

Faculty of Electronics and Computer Technology and Engineering

Ammar Abdullah Hussein Al-Hegazi

Doctor of Philosophy

2024

NEW MICROWAVE SENSOR WITH HIGH QUALITY FACTOR FOR LIQUID CHARACTERIZATION USING GAP WAVEGUIDE RESONATOR

AMMAR ABDULLAH HUSSEIN AL-HEGAZI

Faculty of Electronics and Computer Technology and Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEDICATION

To my beloved mother and father

ABSTRACT

Characterization of material properties is crucial for facilitating a wide range of industrial applications, notably in food processing, bioengineering, and the pharmaceutical industry. Each material exhibits specific electrical behaviors influenced by its dielectric properties. Traditionally, material characterization has been conducted using conventional waveguides, such as rectangular waveguide cavities and horn antenna waveguides. However, these traditional resonators are typically large and complex to manufacture. Consequently, most researchers prefer planar structures, such as microstrip structures, for material sensing due to their simplicity and low cost. Despite these advantages, planar resonators are susceptible to external factors like oxidation and electromagnetic (EM) waves, leading to low sensitivity and Q-factor. Moreover, most microwave sensors are limited to detecting changes in liquid mixtures only when the changes exceed 10%; smaller changes go undetected. In response to these challenges, this research proposes a new microwave sensor with high sensitivity and quality factor, based on a gap waveguide resonator operating at 5.8 to 6.2 GHz for liquid characterization. Different types of liquids are analyzed and evaluated both in electromagnetic simulations and laboratory experiments using the proposed gap waveguide sensor (GWS). The gap waveguide was chosen for its ability to effectively concentrate the electric field, resulting in a high quality factor (Qfactor) and enhanced sensitivity. The liquid under test (LUT) is positioned in the region where the electric field is concentrated, allowing interaction between the electric field and the liquid material according to the principles of perturbation theory. The equations for the dielectric properties of the unknown LUT are extracted using the polynomial fitting method and Cramer's rule. The proposed sensor is simulated using Computer Simulation Technology (CST) and fabricated with a CNC machine. Experimental measurements and validation of the proposed sensor are performed in the laboratory using a Vector Network Analyzer (VNA) and the dielectric probe from Keysight. These measurements revealed a notably high quality factor of 6016. Various liquid materials, including chemical solutions and oils, were tested using the proposed sensor. The results demonstrated the sensor's remarkable sensitivity, capable of detecting even 1% changes in the mixture of ethanol and distilled water. A comparison between simulated and measured outcomes indicated strong agreement between the two data sets. The experiment showed that the proposed sensor could differentiate between different types of oils, such as virgin oil, light oil, pure oil, and used oil. The measurements using the proposed sensor showed good agreement with the dielectric probe from Keysight Technologies, with an accuracy of up to 99.65%. A comparison between the proposed sensor and recently reported research indicated that the proposed sensor has the highest quality factor. Therefore, the proposed sensor is reliable and a strong candidate for industrial applications, such as food processing, bioengineering, and the pharmaceutical industry.

PENDERIA GELOMBANG MIKRO BAHARU DENGAN FAKTOR KUALITI TINGGI UNTUK PENCIRIAN CECAIR MENGGUNAKAN PENYALUN SELA PANDU GELOMBANG

ABSTRAK

Pencirian sifat bahan menjadi penting dalam memudahkan pelbagai aplikasi industri, terutamanya dalam bidang seperti pemprosesan makanan, kejuruteraan bio dan industri farmaseutikal. Setiap bahan mempunyai tingkah laku elektrik tertentu yang dipengaruhi oleh sifat dielektriknya. Pencirian bahan telah direalisasikan dengan menggunakan pandu gelombang konvensional seperti rongga pandu gelombang segi empat tepat dan pandu gelombang antena tanduk. Walau bagaimanapun, penyalun tradisional ini biasanya bersaiz besar dan kompleks untuk dihasilkan. Oleh itu, kebanyakan penyelidik cenderung menggunakan struktur satah seperti struktur jalur mikro untuk penderiaan bahan kerana kelebihannya seperti kesederhanaan dan kos rendah. Walau bagaimanapun, penyalun ini dipengaruhi oleh faktor luaran seperti pengoksidaan dan gelombang Elektromagnet (EM) disebabkan oleh strukturnya yang membawa kepada kepekaan rendah dan faktor Q. Selain itu, kebanyakan penderia gelombang mikro terhad untuk merasakan perubahan dalam cecair campuran dengan perubahan sebanyak 10% sahaja, oleh itu perubahan kecil dalam bahan kurang daripada 10% tidak akan dikesan oleh penderia ini. Sebagai tindak balas kepada cabaran ini, objektif penyelidikan ini adalah untuk mencadangkan penderia gelombang mikro baharu dengan kepekaan tinggi dan faktor kualiti berdasarkan penyalun pandu gelombang jurang pada 5.8 hingga 6.2 GHz untuk pencirian cecair. Jenis cecair yang berbeza dianalisis dan dinilai dalam simulasi dan makmal Elektromagnet menggunakan pengesan pandu gelombang jurang (GWS) yang dicadangkan. Pilihan pandu gelombang jurang untuk penyelidikan ini adalah berdasarkan keupayaannya untuk menumpukan medan elektrik dengan berkesan, yang membawa kepada faktor kualiti tinggi (faktor Q) dan meningkatkan sensitiviti. Cecair dalam ujian (LUT) diletakkan di kawasan di mana medan elektrik tertumpu. Susunan ini membolehkan interaksi antara medan elektrik dan bahan cecair, mengikut prinsip teori gangguan. Persamaan untuk sifat dielektrik LUT yang tidak diketahui diekstrak menggunakan kaedah pemasangan polinomial dan peraturan Cramer. Penderia yang dicadangkan disimulasikan menggunakan Teknologi Simulasi Komputer (CST) dan direka menggunakan mesin CNC. Pengukuran eksperimen dan pengesahan penderia yang dicadangkan dilakukan di makmal menggunakan Penganalisis Rangkaian Vektor (VNA) dan kuar dielektrik dari Keysight. Pengukuran ini mendedahkan faktor kualiti yang sangat tinggi iaitu 6016. Pelbagai bahan cecair, termasuk larutan kimia dan minyak, diuji menggunakan penderia yang dicadangkan. Hasilnya menunjukkan sensitiviti luar biasa penderia, mampu mengesan walaupun 1% perubahan dalam campuran etanol dan air suling. Perbandingan antara hasil simulasi dan diukur menunjukkan persetujuan yang kukuh antara dua set data. Eksperimen menunjukkan bahawa penderia yang dicadangkan boleh membezakan antara pelbagai jenis minyak seperti minyak dara, minyak ringan, minyak tulen dan minyak terpakai. Pengukuran menggunakan penderia yang dicadangkan menunjukkan persetujuan yang baik dengan kuar dielektrik dari Keysight Technologies dengan ketepatan sehingga 99.65%. Perbandingan antara penderia yang dicadangkan dan penyelidikan yang dilaporkan baru-baru ini menunjukkan bahawa penderia yang dicadangkan mempunyai faktor kualiti tertinggi. Oleh itu, penderia yang dicadangkan boleh dipercayai dan calon yang baik untuk aplikasi industri seperti pemprosesan makanan, biokejuruteraan dan industri farmaseutikal.

ACKNOWLEDGEMENTS

I would like to begin by extending my heartfelt gratitude and sincere acknowledgment to my supervisor, Dr. Noor Azwan Bin Shairi, affiliated with the Faculty of Electronic and Computer Engineering at Universiti Teknikal Malaysia Melaka (UTeM). His invaluable supervision, unwavering support, guidance, and consistent encouragement have been pivotal in steering this thesis to successful completion.

I would also like to convey my utmost gratitude to Prof. Dr. Zahriladha Bin Zakaria, a cosupervisor and project leader of this research project hailing from the Faculty of Electronic and Computer Engineering. His crucial supervision, unwavering support, patient guidance, invaluable suggestions, and his willingness to generously dedicate his time have all been deeply appreciated throughout this research endeavor.

I extend my special thanks to the UTeM short-term grant for providing the necessary financial support throughout this project. Additionally, I would like to express my heartfelt gratitude to Mr. Mohd Sufian Bin Abu Talib, the technician from the measurement laboratory of the Faculty of Electronic and Computer Engineering, for his invaluable assistance and support.

Another great appreciation to my beloved mother, father and siblings for their support and encouragement in completing this degree.

Particularly, I wish to thank various people; Dr. Rammah Al-Alahnomi, Dr. Hussein Alsarayra, Dr. Amyrul Azuan Mohd Bahar, Dr. Sam Weng Yik, Dr. Norhanani Abd Rahman and Mr. Husam Alwareth for their valuable technical support of this research.

I would like to extend my gratitude to the department and faculty members for their assistance and support during this research. Additionally, I am thankful to my friends who provided me with support throughout this endeavor. Your encouragement and help have been greatly appreciated.

TABLE OF CONTENTS

		Robection	-
	1.1	Research Background	1
	1.2	Problem Statement	5
	1.3	Research Objectives	7
	1.4	Scope of Research	8
	1.5	Contributions	9
	1.6	Thesis Organization	10
		- 4/MD	
2.	LIT	ERATURE REVIEW	13
	2.1	او بوم سنتي بيڪنيڪ مليس Introduction	13
	2.2	Fundamentals of Rectangular Waveguide Resonator	13
		2.2.1 Basic Theory of Parallel Plate Waveguide Resonator	17
		2.2.2 Mathematical Model of TM Modes	18
		2.2.3 Impedance matching (Newton boundary condition)	21
	2.3	Waveguides and Transmission Lines Technologies	21
		2.3.1 Planar Waveguides	22
		2.3.2 Hollow Waveguides and Substrate Integrated Waveguides	24
	2.4	Gap Waveguide Technology	26
	2.5	Microwave Sensing Methods	33
		2.5.1 Non-Resonant Method	35
		2.5.1.1 Reflection Method	39
		2.5.1.2 Transmission Line Method	43
		2.5.1.3 Shorted Reflection Method	47
		2.5.1.4 Free Space Method	48
		2.5.2 Resonant Method	50
		2.5.2.1 Resonant Cavities	53
		2.5.2.2 Dielectric Resonator	54
		2.5.2.3 Planar Lines Resonator	55
	2.6	Microwave Resonator	59
		2.6.1 Resonant Frequency	60
		2.6.2 Equivalent Circuits	62

	2.7	Design of Microwave Resonator	63
	2.8	General Properties of Materials	65
	2.9	Material Characterization	68
	2.10	Microwave Sensing Strategies	70
	2.11	Derivation of Equations using Cramer's Rule	72
	2.11	Popular Microwave Techniques for Material Properties	, 2
	2.12	Characterization	76
		2 12 1 Planar Resonators	76
		2.12.1 Thanar Resonators	85
		2.12.2 CO-Franci Waveguide (CFW)	86
		2.12.5 Substrate Integrated Waveguide (SIW)	80
		2.12.4 Michai Wavegulde	00
		2.12.5 Comparison of Recent Developments in Microwave	02
	2 12	Summer	93
	2.15	Summary	90
3.	RES	EARCH METHODOLOGY	101
	31	Introduction	101
	3.1	Flow Chart	101
	33	Mathematical Model	101
	5.5	3.3.1. I C equivalent circuit	105
		3.3.2 Quality Factor	103
	34	Flectromagnetic Field	110
	3.5	Basic Design of Gan Waveguide	112
	5.5	3.5.1 Design of Gap Waveguide with One Port	112
		3.5.1 1 Gap Waveguide with One Port on the Upper Plate	113
		3.5.1.2 Gap Waveguide with One Side Port	114
		3.5.1.2 Gap Waveguide Sensor with MUT	114
		3.5.2. Design of Gap waveguide with Two Ports	117
	36	Design of Cap Waveguide Sensor for Liquid Characterization	110
	3.0	Equation Extraction	122
	3.7	Manufacturing	122 124
	3.0	Manufacturing I TEKNIKAL MALAYSIA MELAKA	124
	3.10	Summary	124
	5.10	Summary	120
4.	GAF	PWAVEGUIDE SENSOR	128
	4.1	Introduction	128
	4.2	Simulation Results of Basic Design of Gap Waveguide Sensor	128
		4.2.1 Gap Waveguide with One Port	128
		4.2.2 Gap Waveguide with One Port and MUT	130
	4.3	Simulation Results of Gap Waveguide Sensor	131
		4.3.1 Gap Waveguide Sensor with and without Cavity	131
		4.3.2 Parametric Study of Gap Waveguide Sensor	132
	4.4	Comparison of the Simulation and Measurement Results	136
		4.4.1 Transmission Coefficient	136
		4.4.2 Equation Extraction	138
		4.4.3 Sensitivity	142
		4.5.4 Verification of the Evaluated Values	143
	4.5	Summary	145
		-	
5.	ENH	IANCED GAP WAVEGUIDE SENSOR	147

5. ENHANCED GAP WAVEGUIDE SENSOR

	5.1	Introduction	147
	5.2	Simulations and Optimizations	147
		5.2.1 Parametric Study for Permittivity and Loss Tangent	148
		5.2.1 Relationship between Dielectric Constant and Dielectric Loss	152
	5.3	Comparison of the Simulation and Measurement Results	157
		5.3.1 Transmission Coefficient	157
		5.3.2 Equation Extraction	161
		5.3.3 Sensitivity	165
	5.4	Concentration Measurement	166
		5.4.1 Ethanol Solution	166
		5.4.2 Olive Oil	168
		5.4.3 Sunflower Oil	170
	5.5	Relationship between the Volume of the LUT and Frequency Shift	171
	5.6	Comparison of the Proposed Sensor with Recently Reported Results	175
	5.7	Summary	179
6.	CON	NCLUSION AND SUGGESTIONS FOR FUTURE WORK	180
	6.1	Conclusion	180
	6.2	Future Works	181
		MALAYSIA	
REF	EREN	CES	185
APP	ENDIC	CES	218
		*0/ND	
		shi [] []	
		أويوم سيتي نيكسيكل مليسيا ملاك	

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Comparison of the microwave sensing methods	33
2.2	Comparison of material properties and transmission line with	
	different methods	34
2.3	Design specifications of the proposed sensor	64
2.4	Different characteristics of the material physical phenomena	
	under the applied electric field	66
2.5	Comparison of sensing strategies	71
2.6	Comparison of Recent Developments in Microwave Sensors	93
2.7	Comparison between the recent microwave sensors in terms of	
	sensitivity and concentration percentage	94
2.8	Comparison between the recent microwave sensors	97
3.1	The details of simulation conditions	112
4.1	Design parameters values of the proposed sensor	133
4.2	The relationship between the permittivity, resonant frequency,	
	and frequency shift	135
4.3	Comparison of the extracted values for permittivity and loss	
	tangent using polynomial fitting curve and Cramer's rule	141
4.4	Comparison of the proposed sensor with recently reported results	142

4.5	Comparison of the proposed sensor with commercialized sensors	
	for ethanol and methanol at 6.1 GHz	145
5.1	Parametric study for the permittivity with the loss tangent of the	
	air	149
5.2	Parametric study for the loss tangent from 0.02 to 1 with	
	increment of 0.0408 and permittivity of the air	151
5.3	Parametric study for the permittivity and loss tangent	154
5.4	Relationship between the bandwidth, loss tangent and quality	
	factor	156
5.5	Comparison of the simulated and measured results of the	
	proposed sensor with and without LUT	161
5.6	Comparison of the measured results of proposed sensor with the	
	dielectric probe from Keysight Technologies	163
5.7	Comparison of the proposed sensor with commercialized sensors	
	for ethanol and methanol at 6.1 GHz	163
5.8	Comparison of the proposed sensor with other recently reported	
	sensors for methanol using the graph from Keysight technologies	
	in Figure 5.13	165
5.9	Comparison of the proposed sensor with reported researches in	
	terms of, structure, frequency, frequency shift and sensitivity	165
5.10	Comparison of the dielectric constant and dielectric loss with	
	different concentration percentages	167
5.11	Comparison of the measured S_{21} for olive oil with different	
	concentrations in terms of energy and fat	170

5.12	Comparison of the measured S_{21} for sunflower oil with different	
	concentrations	171
5.13	Comparison of the proposed sensor with different diameters of	
	Teflon tube for castor oil and ethanol	173
5.14	Comparison between the GWS and the enhanced GWS	175
5.14	Comparison between the recent microwave sensors in terms of	
	sensitivity and concentration percentage	176
5.15	Comparison of the proposed sensor with the recent methods for	
	liquid characterization	177
6.1	Comparison between the evaluated permittivity by the proposed	
	sensor and the reference permittivity	184
	اونيۈم سيتي تيكنيكل مليسيا ملاك	
	UNIVERSITI TEKNIKAL MALAYSIA MELAKA	

LIST OF FIGURES

FIGURE	TITLE	PAGE
1.1	Gap waveguide geometries: (a) Ridge gap waveguide, (b) Groove	
	gap waveguide, (c) Inverted- microstrip gap waveguide, (d)	
	Microstripridge gap waveguide (Zaman and Glazunov, 2017)	5
2.1	Parallel plate waveguide	18
2.2	(a) Microstrip line, (b) suspended microstrip line (c) coplanar waveguides and (d) grounded coplanar waveguides	23
2.3	(a) Hollow rectangular waveguide and (b) substrate integrated waveguide	25
2.4	Principle of operation of the gap waveguide	27
2.5	Front view of the ridge gap waveguide	28
2.6	Gap waveguide geometries: (a) Ridge gap waveguide, (b) Groove	
	gap waveguide, (c) Inverted- microstrip gap waveguide, (d)	
	Microstripridge gap waveguide (Zaman and Glazunov, 2017)	29
2.7	Diagram of the ridge gap waveguide	29
2.8	Groove gap waveguide	30
2.9	HIS produced by the surface of pins	31
2.10	HIS produced by mushroom shape surface inserted in dielectric	31
2.11	Strip and mushroom surface have the same substrate	31

2.12	Slot antenna in ridge gap waveguide technology (Zaman and	
	Kildal, 2012)	32
2.13	Gap waveguide for millimetre-wave systems: (a) Coupler	
	prototype, (b) Filter prototype (Alfonso et al., 2012)	32
2.14	Material characterization using non-resonant method (Chen et al.,	
	2004)	35
2.15	Incident, transmitted and reflected electromagnetic waves in a	
	filled transmission line (Shukla, 2015)	37
2.16	Transmission line methods (a) Sample inside the coaxial line (b)	
	Sample inside the waveguide line (Costa et al., 2017)	38
2.17	Diagram of the principles of the reflection method	39
2.18	Operation principles of the open ended coaxial	40
2.19	Open-ended coaxial line (Vergnano et al., 2020)	41
2.20	Open-ended coaxial line (Li et al., 2021)	41
2.21	Olive oil characterization using rectangular waveguide probe	
	(Sahin, Nahar and Sertel, 2020) MALAYSIA MELAKA	43
2.22	Diagram of material characterization using coaxial line	
	(Karuppuswami et al., 2018)	44
2.23	Diagram of the waveguide transmission line for material	
	characterization (Ahmad et al., 2015)	45
2.24	Planar transmission line with PDMS (Jasińska and Malecha,	
	2021)	46
2.25	Coplanar sensor using IDC (Chen et al., 2012)	47
2.26	Coaxial short circuit reflection (Chen et al., 2004)	48
2.27	Free space measurement setup using VNA (Wee et al., 2009)	49

2.28	Classification of resonator methods for the study of dielectric	
	properties of low-loss samples (Chen et al., 2004)	51
2.29	Diagram of the cavity resonator with sample	53
2.30	Microwave sensor using dielectric resonator (Neshat et al., 2010)	54
2.31	Microwave sensor using dielectric resonator (a) simulation and	
	(b) measurement (Taeb et al., 2011)	55
2.32	Electric field of the microstrip (Al-Nuaimi and Whittow, 2010)	56
2.33	Planar line resonator sensor (Jean, Green and McClung, 2008)	56
2.34	Coplanar sensor using IDC (Crupi et al., 2020)	57
2.35	Transmission line sensor (a) diagram and (b) measurement	
	(Meyne et al., 2015)	58
2.36	Microwave sensor using filter stub resonator (a) diagram and (b)	
	diagram of measurement set up (Pinon et al., 2012)	59
2.37	Cross section of the microstrip substrate (a) designed and (b)	
	manufactured (Pinon et al., 2012)	59
2.38	Typical response (S_{21}) of power transmission of the resonator	
	with and without a sample (A. A. Abduljabar et al., 2014)	61
2.39	Equivalent circuits (a) Series equivalent RLC (b) Parallel	
	equivalent RLC	62
2.40	Parallel equivalent circuit of the resonator	62
2.41	Two ports network (Hong and Lancaster, 2004)	64
2.42	Fabricated BMSRR (Amyrul Azuan Mohd Bahar et al., 2017)	79
2.43	Measured and simulated results of the BMSRR with different	
	types of liquid (Amyrul Azuan Mohd Bahar et al., 2017)	79
2.44	Planar T-shape resonator (Sandhu, Hunter and Roberts, 2016)	80

2.45	Planar coupled resonators (Coutinho et al., 2018)	81
2.46	Planar coupled resonators with sample (Coutinho et al., 2018)	81
2.47	Fabricated IDE sensor (Fok et al., 2015)	82
2.48	Measured results using IDE sensor (Fok et al., 2015)	83
2.49	Microstrip patch antenna (Cheng et al., 2014)	84
2.50	Measured results of the reflection coefficient with a percentage of	
	salt content in the solution (Cheng et al., 2014)	85
2.51	Microwave co-planar sensor (Mason et al., 2013)	86
2.52	Substrate integrated Cavity (Ndoye et al., 2017)	87
2.53	Measured results of resonant frequency as a function of the	
	humidity variation (Ndoye et al., 2017)	88
2.54	Fabricated sensor using nano-fluidic millimetre waveguide	
	(Chudpooti et al., 2018)	89
2.55	Measured results of the microwave sensor using nano-fluidic	
	millimetre waveguide (Chudpooti et al., 2018)	90
2.56	Cylindrical cavity microwave sensor (Korostynska, Mason and	
	Al-Shamma'a, 2014a)	91
2.57	Measured results using cylindrical cavity microwave sensor	
	(Korostynska, Mason and Al-Shamma'a, 2014a)	92
2.58	Rectangular waveguide cavity with the material under test (Jha,	
	Rahaman and Akhtar, 2014)	92
3.1	Flow chart of the research	104
3.2	Diagram of the LC equivalent circuit for the GWR	105
3.3	Geometrical diagram of the principle of operation of the proposed	
	GWR	106

3.4	Expected transmission coefficient response with and without a	
	sample (A. A. Abduljabar et al., 2014)	109
3.5	The electromagnetic (a) Q-TEM mode in ridge gap waveguide,	
	(b) TE_{10} mode in groove gap waveguide, (c) Q-TEM mode in	
	inverted-microstrip gap waveguide and (d) Q-TEM mode in	
	microstrip ridge gap waveguide	111
3.6	Basic structure of gap waveguide sensor	113
3.7	Design of gap waveguide with one port on the upper plate	113
3.8	Design of gap waveguide with one side port	115
3.9	Design of gap waveguide with side port and bridge	115
3.10	Design of gap waveguide with tube	117
3.11	Design of gap waveguide with material under test	117
3.12	Design of gap waveguide with two ports	118
3.13	Design of gap waveguide with two ports at 6.1 GHz	118
3.14	Simulated structure of the proposed sensor	119
3.15	Simulated structure of the proposed sensor with capillary glass	
	and LUT	121
3.16	Simulated electric field of the proposed sensor in the sensing area	121
3.17	Example of 2D structure of the lower plate with optimum values	
	in millimetres using AutoCAD	124
3.18	Measurement setup	125
3.19	Working principle of the proposed sensor with LUT molecular	
	structure	126
4.1	Design of gap waveguide with one side port	129
4.2	Design of gap waveguide with side port and bridge	129

4.3	Design of gap waveguide with single port	129
4.4	Simulated results of the basic design of gap waveguide sensor	129
4.5	Design of gap waveguide with material under test	130
4.6	Simulated results of the microwave sensor with a single port	130
4.7	Simulated electric field of the proposed sensor (a) without cavity,	
	and (b) with cavity	131
4.8	Transmission coefficient of the proposed sensor with and without	
	cavity	132
4.9	Transmission coefficient of the proposed sensor for varied lengths	
	of the pins	132
4.10	Simulated structure of the proposed sensor	133
4.11	Simulated diagram of the GWR for liquid Characterization	134
4.12	Transmission coefficient of the proposed sensor with different	
	values of the permittivity of the LUT	135
4.13	Relationship between the permittivity, frequency and frequency	
	USHITU TEKNIKAL MALAYSIA MELAKA	136
4.14	Measurement using the proposed sensor with liquid under test	137
4.15	Simulated (s) and measured (m) transmission coefficient of the	
	proposed sensor with and without LUT	138
4.16	Polynomial fitting curve of the permittivity	139
4.17	Polynomial fitting curve of the loss tangent	140
4.18	Relationship between the loss tangent, Q _L -factor, and	
	transmission coefficient	144
5.1	Simulated structure of the proposed enhanced gap waveguide	
	sensor	148

5.2	Parametric study for the permittivity at range from 0.5 to 12 with	
	increment of 0.5 and loss tangent of the air	149
5.3	Parametric study for the loss tangent from 0.02 to 1 with	
	increment of 0.0408and permittivity of the air	151
5.4	Parametric study for the permittivity and loss tangent	153
5.5	Polynomial fitting curve of the permittivity and resonant	
	frequency of the proposed sensor	155
5.6	Polynomial fitting curve of the loss tangent and transmission	
	coefficient of the proposed sensor	155
5.7	Relationship between the frequency shift and the loss tangent of	
	the proposed sensor	156
5.8	Measurement using the proposed sensor with liquid under test	158
5.9	Simulated (s) and measured (m) transmission coefficient of the	
	proposed sensor with and without LUT, (a) chemical solutions	
	and oils, (b) measured oils, (c) fish oil, (d) olive oil, (e) Linseed	
	uni, (f) castor oil	160
5.10	Polynomial fitting curve of the permittivity and resonant	
	frequency	161
5.11	Polynomial fitting curve of the loss tangent and transmission	
	coefficient	162
5.12	Measurement using the dielectric probe from Keysight	
	Technologies	163
5.13	Measured dielectric constant of methanol at a range of frequency	
	from 0.1 to more than 10 GHz using the dielectric probe from	
	Keysight Technologies (Keysight Technologies, 2022)	164

5.14	Measured S_{21} for ethanol with a 10% concentration increment	167	
5.15	The relationship between loss tangent and ethanol concentration		
5.16	Measured S_{21} for ethanol with 1% concentration increment	168	
5.17	Olive oils with different concentrations	169	
5.18	Measured S_{21} for olive oil with different concentrations	170	
5.19	Measured S_{21} for sunflower oil with different concentrations	171	
5.20	Measurement for the castor oil, methanol and water using (a) 1		
	mm Teflon tube and (b) 1.6 mm Teflon tube	172	
5.21	Measured S_{21} for ethanol using different sizes of Teflon tube	173	
5.22	Measured S_{21} for olive oil and seed oil using (a) 1 mm and (b) 1.6		
	mm Teflon tube	174	
5.23	Measured S_{21} for olive oil and seed oil using a 2 mm Teflon tube	174	
6.1	The enhanced GWS with 10 mm microfluidic channel	182	
6.2	GWCR with powder under test (PUT)	182	
6.3	Transmission coefficient of the proposed sensor with and without		
	PUT using GWCR for powder MALAYSIA MELAKA	183	
6.4	Polynomial graph of the permittivity	183	

LIST OF ABBREVIATION

A-G MSRR	-	Aligned-Gap Multi-Ring Split Ring Resonator
AMC	-	Artificial Magnetic Conductor
BMSRR	-	Bridge Multiple Split Ring Resonators
BW	-	Bandwidth
C-GMSRR	-	Centered-Gap Multiple Split Ring Resonator
CLR	-	Coupled Line Resonator
Co-pol	A. P. W.	Co-polarization
CPW	TEKN	Coplanar Waveguide
CSRRs	ILIO.	Complementary Split-Ring Resonators
CST	V SAII	Computer Simulation Technology
dB	ملاك	اونيومرسيتي تيڪنيڪل ملي
DSRR	UNIVE	Double Split Ring Resonator
E-Field	-	Electric Field
EM	-	Electromagnetic
G-CPW	-	Grounded Coplanar Waveguides
GHz	-	Giga Hertz
GW	-	Gap Waveguide
GWR	-	Gap Waveguide Resonator
HIS	-	High Impedance Surface
H-Field	-	Magnetic Field
IDC	-	Interdigitated Capacitor

IDE	-	Interdigitated Electrode
IL	-	Insertion Loss
LUT	-	Liquid Under Test
М	-	Measured
MRR	-	Microstrip Ring Resonator
MUT	-	Material Under Test
MW	-	Microwave
NRW	-	Nicholson-Ross-Weir
NSR	-	Nonuniform Sub Resonator
PEC	-	Perfect Electric Conductor
PCB	APA. IN	Printed Circuit Board
PDMS	LEK MI	Polydimethylsiloxane
PMC	E16	Perfect Magnetic Conductor
Q-factor	SAV.	Quality Factor
Q-TEM	ملاك	اونيوس سيني تيڪ Hybrid TM-TE Wave
RLC	UNIVE	Resistor-Inductor-Capacitor
RF	-	Radio Frequency
Ref	-	Reference
RSS	-	Resonant Stub Structure
SIW	-	Substrate Integrated Waveguide
Sam	-	Sample
S	-	Simulated
SRR	-	Split Ring Resonator
TE	-	Transverse Electric Modes
TEM	-	Transverse Electric and Magnetic

- TM-Transverse MagneticVNA-Vector Network Analyze
- VSRR Vertically Stacked Ring Resonator

LIST OF SYMBOLS

a_n - Incident Wave

В	-	Magnetic Flux Density
b_n	-	Reflected Wave
BW	-	3dB Bandwidth
С	-	Speed Of Light
С	-	Capacitance
C_1	-	Distributed Capacitance
D	-	Electric Flux Density
arepsilon'	-	Real Permittivity
ε″	-	اونيوم سيتي تيڪنيڪimaginary Permittivity
\mathcal{E}_{∞}	-	Permittivity In The High-Frequency Limit
Eeff	-	Effective Permittivity
ε _s	-	Static/Low-Frequency Permittivity
Ε	-	Electric
F_o	-	Resonant Frequency
Η	-	Magnetic
Ι	-	Current
J	-	Electric Current Density
k	-	Discrete Real Numbers
λ	-	Wavelength