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ABSTRACT 

 

 

Characterization of material properties is crucial for facilitating a wide range of industrial 

applications, notably in food processing, bioengineering, and the pharmaceutical industry. 

Each material exhibits specific electrical behaviors influenced by its dielectric properties. 

Traditionally, material characterization has been conducted using conventional 

waveguides, such as rectangular waveguide cavities and horn antenna waveguides. 

However, these traditional resonators are typically large and complex to manufacture. 

Consequently, most researchers prefer planar structures, such as microstrip structures, for 

material sensing due to their simplicity and low cost. Despite these advantages, planar 

resonators are susceptible to external factors like oxidation and electromagnetic (EM) 

waves, leading to low sensitivity and Q-factor. Moreover, most microwave sensors are 

limited to detecting changes in liquid mixtures only when the changes exceed 10%; smaller 

changes go undetected. In response to these challenges, this research proposes a new 

microwave sensor with high sensitivity and quality factor, based on a gap waveguide 

resonator operating at 5.8 to 6.2 GHz for liquid characterization. Different types of liquids 

are analyzed and evaluated both in electromagnetic simulations and laboratory experiments 

using the proposed gap waveguide sensor (GWS). The gap waveguide was chosen for its 

ability to effectively concentrate the electric field, resulting in a high quality factor (Q-

factor) and enhanced sensitivity. The liquid under test (LUT) is positioned in the region 

where the electric field is concentrated, allowing interaction between the electric field and 

the liquid material according to the principles of perturbation theory. The equations for the 

dielectric properties of the unknown LUT are extracted using the polynomial fitting 

method and Cramer's rule. The proposed sensor is simulated using Computer Simulation 

Technology (CST) and fabricated with a CNC machine. Experimental measurements and 

validation of the proposed sensor are performed in the laboratory using a Vector Network 

Analyzer (VNA) and the dielectric probe from Keysight. These measurements revealed a 

notably high quality factor of 6016. Various liquid materials, including chemical solutions 

and oils, were tested using the proposed sensor. The results demonstrated the sensor's 

remarkable sensitivity, capable of detecting even 1% changes in the mixture of ethanol and 

distilled water. A comparison between simulated and measured outcomes indicated strong 

agreement between the two data sets. The experiment showed that the proposed sensor 

could differentiate between different types of oils, such as virgin oil, light oil, pure oil, and 

used oil. The measurements using the proposed sensor showed good agreement with the 

dielectric probe from Keysight Technologies, with an accuracy of up to 99.65%. A 

comparison between the proposed sensor and recently reported research indicated that the 

proposed sensor has the highest quality factor. Therefore, the proposed sensor is reliable 

and a strong candidate for industrial applications, such as food processing, bioengineering, 

and the pharmaceutical industry.  
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PENDERIA GELOMBANG MIKRO BAHARU DENGAN FAKTOR KUALITI TINGGI 

UNTUK PENCIRIAN CECAIR MENGGUNAKAN PENYALUN SELA PANDU 

GELOMBANG 
 

ABSTRAK 
 

Pencirian sifat bahan menjadi penting dalam memudahkan pelbagai aplikasi industri, 

terutamanya dalam bidang seperti pemprosesan makanan, kejuruteraan bio dan industri 

farmaseutikal. Setiap bahan mempunyai tingkah laku elektrik tertentu yang dipengaruhi 

oleh sifat dielektriknya. Pencirian bahan telah direalisasikan dengan menggunakan pandu 

gelombang konvensional seperti rongga pandu gelombang segi empat tepat dan pandu 

gelombang antena tanduk. Walau bagaimanapun, penyalun tradisional ini biasanya 

bersaiz besar dan kompleks untuk dihasilkan. Oleh itu, kebanyakan penyelidik cenderung 

menggunakan struktur satah seperti struktur jalur mikro untuk penderiaan bahan kerana 

kelebihannya seperti kesederhanaan dan kos rendah. Walau bagaimanapun, penyalun ini 

dipengaruhi oleh faktor luaran seperti pengoksidaan dan gelombang Elektromagnet (EM) 

disebabkan oleh strukturnya yang membawa kepada kepekaan rendah dan faktor Q. Selain 

itu, kebanyakan penderia gelombang mikro terhad untuk merasakan perubahan dalam 

cecair campuran dengan perubahan sebanyak 10% sahaja, oleh itu perubahan kecil dalam 

bahan kurang daripada 10% tidak akan dikesan oleh penderia ini. Sebagai tindak balas 

kepada cabaran ini, objektif penyelidikan ini adalah untuk mencadangkan penderia 

gelombang mikro baharu dengan kepekaan tinggi dan faktor kualiti berdasarkan penyalun 

pandu gelombang jurang pada 5.8 hingga 6.2 GHz untuk pencirian cecair. Jenis cecair 

yang berbeza dianalisis dan dinilai dalam simulasi dan makmal Elektromagnet 

menggunakan pengesan pandu gelombang jurang (GWS) yang dicadangkan. Pilihan 

pandu gelombang jurang untuk penyelidikan ini adalah berdasarkan keupayaannya untuk 

menumpukan medan elektrik dengan berkesan, yang membawa kepada faktor kualiti tinggi 

(faktor Q) dan meningkatkan sensitiviti. Cecair dalam ujian (LUT) diletakkan di kawasan 

di mana medan elektrik tertumpu. Susunan ini membolehkan interaksi antara medan 

elektrik dan bahan cecair, mengikut prinsip teori gangguan. Persamaan untuk sifat 

dielektrik LUT yang tidak diketahui diekstrak menggunakan kaedah pemasangan 

polinomial dan peraturan Cramer. Penderia yang dicadangkan disimulasikan 

menggunakan Teknologi Simulasi Komputer (CST) dan direka menggunakan mesin CNC. 

Pengukuran eksperimen dan pengesahan penderia yang dicadangkan dilakukan di makmal 

menggunakan Penganalisis Rangkaian Vektor (VNA) dan kuar dielektrik dari Keysight. 

Pengukuran ini mendedahkan faktor kualiti yang sangat tinggi iaitu 6016. Pelbagai bahan 

cecair, termasuk larutan kimia dan minyak, diuji menggunakan penderia yang 

dicadangkan. Hasilnya menunjukkan sensitiviti luar biasa penderia, mampu mengesan 

walaupun 1% perubahan dalam campuran etanol dan air suling. Perbandingan antara 

hasil simulasi dan diukur menunjukkan persetujuan yang kukuh antara dua set data. 

Eksperimen menunjukkan bahawa penderia yang dicadangkan boleh membezakan antara 

pelbagai jenis minyak seperti minyak dara, minyak ringan, minyak tulen dan minyak 

terpakai. Pengukuran menggunakan penderia yang dicadangkan menunjukkan persetujuan 

yang baik dengan kuar dielektrik dari Keysight Technologies dengan ketepatan sehingga 

99.65%. Perbandingan antara penderia yang dicadangkan dan penyelidikan yang 

dilaporkan baru-baru ini menunjukkan bahawa penderia yang dicadangkan mempunyai 

faktor kualiti tertinggi. Oleh itu, penderia yang dicadangkan boleh dipercayai dan calon 

yang baik untuk aplikasi industri seperti pemprosesan makanan, biokejuruteraan dan 

industri farmaseutikal. 
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IDE    -  Interdigitated Electrode 

IL    -  Insertion Loss 

LUT    -  Liquid Under Test 

M    -  Measured 

MRR    -  Microstrip Ring Resonator 

MUT    -  Material Under Test 

MW    -  Microwave 

NRW    -  Nicholson-Ross-Weir 

NSR    -  Nonuniform Sub Resonator 

PEC    -  Perfect Electric Conductor 

PCB   -  Printed Circuit Board 

PDMS   -  Polydimethylsiloxane 

PMC    -  Perfect Magnetic Conductor 

Q-factor  -  Quality Factor 

Q-TEM  -  Hybrid TM-TE Wave 

RLC    -  Resistor-Inductor-Capacitor 

RF    -  Radio Frequency 

Ref    -  Reference 

RSS    -  Resonant Stub Structure 

SIW    -  Substrate Integrated Waveguide 

Sam    -  Sample 

S    -  Simulated 

SRR    -  Split Ring Resonator 

TE    -  Transverse Electric Modes 

TEM   - Transverse Electric and Magnetic 
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TM    - Transverse Magnetic 

VNA   - Vector Network Analyze 

VSRR   -  Vertically Stacked Ring Resonator 
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an -  Incident Wave 

B -  Magnetic Flux Density 

bn -  Reflected Wave 

BW -  3dB Bandwidth 

C  -  Speed Of Light 

C  -  Capacitance 

C1 -  Distributed Capacitance 

D -  Electric Flux Density 

ε' -  Real Permittivity 

ε" -  Imaginary Permittivity 

ε∞ -  Permittivity In The High-Frequency Limit 

εeff -  Effective Permittivity 

εs -  Static/Low-Frequency Permittivity 

E -  Electric 

Fo -  Resonant Frequency 

H -  Magnetic 

I  -  Current 

J -  Electric Current Density 

k -  Discrete Real Numbers 

λ  -  Wavelength 




