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ABSTRACT 

 

 

Natural aggregate depletion has becoming a global problem despite increased structural 

construction demands. Besides, accumulating plastic waste is a big challenge people face 

worldwide. Transforming waste plastics into construction aggregates appeared to be a sensible 

solution to both problems. However, 1) the low interaction between plastic aggregates with 

organic cement lowers the strength of concretes, and 2) the high temperature of the conventional 

melt compounding process of plastic aggregates becomes the ultimate concern that needs to be 

addressed further. This study used recycled biaxially-oriented polypropylene (rBOPP) waste 

provided by San Miguel Plastic Film Sdn. Bhd. In Stage 1, the rBOPP was compounded with 

kaolin clay using a water-assisted compounding process. The process parameters (temperature: 

130 to 180 ○C; time: 5 to 10 minutes) and formulation (% clay: 0 to 10 wt%; % water: 0 to 10 

wt%) were optimized with the help of the Response Surface Methodology (RSM) using a two-

level factorial design. The optimum parameters to produce plastic composite aggregates (PCA) 

were 1 wt% kaolin clay, 10 wt% water at a temperature of 180○C and a time of 5 minutes with 

a tensile strength of ~32MPa. Then, the PCA and rBOPP without clay (PWA) were bulk 

produced in a plastic factory and further validated for physical and mechanical properties. The 

PCA and PWA were tested for physical and mechanical properties per standards ASTM D792, 

ASTM D1895, ASTM D2240 and ASTM D638. The PCA had enhanced tensile strength and 

tensile modulus with an increment of 1.2 and 8 % compared to PWA. The properties were 

supported with morphological analysis through scanning electron microscopy (SEM), 

compositional analysis through Fourier-transform infrared spectroscopy (FTIR) and structural 

analysis through X-ray diffractometry (XRD). In Stage 2, the optimum formulation of PCA at 

different ratios (10 wt%, 15 wt% and 20 wt%) was tested for the workability and compressive 

strength of M20 concrete mixtures against the natural aggregates (NA) and PWA. The M20 

mixed concretes were produced by hand and tested using a slump test and compression test 

according to the BS standard of EN 2390-3: 2019 and BS EN 12390: 3: 2000. It was found that 

PCA concrete using 10 wt% showed a slump value of 27 mm and compressive strength of 29 

MPa. The data were supported by morphological characteristics and stability of concrete 

structures through camera images, optical microscopy (OM) and SEM. The optimum amount of 

PCA is proven to produce concrete with good workability and significant compressive strength. 

It is also proven that PCA aggregates with clay particles can strengthen the concrete by 30% 

compared to PWA. The finding of this study is an alternative to solve both issues of natural 

aggregate depletion and plastic pollution. It benefits construction and plastic manufacturers to 

adopt green materials and greener waste management.
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KOMPOSIT POLIPROPILENA BERORIENTASI-DWIPAKSI BERTETULANG TANAH 

LIAT DIKITAR SEMULA MELALUI PENYEBATIAN LEBUR TERBANTU AIR UNTUK 

AGREGAT HALUS KONKRIT 

 

ABSTRAK 

 

 

Penyusutan agregat semulajadi menjadi masalah global walaupun permintaan pembinaan 

struktur meningkat. Selain itu, pengumpulan sisa plastik merupakan cabaran besar yang 

dihadapi oleh manusia di seluruh dunia. Mengubah sisa plastik kepada agregat pembinaan 

nampaknya merupakan penyelesaian yang wajar untuk kedua-dua masalah. Walau 

bagaimanapun, 1) interaksi rendah antara agregat plastik dengan simen organik merendahkan 

kekuatan konkrit dan 2) suhu tinggi proses pengkompaunan cair konvensional agregat plastik 

menjadi kebimbangan utama yang perlu ditangani lebih lanjut lagi. Kajian ini menggunakan 

bahan buangan polipropilena berorientasi-dwipaksi kitar semula (rBOPP) yang disediakan 

oleh San Miguel Plastic Film Sdn. Bhd. Pada Peringkat 1, rBOPP telah disebatikan dengan 

tanah liat kaolin menggunakan proses pengkompaunan berbantukan air. Parameter proses 

(suhu: 130 hingga 180 ○C; masa: 5 hingga 10 minit) dan perumusan (% tanah liat: 0 hingga 10 

% berat; % air: 0 hingga 10 % berat) telah dioptimumkan dengan bantuan Metodologi 

Permukaan Sambutan (RSM) menggunakan reka bentuk faktorial dua peringkat. Parameter 

optimum untuk menghasilkan agregat komposit plastik (PCA) ialah 1% berat tanah liat kaolin, 

10% berat air pada suhu 180 ○C dan masa 5 minit dengan kekuatan tegangan ~ 32 MPa. 

Kemudian, PCA dan rBOPP tanpa tanah liat (PWA) dihasilkan secara pukal di kilang plastik 

dan seterusnya disahkan untuk sifat fizikal dan mekanikal. PCA dan PWA telah diuji untuk sifat 

fizikal dan mekanikal mengikut piawaian ASTM D792, ASTM D1895, ASTM D2240 dan ASTM 

D638. PCA telah meningkatkan kekuatan tegangan dan modulus tegangan dengan peningkatan 

sebanyak 1.2 dan 8 % berbandig PWA. Ciri-ciri tersebut disokong dengan analisis morfologi 

melalui pengimbasan mikroskop elektron (SEM), analisis komposisi melalui fourier mengubah 

inframerah spektroskopi (FTIR) dan analisis struktur melalui difraktometri sinar-X (XRD). 

Pada peringkat 2, formulasi optimum PCA pada nisbah yang berbeza (10% berat, 15% berat 

dan 20% berat) telah diuji untuk kebolehkerjaan dan kekuatan mampatan campuran konkrit 

M20 terhadap agregat semulajadi (NA) dan PWA. Konkrit campuran M20 dihasilkan dengan 

tangan dan diuji menggunakan ujian jatuhan dan ujian mampatan mengikut piawaian BS EN 

2390-3: 2019 dan BS EN 12390: 3: 2000. Didapati konkrit PCA menggunakan 10% berat 

menunjukkan nilai kemerosotan 27 mm dan kekuatan mampatan 29 MPa. Data tersebut 

disokong oleh ciri morfologi dan kestabilan struktur konkrit melalui imej kamera mikroskop 

cahaya (OM) dan SEM. Jumlah optimum PCA terbukti menghasilkan konkrit dengan 

kebolehkerjaan yang baik dan kekuatan mampatan yang ketara. Ia membuktikan bahawa 

agregat PCA dengan zarah tanah liat boleh mengukuhkan konkrit sebanyak kenaikan 30% 

berbanding dengan PWA. Dapatan kajian ini merupakan alternatif untuk menyelesaikan kedua-

dua isu penyusuran agregat semulajadi dan pencemaran plastik. Ia memberi manfaat kepada 

pengeluar pembinaan dan plastik untuk menggunakan bahan hijau dan pengurusan sisa yang 

lebih hijau.
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Research Background 

Concrete is the world's second most-used construction material after water. Instead of 

being a distinct entity, concrete is a composite of numerous constituents. The fundamental 

components are water, sand, cement, gravel or broken stones. Gravel or broken stones are 

examples of coarse aggregate, while sand is an example of fine aggregate. The cement coats and 

binds the fine and coarse particles when thoroughly combined. Shortly after the components are 

joined, the hydration reaction takes place, resulting in rock-solid concrete. However, 

environmental difficulties are already emerging as one of the greatest threats to the production 

of natural concrete aggregates. Natural concrete aggregate, which constitutes three-quarters of 

the composition of concrete, is a key concern as the primary component material. In 2007, 

Malaysia produced 77.7 million tonnes of natural aggregates on its own (Ismail and Ramli, 

2013). Because the rising demand for concrete aggregates entails the substantial use of natural 

stone materials, the continued abuse of aggregates will eventually deplete the available supplies 

(Rahman et al., 2009). 

On the other hand, worldwide plastic consumption has skyrocketed and plastic products 

have become an indispensable part of our everyday lives (Gu and Ozbakkaloglu, 2016). The 

name plastic is derived from the Greek word plastikos, which means mouldable. Because of its 

flexibility or malleability, this term refers to a material’s ability to be cast, extruded or pressed 

into various shapes (Plastics Europe, 2019).  Among the several forms of recycling management
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systems, repurposing plastic waste in the building industry is regarded as a good alternative for 

plastic waste disposal. Recycled plastics may be utilized without losing quality throughout the 

service cycle and can even be used instead of virgin building materials. Plastics were widely 

used in concrete as plastic aggregates (PA), which substituted natural aggregates, and several 

researchers investigated the characteristics of concrete, including plastic components (Almeshal 

et al., 2020). 

The United Nations Environment Programme (UNEP) estimates that more than 400 

million tonnes of plastic are produced annually worldwide. Up till 2015, approximately 6300 

million tonnes of plastic waste has been produced. About 9% are recycled, 12% are burned and 

79% are placed in landfills or the environment. If current development and waste disposal trends 

continue, by 2050, landfills and the natural environment will contain more than 12 billion 

tonners of plastic waste (Geyer et al., 2017). Reprocessing waste plastic material into concrete 

is an environmentally viable alternative to plastic waste disposal due to its ecological and 

economic benefits. In addition, this reduces the quantity of plastic waste that is burned and the 

amount of plastic waste that is produced. Polypropylene (PP) is chosen for this study because it 

is widely used as a variety of packaging materials, especially in the form of bottles and has high 

strength and hardness. 

This research project investigates the feasibility of generating plastic waste aggregate by 

water-assisted melt compounding of plasticized thermoplastic-clay composite (PCA). Water-

assisted (WA), also known as liquid-mediated melt compounding of composites. It is 

fundamentally a solution-mixing technique. It allows for greater material dispersion than 

conventional melting, but is restricted to soluble chemicals. It is an increasing strategy for 

overcoming the disadvantages of individual melt compounding and solution mixing. When 

mixed with additives, water or aqueous liquids act as more than just temporary carriers for 


