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ABSTRACT 

 

 

In computer vision technology, stereo matching algorithm plays an important role in 

generating disparity map or depth map through a correspondence process from stereo 

images. The algorithm development can be categorized into local, global, and semi-global 

methods. Global method produces high computational complexity and slow implementation, 

deferring its suitability for real-time application. Local methods excel in solving matching 

problems through local-based analysis with fast execution and low computational demands. 

Combining attributes from both, the semi-global method introduces more complex structure 

and high computational complexity. This thesis presents a local-based stereo matching 

algorithm to increase the accuracy on complex regions. These regions are low texture, 

repetitive patterns, illumination differences, discontinuity, and occlusion. The proposed 

algorithm has four stages that start with a novel bitwise pixel-based differences at matching 

cost computation. This stage utilizes XOR gate to produce the initial disparity map. The next 

stage involves the utilization of Segment Tree (ST) to eliminate the noise at aggregation step. 

Then, an optimization stage employs Winner-Take-All (WTA) strategy. The final step of the 

proposed algorithm framework is refinement stage. At this stage, Bilateral filter (BF) and 

Weighted Median (WM) filter are utilized. These filters not only increase the accuracy but 

are also capable of preserving the object’s edges. Then, hierarchical Gaussian pyramid is 

applied at each stage to further enhance the final disparity map. The performance evaluation 

of the proposed algorithm is conducted using two standard online benchmarking databases, 

which are the Middlebury Stereo for quantitative metrics and Karlsruhe Institute of 

Technology and Toyota Technological Institute (KITTI) for qualitative assessments. The 

adaptability of the algorithm is demonstrated through a 3D surface reconstruction using a 

final disparity map. In conclusion, the proposed algorithm displays significant efficiency, 

yielding an average non-occlusion error of 5.61% and an all-error rate of 8.92%. Hence, the 

proposed algorithm is competitive with other existing methods, especially when 

incorporating the pyramid method over non-pyramid approaches. 
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ALGORITMA PETA KETAKSAMAAN MENGGUNAKAN HIERARKI PERBEZAAN 

BIT PIKSEL DAN SEGMEN-PEPOHON DARIPADA IMEJ STEREO 

 

ABSTRAK 

 

Dalam teknologi penglihatan komputer, algoritma pemadanan stereo memainkan peranan 

penting dalam menghasilkan peta ketaksamaan atau peta kedalaman melalui proses 

kesepadanan daripada imej stereo. Pembangunan algoritma boleh dikategorikan kepada 

kaedah tempatan, global dan separa global. Kaedah global menghasilkan kekompleksan 

pengiraan yang tinggi dan pelaksanaan yang perlahan, mengurangkan kesesuaiannya untuk 

aplikasi masa nyata. Kaedah tempatan baik dalam menyelesaikan masalah padanan melalui 

analisis berasaskan tempatan dengan pelaksanaan pantas dan pengiraan komputasi yang 

rendah. Menggabungkan atribut daripada keduanya, kaedah separa global 

memperkenalkan struktur yang lebih kompleks dan kerumitan pengiraan yang tinggi. Tesis 

ini membentangkan algoritma pemadanan stereo berasaskan tempatan bagi meningkatkan 

ketepatan pada kawasan kompleks. Kawasan ini adalah tekstur rendah, corak berulang, 

perbezaan pencahayaan, ketakselanjaran dan oklusi. Algoritma yang dicadangkan 

mempunyai empat peringkat bermula dengan perbezaan berasaskan bit piksel baharu pada 

pengiraan kos sepadan. Peringkat ini menggunakan get XOR untuk menghasilkan peta 

ketaksamaan awal. Peringkat seterusnya melibatkan penggunaan Segmen-Pepohon (SP) 

bagi menghapuskan hingar pada langkah pengagregatan. Kemudian, peringkat 

pengoptimuman menggunakan strategi Winner-Take-All (WTA). Langkah terakhir kerangka 

algoritma yang dicadangkan ialah peringkat perbaikan. Pada peringkat ini, penapis Dwisisi 

(PD) dan penapis Pemberat Median (PM) digunakan. Penapis-penapis ini bukan sahaja 

meningkatkan ketepatan tetapi juga mampu mengekalkan sisi objek. Kemudian, piramid 

Gaussian berhierarki digunakan pada setiap peringkat untuk menambahbaik peta 

ketaksamaan akhir. Penilaian prestasi algoritma yang dicadangkan menggunakan dua 

piawaian pangkalan data penandaarasan dalam talian, iaitu Stereo Middlebury untuk 

metrik kuantitatif dan Institut Teknologi Karlsruhe dan Institut Teknologi Toyota (KITTI) 

untuk penilaian kualitatif. Kebolehsuaian algoritma ditunjukkan melalui pembinaan semula 

permukaan 3D menggunakan peta ketaksamaan akhir. Kesimpulannya, algoritma yang 

dicadangkan memaparkan kecekapan yang ketara, menghasilkan purata ralat bukan oklusi 

sebanyak 5.61% dan kadar ralat semua sebanyak 8.92%. Oleh itu, algoritma yang 

dicadangkan berdaya saing dengan kaedah sedia ada yang lain, terutamanya apabila 

menggabungkan kaedah piramid berbanding pendekatan bukan piramid. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

There are seven subsections in this chapter, which provides a complete summary of 

this thesis and stereo vision system introduction. Throughout section 1.2, the development 

of stereo vision system is described. The applications of stereo vision systems are briefly 

explained in section 1.3, and the challenges discovered during the research for this thesis are 

discussed in section 1.4. The problem statements are then described in section 1.5, and the 

research's objectives are then laid out in section 1.6. The research's scope is then discussed 

in part 1.7, and section 1.8 concludes by outlining the thesis overall structure. 

1.2 Introduction 

The stereo vision is a part of the important field in computer vision, which provides 

numerous algorithms for computing various image processing-related areas of research. 

Fundamentally, a stereo image will go through the stereo matching algorithm, which is based 

on a specific technique to generate a depth map. In instance, the depth map is sometimes 

referred to as a disparity map in Geiger et al. (2012); Hamzah et al. (2021) arguments. The 

process begins with a pair of stereo images denoted as left and right images, from which the 

scene depth can be retrieved from two separate points with certain baseline displaced values. 

Stereo matching produces the correlation values of the left image compared to the right 

image. Figure 1.1 provides a clear illustration of the general process and viewpoint of stereo 

vision. According to Budiharto et al. (2011); Winarno et al. (2016), the stereo matching 
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process using the disparity map as a base generates the depth map by altering the intensity 

of the pixel values on the map. 

 

Figure 1.1 Stereo Vision angle and viewpoint 

Local-based matching, global matching, semi-global matching, and deep learning are 

the methods that can be used for stereo matching process, although they vary in performance 

and methodology. Additionally, comprehensive descriptions of each approach are explained 

as follows: 

a. Local-based matching: The depth of two images is estimated using a simple 

and fast pixel-to-pixel or block matching technique, which compares small, 

fixed-size blocks of pixels in each image. The algorithm first divides the 

image into manageable blocks, which match the blocks in the left and right 

images. The block with the best match in the other image is selected, and the 

disparity value is determined using the displacement of the blocks. Although 

pixel-to-pixel and block matching are fast approaches, errors caused by 

occlusions, texture less region, and repetitive patterns heavily can occur. 

Block Matching has demonstrated its effectiveness as shown by the Janeczek 

et al. (2017) analysis. Based on their findings, the local-based method 

demonstrates high noise, but it is capable of operating both dependably and 

in real-time due to fast execution process. 
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b. Global matching (GBM): GBM is a more complex technique that estimates 

depth using an energy of global optimization technique. GBM examines the 

energy of entire images instead of discrete blocks of pixels Zeglazi et al.  

(2018). Compared to the block matching method, GBM is more accurate but 

has a high processing time. In contrast, according to research by Yang et al. 

(2019), the global method uses energy minimization approach from the 

Markov Random Field (MRF) technique. The aggregation stage is not 

included in the framework for this method. 

c. Semi-global matching: Generally, this approach is complex, and the structure 

employs the combination of local and global based framework. To increase 

the precision of the disparity map values, this technique employs a cost 

aggregation phase. Based on the intensity discrepancies between each pixel 

in the left image and its corresponding pixels in the right image, the algorithm 

determines a cost for each pixel. Once the costs have been combined, then the 

cost volume will be produced from all potential differences. While slower 

than block matching, SGBM is more accurate. Semi-Global Block matching 

(SGBM) is a precise stereo algorithm method that can be managed significant 

displacements and be used in real-time, according to Hirschmüller (2008). 

d. Deep Learning: Deep learning is another complex method that teaches neural 

networks how the left and right images are correlated. In order to anticipate 

the disparity map, Convolutional Neural Network (CNN) is frequently 

employed to extract information or features from the input stereo images. 

Deep learning-based techniques have a high level of accuracy, but they need 

a lot of labelled data and computing power to train. Complex structure of 


