 (Chen et al., 2021)	10
2.2	Cumulative plastic waste generation and disposal (Geyer et al., 2017)	11
2.3	Slabbing of concrete mix (Jeffrey, 2018)	22
2.4	World cement production 2014, by region and main countries (%) (Sim and Lee, 2015)	22
2.5	(a) Gravel as coarse aggregates (b) Sand as fine aggregates (Colson Transport, 2006)	27
2.6	Sintered fly ash aggregates (Reddy and Reddy, 2017)	28
2.7	Different particle sizes of recycled concrete aggregates (Alqahtani et al., 2014)	31
2.8	Effect of adding PET aggregates percentage on thermal conductivity (Marzouk et al., 2005)	33
2.9	Total charges passed in coulombs of concrete mixtures (Kou et al., 2009)	34
2.10	Plastic fine aggregates made from electronic plastic waste derived from acrylonitrile butadiene styrene (ABS) plastic (Ullah et al., 2022)	36
2.11	Compressive strength of the concrete with various % of kaolin (Shen et al., 2012)	43
2.12	Strength of pavement concrete at different kaolin replacements (Abdullah et al., 2018)	44
2.13	Compressive strength of mix proportion of high-performance concrete (Du and Pang, 2020)	45
2.14	Conventional melt compounding process (Lubrizol Life Science Health, 2020)	46
2.15	(a) Fused silica particles with a mean diameter of approximately 30 μ m (b) fumed silica powders with a mean diameter of approximately 7 nm (Tanahashi et al. 2009)	47
2.16	Mechanism of water-assisted melt compounding (Karger-Kocsis et al., 2015)	50
2.17	Effect of substituted plastic aggregates (SPA) percentage on the density (Almeshal et al., 2020)	55
2.18	Residual rebound number as a function of the oven temperature (Correia et al., 2014)	60

2.19	Effects of plastic percentage on the splitting tensile strength (Hameed and Ahmed, 2019)	61	
2.20	Effect of substitution percentage of plastic aggregates on the compressive strength of concrete (Bag et al., 2020)		
2.21	XRD patterns of (a) organically modified montmorillonite (OMMT), (b) polyester (PES) (neat polymer), (c) PES/4 wt% OMMT, (d) PES/ 10 wt% OMMT (Zdiri et al., 2017)	70	
3.1	Flowchart of research methodology	75	
3.2	Recycled BOPP pellets	76	
3.3	Kaolin clay	77	
3.4	(a) Haake internal mixer and (b) twin-screw extruders	80	
3.5	Irregular shape sample collected from internal mixer	80	
3.6	(a) Crusher machine and (b) refined compound collected from crusher machine	80	
3.7	Hot press mould filled with rBOPP compound	82	
3.8	(a) GT7014-A hot press and (b) rBOPP-based compound sheet	82	
3.9	Flow Mach2 waterjet machine	83	
3.10	(a) rBOPP sheets on plywood and (b) rBOPP slab being cut	83	
3.11	A sample placed on the upper part of electronic densimeter	84	
3.12	Durometer Shore D hardness tester	85	
3.13	(a) Universal Testing Machine (Shimadzu AGS-X Series), (b) samples used for tensile test and (c) sample mounted to the UTM machine	86	
3.14	(a) SEM machine and (b) two SEM gold sputter-coated samples	88	
3.15	JASCO FTIR-6100 Fourier Transform Infrared Spectroscopy (FTIR) machine	89	
3.16	(a) Schematic illustration of an XRD setup and (b) Panalytical X'Pert PRO diffractometer machine	90	
3.17	(a) Injection moulding machine and (b) continuous extrusion and drawing process	91	
3.18	(a) The PWA (rBOPP without clay) and (b) PCA (rBOPP with clay) aggregates prepared from the bulk manufacturing process	91	
3.19	(a) 500 g of PWA is weight using weighing balance and (b) mechanical sieve shaker	93	
3.20	(a) Measuring concrete slump (Constructor, 2016) and (b) the conducted slump test	98	
3.21	Slump test procedure (Constructor, 2016)	98	
3.22	Sample of concrete cube specimens for the compressive test	99	
3.23	The curing of concrete cube in water	99	
3.24	Hydraulic press compression machine	100	
3.25	Sample of SEM-EDX analysis	101	
3.26	(a) Sample for OM analysis and (b) utilized optical microscope	102	
4.1	Half-normal plot of tensile strength	105	

4.2	3D plot of tensile strength for the function of clay content-temperature	111	
4.3	3D plot of tensile strength for the function of clay content-water		
4.4	Physical feature of the rBOPP compounds for the plastic composite aggregates (PCA) with kaolin clay	113	
4.5	Physical feature of the rBOPP compounds for the plastic waste aggregate (PWA) without kaolin clay		
4.6	Pertubation plot of all variables at reference points	115	
4.7	(a) Ramp graphs and (b) response surface of PCA compounds' numerical optimization	116	
4.8	(a) Ramp graphs and (b) response surface of PWA compounds' numerical optimization	117	
4.9	Cube graphs of (a) hardness and (b) density	121	
4.10	Micrographs of (a) worst sample (Run 1), arrow indicates the microcrack and agglomeration of clay on the surface and (b) best sample (Run 14)	122	
4.11	Density of PP, PWA and PCA	125	
4.12	The hardness of PP, PWA and PCA	127	
4.13	Tensile strength of PP, PWA and PCA	129	
4.14	Tensile modulus of PP, PWA and PCA	131	
4.15	Comparison between PP, PWA and PCA		
4.16	FTIR spectra	134	
4.17	XRD pattern of PP, PWA and PCA	136	
4.18	(a) SEM micrographs showing tensile fracture surface of PCA and (b) PWA at 100X magnifications	139	
4.19	(a) SEM micrographs showing pull-out and shear-yielding mechanisms of PCA (b) PWA at 100X magnifications. The circles show the size of voids	140	
4.20	(a) SEM micrographs showing microstructure at 1000X magnifications of PCA (b) PWA	141	
4.21	Workability of fresh concrete	147	
4.22	Compressive strength of concrete cube	148	
4.23	Compressive strength of concrete at 28 days	149	
4.24	Density of concrete cube	151	
4.25	Physical fracture of (a) NA (b) PWA and (c) PCA10. The circles show the size of voids	153	
4.26	Optical microscopy of (a) NA (b) PWA and (c) PCA10	154	
4.27	Surface morphology at (a) NA (b) PWA and (c) PCA10	156	
4.28	SEM of NA at 10X magnifications	157	
4.29	Sand particle in NA concrete at 50x magnifications	157	

- 4.30 Surface morphology of (a) PWA at 10x (b) PWA at 50x and (c) PWA 158 at 500X magnifications
- 4.31 Surface morphology of (a) PCA at 10x (b) NA at 10x and (c) PCA at 160 50X magnifications
- 4.32 EDX-SEM analysis on the point of natural aggregate (NA) (a) SEM 161 image indicating spectrum 1 (b) EDX spectrum of the point
- 4.33 EDX-SEM analysis on the point of Portland cement (a) SEM image 162 indicating spectrum 2 (b) EDX spectrum of the point
- 4.34 EDX-SEM analysis on the point of the composite plastic aggregate of PCA10 sample (a) SEM image indicating spectrum 1 (b) EDX spectrum of the point

LIST OF SYMBOLS

CuKa	-	Copper K-alpha Radiation
E	-	Young's Modulus
Fc	-	Compressive Strength
k	-	Conductivity
Tc	-	Crystallization Temperature
w/c	-	Water-to Cement Ratio

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF ABBREVIATIONS

ABS	-	Acrylonitrile Butadiene Styrene
A/C	-	Aggregate-to-Cement
ANOVA	-	Analysis of Variance
ASTM	-	American Society for Testing and Materials
BOPP	-	Biaxially-Oriented Polypropylene
BS	-	British Standard
CA	-	Coarse Aggregate
CASOS		Center for Computational Analysis of Social and Organizational
	2	Systems (
CPWA	2	Concrete Plastic Waste Aggregates
DOE	S.	Design of Experiment
EDX	H-	Energy Dispersion X-ray
EPS	F	Expanded Polystyrene
EPW	- 2	Electronic Plastic Aggregate
EVA	- 41	Ethylene-Vinyl Acetate
FA		Fine Aggregate
FTIR	ME	Fourier-Transform Infrared Spectroscopy
HDPE	-	High-Density Polyethylene
HPC	-	High-Performance Concrete
IPW	UNIV	Irradiated Plastic Waste MALAYSIA MELAKA
ITZ	-	Interfacial Transition Zone
LDPE	-	Low-Density Polyethylene
Μ	-	Mix Ratio
MMA	-	Methyl Methacrylate
MMT	-	Montmorillonite
MPW	-	Metalized Plastic Waste
MSW	-	Municipal Solid Waste
Mt	-	Million Tonnes
MW	-	Molecular Weight
Na	-	Sodium
NA	-	Natural Aggregates
NCA	-	Natural Crushed Aggregate
OM	-	Optical Microscopy
OMMT	-	Organically Modified Montmorillonite
OPC	-	Ordinary Portland Cement
PA	-	Plastic Aggregates
PA-6	-	Polyamide-6

PC	-	Polycarbonate
PCA	-	Plastic Composite Aggregates
PCS	-	Post-Cracking Strength
PE	-	Polyethylene
PES	-	Polyester
PET	-	Polyethylene Terephthalate
PF	-	Plastic Fibre
PFA	-	Plastic Fine Aggregates
PFA	-	Poly(tetrafluoroethylene-co-perfluoropropylvinylether)
PMMA	-	Polymethyl Methacrylate
PP	-	Polypropylene
PS	-	Polystyrene
PU	-	Polyurethane
PVC	-	Polyvinyl Chloride
PW	-	Plastic Waste
PWA	-	Plastic Waste Aggregates
rBOPP	-	recycled Biaxially-Oriented Polypropylene
RCA		Recycled Concrete Aggregates
RCA	- ~	Recycled Crushed Aggregates
RCG	3	Recycled Crushed Glass
RPW	- St	Regular Plastic Waste
RSM	F	Response Surface Methodology
SEM	E	Scanning Electron Microscopy
SLA	- 2	Smart-Lightweight Aggregates
SPA	- 41	Substituted Plastic Aggregates
SS		Sum of Squares
TPS	NE	Thermoplastic Starch
UNEP	-	United Nations Environment Programme
UTM	-	Universal Testing Machine
WA	UNIV	Water-Assisted NIKAL MALAYSIA MELAKA
XRD	-	X-Ray Diffractometers
XRF	-	X-Ray Fluorescence

LIST OF PUBLICATIONS

- Mohamad, N., Abd Ghani, A.A., Anen, M.A., Abd Razak, J., Raja Abdullah, R.I., Mohd Ali, M.A., Ab Maulod, H.E., and Meng, S.S., 2023. Optimization of Recycled Polypropylene Using Water-Assisted Melt Compounding via Response Surface Methodology. *Springer Proceedings in Physics*, 289 (July 2023), pp.47 – 54.
- Zulkifli, N.S.A., Mohamad, N., Abd Ghani, A.A., Chang, S.Y., Abd Razak, J., Ab Maulod, H.E., Hassan, M.F., Abu Bakar, M.A.Q., Ani, M.A., Teng, M.M., and Ahsan, Q., 2022. Graphene Nanoplatelets Modified Chemlok® Adhesive System for Natural Rubber – Aluminium Bonded Component in Engine Mount. *International Journal of Automotive and Mechanical Engineering*, 19 (1), pp.9530 – 9542.
- Mohamad, N., Abd Ghani, A.A., Amran, M.A.A., Abd Razak, J., Raja Abdullah, R.I., UNIVERSITI TEKNIKAL MALAYSIA MELAKA Mohd Ali, M.A., Ab Maulod, H.E., and Meng, S.S., 2022. Brief Review on Potential Production of Plastic Waste Concrete Aggregates Using Water-Assisted Melt Compounding. *Springer Nature Singapore Pte Ltd*, pp.523 – 532.
- Abd Ghani, A.A., Mohamad, N., Amran, M.A.A, Abd Razak, J., Raja Abdullah, R.I., Mohd Ali, M.A., Mahamood, M.A., and Meng, S.S., 2021. Recycled Thermoplastic Concrete Aggregates from Water-Assisted Compounding: A Short Review. *Proceedings* of Malaysian Technical Universities Conference on Engineering and Technology, pp.108 – 109.

 Abd Ghani, A.A., Mohamad, N., Abd Razak, J., Ahsan, Q., Yee, C.S., Ani, M.A., Teng, M.M., and Ul-Hamid, A., 2020. Optimization of Hot Press Parameters to Maximize the Physical and Mechanical Properties of Natural Rubber Composites for Elastomeric Mount. *Malaysian Journal on Composite Science and Manufacturing*, 1(1), pp.27 – 37.

CHAPTER 1

INTRODUCTION

1.1 Research Background

Concrete is the world's second most-used construction material after water. Instead of being a distinct entity, concrete is a composite of numerous constituents. The fundamental components are water, sand, cement, gravel or broken stones. Gravel or broken stones are examples of coarse aggregate, while sand is an example of fine aggregate. The cement coats and binds the fine and coarse particles when thoroughly combined. Shortly after the components are joined, the hydration reaction takes place, resulting in rock-solid concrete. However, environmental difficulties are already emerging as one of the greatest threats to the production of natural concrete aggregates. Natural concrete aggregate, which constitutes three-quarters of the composition of concrete, is a key concern as the primary component material. In 2007, Malaysia produced 77.7 million tonnes of natural aggregates on its own (Ismail and Ramli, 2013). Because the rising demand for concrete aggregates will eventually deplete the available supplies (Rahman et al., 2009).

On the other hand, worldwide plastic consumption has skyrocketed and plastic products have become an indispensable part of our everyday lives (Gu and Ozbakkaloglu, 2016). The name plastic is derived from the Greek word *plastikos*, which means mouldable. Because of its flexibility or malleability, this term refers to a material's ability to be cast, extruded or pressed into various shapes (Plastics Europe, 2019). Among the several forms of recycling management

systems, repurposing plastic waste in the building industry is regarded as a good alternative for plastic waste disposal. Recycled plastics may be utilized without losing quality throughout the service cycle and can even be used instead of virgin building materials. Plastics were widely used in concrete as plastic aggregates (PA), which substituted natural aggregates, and several researchers investigated the characteristics of concrete, including plastic components (Almeshal et al., 2020).

The United Nations Environment Programme (UNEP) estimates that more than 400 million tonnes of plastic are produced annually worldwide. Up till 2015, approximately 6300 million tonnes of plastic waste has been produced. About 9% are recycled, 12% are burned and 79% are placed in landfills or the environment. If current development and waste disposal trends continue, by 2050, landfills and the natural environment will contain more than 12 billion tonners of plastic waste (Geyer et al., 2017). Reprocessing waste plastic material into concrete is an environmentally viable alternative to plastic waste disposal due to its ecological and economic benefits. In addition, this reduces the quantity of plastic waste that is burned and the amount of plastic waste that is produced. Polypropylene (PP) is chosen for this study because it is widely used as a variety of packaging materials, especially in the form of bottles and has high strength and hardness.

This research project investigates the feasibility of generating plastic waste aggregate by water-assisted melt compounding of plasticized thermoplastic-clay composite (PCA). Waterassisted (WA), also known as liquid-mediated melt compounding of composites. It is fundamentally a solution-mixing technique. It allows for greater material dispersion than conventional melting, but is restricted to soluble chemicals. It is an increasing strategy for overcoming the disadvantages of individual melt compounding and solution mixing. When mixed with additives, water or aqueous liquids act as more than just temporary carriers for