

Faculty of Industrial and Manufacturing Technology and Engineering

Muhammad Shafiq Bin Ibrahim

Doctor of Philosophy

2024

A NEW COMPUTERIZED DRIVING SYSTEM USING COGNITIVE SKILLS APPROACH IN MINIMIZING DRIVING FATIGUE AMONG YOUNG DRIVERS

MUHAMMAD SHAFIQ BIN IBRAHIM

Faculty of Industrial and Manufacturing Technology and Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEDICATION

To my beloved wive, Amirah Najat Binti Moktar, my adorable children, Muhammad Soleh Bin Muhammad Shafiq and Azra Nayla Binti Muhammad Shafiq, my loved parents, Ibrahim Bin Ahmad and Siti Suhaida Binti Mohd Sarip and my dear in laws Moktar Bin Siron and Norasiken Binti Abu Bakar.

ABSTRACT

Driving fatigue is a leading factor in traffic accidents among young drivers in many countries, including Malaysia. Despite the availability of many fatigue detection technologies and the development of decision support systems to meet transportation industry concerns, the number of traffic accidents in Malaysia is increasing. Hence, the current research aimed to develop a computerized system for driving fatigue that employed cognitive skill analysis to predict the level of fatigue experienced by young drivers. This system would warn about the driver's current situation and propose a solution to determine if it is safe to continue driving. Five major phases involved as the pillar in the development of the system: phase 1 (knowledge acquisition), phase 2 (experimental design), phase 3 (perform real world driving experiment), phase 4 (perform regression analysis) and phase 5 (develop decision support system for driving fatigue). The system assessed driving fatigue through the relationship between factors, namely driving duration, body mass index (BMI), types of roads and gender, and cognitive skills, such as working memory capacity, attention level and decision-making skills. These cognitive skills were assessed using an electroencephalogram (EEG) through the analysis of theta (θ), alpha (α) and beta (β)-waves. A total of 52 real-road experimental runs were conducted by 52 subjects. The DSSfDF's functional framework was divided into three parts. First, the system predicted the user's power spectral density (PSD) data during driving for θ -waves (working memory capacity), α -waves (attention level) and β -waves (decision-making skills) utilising the 12 equations by entering information, including BMI, gender and types of roads in the system using the Graphical User Interface (GUI). A timer button (which represents driving duration) was then clicked, and the driving began. The system then started to calculate the user's PSD data, starting at 00.00.01 seconds and onwards. Second, at minute 30 of the drive, the first alarm, accompanied by the warning 'Stay Alert', was activated for all users. Third, the final alarm accompanied by the warning 'Stop Driving and Have a Rest' was activated based on the user's current PSD data and the PSD values as a person fatigued obtained by a previous study. The Prob>F values for factors A (driving duration), B (BMI), C (types of roads), and D (gender) for all three cognitive skills were all less than 0.05, indicating that these factors had a significant influence on cognitive skills. The diagnostic plots showed that all 12 equations accurately predicted the experimental data compared to the actual data. The DSSfDF validation experiments revealed that all drivers self-reported experiencing severed fatigue when the final warning was triggered. This study suggested that driving fatigue was present at the end of the driving session and that the final warning triggered by the DSSfDF was compatible with drivers' current fatigue level while driving. Therefore, the current study has accomplished its goal of addressing the problem of driving fatigue among young drivers. The findings of the current study could provide valuable insights for researchers and decision-makers involved in road safety to mitigate the occurrences of traffic accidents caused by driver fatigue.

SISTEM PEMANDUAN BERKOMPUTER BAHARU MENGGUNAKAN PENDEKATAN KEMAHIRAN KOGNITIF DALAM MEMINIMUMKAN KELESUAN MEMANDU DI KALANGAN PEMANDU MUDA

ABSTRAK

Kelesuan ketika memandu adalah faktor utama kemalangan jalan raya dalam kalangan pemandu muda di banyak negara, termasuk Malaysia. Walaupun terdapat banyak teknologi pengesanan kelesuan dan pembangunan sistem sokongan keputusan untuk mengatasi masalah dalam industri pengangkutan, bilangan kemalangan jalan raya di Malaysia semakin meningkat. Oleh itu, penyelidikan semasa bertujuan membangunkan sistem berkomputer menggunakan analisis kemahiran kognitif untuk meramal tahap kelesuan ketika pemanduan. Sistem ini memberi amaran tentang situasi semasa pemandu dan mencadangkan sama ada pemandu selamat untuk meneruskan pemanduan. Lima fasa utama terlibat dalam pembangunan sistem: fasa 1 (pemerolehan pengetahuan), fasa 2 (reka bentuk eksperimen), fasa 3 (melakukan eksperimen pemanduan dunia sebenar), fasa 4 (melakukan analisis regresi) dan fasa 5 (membangunkan sistem sokongan keputusan untuk kelesuan memandu). Sistem ini menilai kelesuan pemandu melalui hubungan antara faktor, iaitu tempoh pemanduan, indeks jisim badan (BMI), jenis jalan raya dan jantina, dan kemahiran kognitif, seperti kapasiti ingatan bekerja, tahap perhatian dan kemahiran membuat keputusan. Kemahiran kognitif ini dinilai menggunakan electroencephalogram (EEG) melalui analisis gelombang theta (θ), alpha (α) dan beta (β). 52 eksperimen jalan raya telah dijalankan oleh 52 subjek. Rangka kerja DSSfDF dibahagikan kepada tiga bahagian. Pertama, sistem meramalkan data ketumpatan spektrum kuasa (PSD) pengguna semasa memandu untuk gelombang θ (kapasiti memori berfungsi), gelombang α (tahap perhatian) dan gelombang β (kemahiran membuat keputusan) menggunakan 12 persamaan dengan memasukkan maklumat, termasuk BMI, jantina dan jenis jalan dalam sistem menggunakan Antara Muka Pengguna Grafik (GUI). Butang pemasa (yang mewakili tempoh pemanduan) kemudiannya diklik, dan pemanduan bermula. Sistem kemudiannya mula mengira data PSD pengguna, bermula pada 00.00.01 saat dan seterusnya. Pada minit 30 pemanduan, penggera pertama diaktifkan, disertai amaran 'Stav Alert'. Penggera terakhir yang disertai dengan amaran 'Stop Driving And Have A Rest' diaktifkan berdasarkan data ramalan PSD semasa pengguna dan nilai PSD sebagai orang lesu yang diperolehi oleh kajian sebelumnya. Nilai Prob>F untuk faktor A (durasi memandu), B (BMI), C (jenis jalan), dan D (gender) untuk ketiga-tiga kemahiran kognitif semuanya kurang daripada 0,05, menunjukkan bahawa faktor-faktor ini mempunyai pengaruh yang signifikan pada kemahiran kognitif. Plot diagnostik menunjukkan bahawa semua 12 persamaan secara tepat meramalkan data eksperimen berbanding dengan data sebenar. Eksperimen pengesahan DSSfDF mendedahkan bahawa semua pemandu melaporkan mengalami kelesuan apabila amaran akhir diaktifkan. Kajian ini mencadangkan bahawa kelelahan memandu dikesan pada akhir sesi memandu dan amaran akhir yang ditimbulkan oleh DSSfDF bersesuaian dengan tahap kelesuan pemandu semasa pemanduan.

ACKNOWLEDGEMENTS

In the Name of Allah, the Most Gracious, the Most Merciful. First and foremost, I would like to take this opportunity to express my sincere acknowledgement to my supervisors, Professor Madya Dr. Seri Rahayu Binti Kamat and Dr Syamimi Binti Shamsuddin for their never-ending guidance and support. Secondly, I would like to thank the technicians at the Ergonomic Laboratory of the Faculty of Manufacturing for providing me with the knowledge needed during the completion of this study. Special thanks to the Ministry of Higher Education (MOHE) for sponsoring this work under the Fundamental Research Grant Scheme (FRGS/1/2020/TK02/UTEM/02/5). Lastly, I would like to express my sincere thanks to my wife, Amirah Najat Binti Moktar and family for their prayers and support throughout these 3 years of journey.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

TABLE OF CONTENTS

				PAGES
DEC	LARA	TION		
APP	ROVA	L		
DED	ICAT	ION		
ABS	ГRAC	Т		i
ABST	TRAK			ii
ACK	NOW	LEDG	EMENTS	iii
TAB	LE O	F CON	ΓENTS	iv
LIST	OF 1	ABLE	S	vii
LIST	OF F	IGURI	ES	ix
LIST	OF A	BBRE	VIATIONS	xiv
LIST	OF S	YMBO	LS	xvi
LIST	OF A	PPEN	DICES	xvii
LIST	OF F	PUBLIC	CATIONS	xix
СНА	PTEF	ĸ		
1.	INT	RODU	CTION	1
	1.1	Backg	round	1
	1.2	Proble	em Statement	4
	1.3	Resear	rch Question	6
	1.4	Resear	rch Objective 🐾	7
	1.5	Scope	of Research	7
	1.6	Resear	rch Justification	9
	1.7	Thesis	o Outline	10
		193		
2.	LIT	ERAT	URE REVIEW	12
	2.1	Introd	uction	12
	2.2	Introd	uction of Fatigue	12
		2.2.1	Definition of Fatigue	12
		2.2.2	Driving Fatigue Related-Road Accidents	13
		2.2.3	Driving Fatigue-Related Road Accidents Among Young Driver	s 15
	2.2	2.2.4	Implication of Driving Fatigue in This Study	17
	2.3	EXISTI	ng Driving Fatigue Detection Approach	1/
		2.3.1	Venicie-Based Parameter	18
		2.3.2	Driver Benavior-Based Parameter	19
		2.3.3	Physiological-Based Parameter	21
		2.3.4	Study	25
	2.4	Appli	Study	25
	2.4		Correlation of EEC Erroguency Panda with Cognitive Skills	20 26
		2.4.1	Correlation of Eatigue and EEC Eraguancy Panda	20 20
		2.4.2	Implication of EEC Application in This Study	52 22
	25	2.4.3 Tumor	implication of EEG Application in This Study of Cognitive Skills Dequire for Vahiala Driving and Easters The	55 +
	2.3	1 ypes	of Cognitive Skills Require for venicle Driving and Factors Tha	ι 24
		251	Tures of Cognitive Skills Dequire for Valuate Driving	54 24
		2.3.1	Eastern That Influence the Driver's Constitute Shills and Other	34
		2.3.2	Provide size States	77
			Physiological System	51

Physiological System32.5.3Implication of Cognitive Skills and Factors That Influence Them in

		Indicating Driving Fatigue in This Study	44
	2.6	Existing Commercial Fatigue Detection Technologies	44
		2.6.1 Built-in System for High-End Automobile Models	44
		2.6.2 Independent Product for Old Vehicle	47
		2.6.3 Implications of Existing Fatigue Detection Technologies in	
		This Study	51
	2.7	Decision Support System	52
		2.7.1 What is a Decision Support System (DSS)?	52
		2.7.2 Existing Decision Support System in Transportation Sector	53
		2.7.3 Implications of Existing DSS System in Transportation Sector in	
		This Study	63
	2.8	Data Collection	64
		2.8.1 Questionnaire Survey	64
		2.8.2 Driving Simulator and Real - World Driving Experiment	65
		2.8.3 Electroencephalogram (EEG)	67
	2.9	Data Analysis Method	68
		2.9.1 EEG Signal Processing	68
		2.9.2 Regression Analysis	72
		2.9.3 Implications of Data Collection and Data Analysis Techniques in	
		This Study	75
3.	RES	EARCH METHOD	77
	3.1	Introduction	77
	3.2	Process Flow	77
	3.3	Phase I: Knowledge Acquisition	79
		3.3.1 Literature Review	79
		3.3.2 Pre-Survey	79
	2.4	3.3.3 Pre-Survey Findings Validation by Expert	82
	3.4	Phase 2: Experimental Design	82 92
		3.4.1 Set the Experimental Variables	83
	25	Subject Selection for Driving Experiments	90
	3.J 3.6	Bro Experiment Survey	92
	5.0	3.6.1 Structure	94
		3.6.2 MEIS Scoring Methods	95 06
	37	Perform Pre-Driving Experiment using a Simulator	90 07
	3.8	Phase 3: Perform Real World Driving Experiment	98
	5.0	3.8.1 Procedure 1: Initial Fatigue Assessment	99
		3.8.2 Procedure 2: Electroencenhalograph (EEG) Set Un	102
		3.8.3 Procedure 3: EEG Data Recording	102
	39	Recorded EEG Signal Processing	103
	0.17	3.9.1 Stage 1: Export Recorded EEG Raw Data into the Brain Vision	101
		Analyzer Software	105
		3.9.2 Stage 2: Re-Referencing	105
		3.9.3 Stage 3: Pre-Processing	106
		3.9.4 Stage 4: Feature Extraction and Signal Classification	109
		3.9.5 Stage 5: Calculate the Power Spectral Density (PSD) Average	
		Values for θ , α and β -Waves	111
	3.10	Phase 4: Perform Regression Analysis	112
		V	

		3.10.1 Enter Output Response Data into the Constructed Experimental	
		Design Layout	113
		3.10.2 Perform Fit Summary Analysis	114
		3.10.3 Perform Analysis of Variance (ANOVA	116
		3.10.4 Develop Diagnostic Plot	117
		3.10.5 Model Graph	118
	3.11	Phase 5: Develop Computerized System for Driving Fatigue	119
		3.11.1 DSSfDF System Framework	119
		3.11.2 Integration of DSSfDF's Components	122
		3.11.3 DSS Validation	126
4.	RES	SULTS AND DISCUSSION	131
	4.1	Introduction	131
	4.2	Knowledge Acquisition	131
		4.2.1 Literature Review	131
		4.2.2 Pre- Survey Data Analysis	132
		4.2.3 Pre-Survey Findings Validation by Expert	144
		4.2.4 Summary of Knowledge Acquisition	144
	4.3	Pre-Experiment Survey Data Analysis	146
	4.4	Initial Fatigue Assessment	147
		4.4.1 Subject's Readiness Checklist	147
		4.4.2 Blood Pressure Measurement	148
		4 4 3 Karolinska Sleepiness Scale (KSS)	149
		444 Summary of Initial Fatigue Assessment	150
	45	FEG Power Spectral Density (PSD) Experimental Data	150
	4.5	Regression Analysis	154
	4.0	A 6.1 Fit Summary	154
		4.6.2 Analysis of Variance (ANOVA)	157
		4.6.3 Diagnostic Plot	161
		4.6.4 Model Graph	165
		4.6.5 Summery of Degression Analysis	105
	17	4.0.5 Summary of Regression Analysis	1/1
	4.7	471 DesetDE Algorithm	173
		4.7.2 Timing of When the Uger's DSD has Deschod the Standard DSD.	175
		4.7.2 Thining of when the User STSD has Reached the Standard TSD	170
		Values	1/9
		4.7.4 DSSIDF Validation	18/
		4.7.4 DSSIDF Development Summary	191
5.	CON	NCLUSION AND RECOMMENDATION OF FUTURE WORK	192
	5.1	Conclusion	192
	5.2	Contribution of the research	195
		5.2.1 Academic Field	195
		5.2.2 Automotive Industry	197
		5.2.3 Research Limitation and Future Work	198
REF	FEREN	ICES	200
APF	PENDI	CES	227

LIST OF TABLES

TABLE	TITLE		
Table 2.1	Brain wave frequencies with their characteristics	31	
Table 2.2	Summary of EEG waves changes from previous studies	32	
Table 2.3	Built-in system for high-end automobile models	45	
Table 2.4	Independent product for old and cheaper vehicle	48	
Table 2.5	Summary of transportation – oriented DSS research articles published from 2017 to 2023	54	
Table 2.6	Established web-based DDS that are publicly available online	59	
Table 2.7	EEG filters applied to raw EEG signals (Luján et al., 2021)	69	
Table 3.1	Human factor level combination	80	
Table 3.2	Summary of experimental variable	90	
Table 3.3	Lower, average and upper bounds and categories for numeric and categorical variables, respectively	92	
Table 3.4	Details of experimental runs 1 and 14	93	
Table 3.5	Subject's demographic details	93	
Table 3.6	Summary of the subjects involved for pre-experiment survey	95	
Table 3.7	:Details of Modified Fatigue Impact Scale (MFIS)	97	
Table 3.8	Blood pressure stages	100	
Table 3.9	KSS level and its description (Åkerstedt and Gillberg, 1990)	101	
Table 3.10	Ideal electrodes to measure θ , α , and β -waves	112	
Table 3.11	PSD values as a person fatigued (Ashley Craig et al., 2012).	121	

Table 3.12	Number of subjects based on combination of BMI, gender and types of roads	127
Table 3.13	Subject's information to enter into the system through GUI 2	129
Table 4.1	Association of driving duration and fatigue-related road accidents involvement	137
Table 4.2	Association of BMI and fatigue-related road accidents involvement	138
Table 4.3	Association of types of roads and fatigue-related road accidents involvement	139
Table 4.4	Association of gender and fatigue-related road accidents involvement	140
Table 4.5	Modified Fatigue Impact Scale (MFIS) scores	146
Table 4.6	Sequential Model Sum of Squares of working memory capacit $(\theta$ -waves)	y 154
Table 4.7	Sequential Model Sum of Squares of attention level (α -waves)	155
Table 4.8	Sequential Model Sum of Squares of decision making skill (β-waves)	155
Table 4.9	Lack of Fit Tests of working memory capacity (θ-waves)	156
Table 4.10	Lack of Fit Tests of attention level (α-waves)	156
Table 4.11	Lack of Fit Tests of decision making skill (β-waves)	156
Table 4.12	Analysis of Variance (ANOVA) of working memory \Box AKA capacity memory (θ -waves)	157
Table 4.13	Analysis of Variance (ANOVA) of attention level (α -waves)	157
Table 4.14	Analysis of Variance (ANOVA) of decision-making skills (β-waves)	158
Table 4.15	Shortcut button	177

LIST OF FIGURES

FIGURE	TITLE		
Figure 2.1	Driving fatigue detection parameter	18	
Figure 2.2	10-20 electrode placement system	22	
Figure 2.3	(a) Cerebral hemisphere, (b) Cerebral hemisphere's lobes	23	
Figure 2.4	Driver Alert System	45	
Figure 2.5	Driver Monitoring System	45	
Figure 2.6	Attention Assist	46	
Figure 2.7	Driver Alert Control	46	
Figure 2.8	Driver Alert System	47	
Figure 2.9	Life by Smart Cap	48	
Figure 2.10	Optalert Eagle (Optalert, 2023)	49	
Figure 2.11	DFM-HV PRO Driver Fatigue Monitor YSIA MELAKA	49	
Figure 2.12	Seeing Machines Guardian Backup- Driver Monitoring System (Machines, 2023)	50	
Figure 2.13	Smart Eye's AntiSleep	50	
Figure 2.14	ASTiD®	51	
Figure 2.15	SafetyCube	59	
Figure 2.16	Crash Modification Factors (CMF) Clearinghouse	60	
Figure 2.17	Road Safety Toolkit	61	
Figure 2.18	Road Safety Observatory	62	
Figure 2.19	PRACT Repository	63	

Figure 2.20	EEG wearable device: (a) headset-based and (b) electrode- cap-based	67
Figure 2.21	Stages of EEG processing	68
Figure 2.22	An example of time-domain visualization of continuous EEG data	70
Figure 2.23	An example of frequency-domain visualization of EEG data: a) beta, (b) alpha, (c) theta and (d) delta	71
Figure 3.1	Research process flow	78
Figure 3.2	Driving route by Google Map: (a) monotonous, (b) winding	88
Figure 3.3	Driving simulator set up	98
Figure 3.4	Electroencephalogram (EEG) set up	102
Figure 3.5	Electroencephalogram Quality (EQ) (a) bad quality (b) good quality	103
Figure 3.6	Sample of EEG data recording session illustration	104
Figure 3.7	Flow chart of EEG signal processing using Brain Vision Analyzer software	104
Figure 3.8	Process flow to develop and analyse regression analysis	113
Figure 3.9	Matching node under "ANALYSIS" by Design Expert software	114
Figure 3.10	DSSfDF system framework L MALAYSIA MELAKA	119
Figure 3.11	EEG PSD values from alert (solid line) to fatigue (dashed line)	121
Figure 3.12	DSSfDF model and its mechanism	123
Figure 4.1	Critical cognitive skills during driving (n=30)	133
Figure 4.2	Significant cognitive skills during driving (n=30)	135
Figure 4.3	Fatigue-related road accidents involvement (n=30)	135
Figure 4.4	How fast to get fatigue while driving? (n=30)	136
Figure 4.5	Types of roads require high cognitive skills and consistently cause fatigue while driving (n=30)	138

Figure 4.6	Respondent's actions when they were too fatigued while driving (n=30)	141
Figure 4.7	Main factor causing road accidents (n=30)	142
Figure 4.8	Main factor causing driving fatigue (n=30)	142
Figure 4.9	Respondent's knowledge about fatigue detection devices while driving (n=30)	143
Figure 4.10	Respondent's experience in using fatigue detection devices while driving (n=30)	143
Figure 4.11	Respondent's blood pressure measurement (n=52)	148
Figure 4.12	KSS scores before driving test (n=52)	149
Figure 4.13	KSS scores after driving test (n=52)	150
Figure 4.14 Figure 4.15	EEG PSD data during the 5 minutes before began driving and 5 minutes before completed driving for (a) θ -waves (working memory capacity), (b) α -waves (attention level) and (c) β - waves (decision-making skills) (n=52) Total average percentage of PSD increment (θ -waves: working memory capacity and α -waves: attention level) and decrement (β -waves: decision-making skills) during the 5 minutes before began driving and 5 minutes before completed driving (n=52)	152 153
Figure 4.16	Predicted response values against actual response values: (a) θ - waves (working memory capacity), (b) α -waves (attention level), (c) β -waves (decision-making skill)	162
Figure 4.17	Prediction errors (residuals) against the predicted response values (a) θ -waves (working memory capacity), (b) α -waves (attention level), (c) β -waves (desicion-making skills)	164
Figure 4.18	The relationship between (a) driving duration and (b) BMI against working memory capacity: θ waves (), attention level: α waves () and decision-making skill: β waves ()	165
Figure 4.19	The relationship between (a) types of roads and (b) gender against working memory capacity: θ waves (), attention level: α waves () and decision-making skill: β waves ()	168
Figure 4.20	DSSfDF algorithm flowchart diagram	173
Figure 4.21	First interface	174

Figure 4.22	Second interface (User Profile GUI)	174
Figure 4.23	Third interface (Regression GUI)	175
Figure 4.24	Running stopwatch which represents the duration of the driving	176
Figure 4.25	The PSD of the three cognitive skills for every second of driving display	176
Figure 4.26	First warning at minute 30	177
Figure 4.27	Second warning at minute 50	178
Figure 4.28	Final warning	178
Figure 4.29	Sample of saved data	179
Figure 4.30	Final warning trigger time for a male user with a BMI ranging from 18.5 kg/m ² to 24.9 kg/m ² (normal) when driving on a winding road	180
Figure 4.31	Final warning trigger time for a male user with a BMI ranging from 18.5 kg/m ² to 24.9 kg/m ² (normal) when driving on a monotonous road	181
Figure 4.32	Final warning trigger time for a female user with a BMI ranging from 18.5 kg/m ² to 24.9 kg/m ² (normal) when driving on a winding road	181
Figure 4.33	Final warning trigger time for a female user with a BMI ranging from 18.5 kg/m ² to 24.9 kg/m ² (normal) when driving on a monotonous road	182
Figure 4.34	Final warning trigger time for a male user with a BMI ranging from 25.0 kg/m ² to 29.9 kg/m ² (overweight) when driving on a winding road	183
Figure 4.35	Final warning trigger time for a male user with a BMI ranging from 25.0 kg/m ² to 29.9 kg/m ² (overweight) when driving on a monotonous road	183
Figure 4.36	Final warning trigger time for a female user with a BMI ranging from 25.0 kg/m ² to 29.9 kg/m ² (overweight) when driving on a winding road	184
Figure 4.37	Final warning trigger time for a female user with a BMI ranging from 25.0 kg/m^2 to 29.9 kg/m^2 (overweight) when driving on a monotonous road	184

Figure 4.38	Final warning trigger time for a male user with a BMI ranging from 30.0 kg/m^2 to 35.0 kg/m^2 (obese) when driving on a winding road	185
Figure 4.39	Final warning trigger time for a male user with a BMI ranging from 30.0 kg/m^2 to 35.0 kg/m^2 (obese) when driving on a monotonous road	185
Figure 4.40	Final warning trigger time for a female user with a BMI ranging from 30.0 kg/m^2 to 35.0 kg/m^2 (obese) when driving on a winding road	186
Figure 4.41	Final warning trigger time for a female user with a BMI ranging from 30.0 kg/m^2 to 35.0 kg/m^2 (obese) when driving on a monotonous road	186
Figure 4.42	Subject's blood pressure measurement before the driving test	188
Figure 4.43	KSS scores before driving test (Case Study 1)	188
Figure 4.44	KSS scores after driving test (Case Study 1)	188
Figure 4.45	KSS scores after driving test (Case Study 2)	189
2	اويىۋىرسىتي بىكنىكل ملىسىيا ملاك	
U	NIVERSITI TEKNIKAL MALAYSIA MELAKA	

LIST OF ABBREVIATIONS

AF	-	Atrial Fibrillation
APMs	-	Accident Prediction Models
ADHD	-	Attention Deficit Hyperactivity Disorder
ANOVA	-	Analysis of Variance
Adj R ²	-	Adjusted R squared
BMI	- 11	Body Mass Index
COVID-19	-	Coronavirus disease 2019
CCD	- 1	Charge-Coupled Device
С	Fiero	Central
CMFs		Crash Modification Factors
DSS	ملاك	ويور سيني به Decision Support System
DAC	UNIVE	Driver Alert Control AL MALAYSIA MELAKA
DAS	-	Driver Alert System
DSSfDF	-	Decision Support System for Driving Fatigue
DAC	-	Driver Alert Control
ECG	-	Electrocardiogram
EMG	-	Electromyography
EOG	-	Electrooculogram
EEG	-	Electroencephalogram
F	-	Frontal
FFT	-	Fast Fourier Transform

GTKP	- Global Transport Knowledge Partnership
GUI	- Graphical User Interface
HTS	- Heat Transportation System
IRAP	- International Road Assessment Programme
JDS	- Johns Drowsiness Scale
KSS	- Karolinska Sleepiness Scale
LDW	- Lane Departure Warning
MIROS	- Malaysia Institute of Road Safety Research
MCO	- Movement Control Order
MFIS	- Modified Fatigue Impact Scale Survey
NSF	- National Sleep Foundation
0	- Occipital
Р	- Parietal
PCS	Pre-Collision System
PRACT	- Predicting Road Accidents
PSD	اونيوم سيني تيڪنيه Power Spectral Data ملاك
SSS	UNIVEStanford Sleepiness Scale ALAYSIA MELAKA
SPSS	- Statistical Package for the Social Sciences
SSE	- Sum of Squares
SMSS	- Sequential Model Sum of Squares
Т	- Temporal
USA	- United States of America's
UK	- United Kingdom
VGA	- Video Graphics Array
WHO	- World Health Organization

LIST OF SYMBOLS

%	- Percentage
α	- Alpha
β	- Beta
δ	- Delta
θ	- Theta
γ	- Gamma
Hz	- Hertz
Cm	- Centimetre
C.V.	- Coefficient of Variation
dB	- Decibel
0	اويوم سيتي تيڪنيڪل مليهيو ملاك
μV	UNIVEMICROVOITEKNIKAL MALAYSIA MELAKA
Min	- Minute
Prob	- Probability
Kg	- Kilogram
Kg/m²	- Kilogram per meter square
df	- Degrees of freedom
σ	- Standard Deviation

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix A	Pre-Survey Questionnaire	227
Appendix B	Expert Profile	230
Appendix C	Expert Validation Form (Pre-Survey Findings)	232
Appendix D	Design Expert Software Interfaces to Construct Experimental Design Layout	234
Appendix E	Constructed Experimental Design Layout	239
Appendix F	Pre- Experiment Survey Questionnaire	237
Appendix G	Subject's Readiness Checklist	241
Appendix H	EEG EPOC X Usage Procedures	242
Appendix I 🛓	Sample Calculation of PSD Average Values	246
Appendix J	Timing when achieving standard PSD, minute	247
Appendix K	DSSfDF Validation Form by Expert	248
Appendix L	Pre-Survey Findings Validation Results by Experts	250
Appendix M	Predicted PSD Values, Actual PSD Values and Prediction Errors (residuals) of working memory capacity (θ -waves), attention level (α -waves) and decision-making skill (β -waves) for all 52 experimental runs	253
Appendix N	Timing When Achieving Standard PSD (BMI: Normal 18.5-	
	24.9 kg/m ²)	255
Appendix O	Timing When Achieving Standard PSD (BMI: Overweight $25-29.9 \text{ kg/m}^2$)	258
Appendix P	Timing When Achieving Standard PSD (BMI: Obese 30-35 kg/m ²)	260

LIST OF PUBLICATIONS

The followings are the list of publications related to the work on this thesis:

Ibrahim, M.S., Kamat, S.R. and Fukumi, M., 2024. Regression analysis of heart rate for driving fatigue using Box-Behnken design. *Journal of Mechanical Engineering (JMechE)*, 21(1), pp. 165-176. (SCOPUS: Q4)

Ibrahim, M. S., Kamat, S. R., Shamsuddin, S., Isa, M. H. M., & Fukumi, M, 2023. Regression Analysis of Oxygen Saturation Level for Critical Driving Fatigue Factors using Box-Behnken Design. *Journal of Advanced Manufacturing Technology (JAMT)*, 17(3), pp. 70-81. (SCOPUS Q4)

Ibrahim, M.S., Kamat, S.R., Shamsuddin, S., Isa, M.H.M. and Ito, M., 2022. Electroencephalogram (EEG)-based Systems to Monitor Driver Fatigue: A Review. *International Journal of Nanoelectronics & Materials*, 15, pp. 365-380. (SCOPUS, Q4)

Ibrahim, M.S., Kamat, S.R., Shamsuddin, S. and Fukumi, M., 2022. Mathematical Regression Analysis of Oxygen Saturation for Driving Fatigue using Box-Behnken Design. *International Journal of Emerging Technology and Advanced Engineering*, 12(9), pp. 23-29. (SCOPUS: Q4)

Ibrahim, M.S., Kamat, S.R., Shamsuddin, S. and Fukumi, M., An Investigation of Heart Rate and Oxygen Saturation Level (SpO2). *Malaysian Journal of Medicine and Health Sciences*, 20(3), pp. 97-103. (SCOPUS, Q4)

Ibrahim, M. S., Kamat, S. R., Shamsuddin, S., & Fukumi, 2022. M. Regression Analysis of Heart Rate to Indicate Driving Fatigue using Design Expert Software. *Proceedings of International Conference on Global Optimization and Its Applications 2022 (ICoGOIA 2022)*, pp. 164-172.

Ibrahim, M.S., Kamat, S.R., Shamsuddin, S. and Isa, M.H.M., 2022. Development of Driving Fatigue Strain Index using Fuzzy Logic to Quantify Impairment Risk Levels of Cognitive Skills in Vehicle Driving. *International Journal of Engineering Advanced Research*, 4(1), pp. 121-139.

Ibrahim, M.S., Kamat, S.R. and Shamsuddin, S., 2023. The Application of Driving Fatigue Detection and Monitoring Technologies in Transportation Sector: A Review. *International Journal of Technology Management and Information System*, 5(2), pp. 30-42.

Ibrahim, M.S., Kamat, S.R. and Shamsuddin, S., 2023. Computer-Based Decision Support System (DSS) Application in Transportation Sector: A Review. *International Journal of Social Science Research*, 5(2), pp. 72-86.

Ibrahim, M.S., Kamat, S.R. and Shamsuddin, S., 2023. The role of brain wave activity by electroencephalogram (EEG) in assessing cognitive skills as an indicator for driving fatigue: A review. *Malaysian Journal on Composites Science and Manufacturing*, 11(1), pp. 19-31.

CHAPTER 1

INTRODUCTION

1.1 Background

Malaysia is now one of the most urbanized countries in the Southeast Asia, an intergovernmental organization that also include Brunei, Indonesia, Myanmar, Cambodia, Thailand, Philippines, Vietnam and Singapore. The urban population in Malaysia has significantly escalated from 70% in 2010 to 78.21% in 2022. The trend is predicted to reach larger than 80% in year 2030 (Economics, 2023). As a result of urban sprawl, the human population has become more dependent on the transportation system. This is compatible with a skyrocketed number of registered vehicles in Malaysia from 3,447,712 units in 1996 to 33,300,000 units in 2021 (CEIC, 2021). The improvement in transportation system is indeed, a major contributor to economic expansion, however, the rapid growth of mobility in urban regions cause massive economic losses in road safety. A recent statistic released by Malaysia Institute of Road Safety Research (MIROS), reveals that the number of road crashes in Malaysia has alarmingly increased with a record from 462,426 cases in 2012 to 567,516 cases in 2019. However, the rate was drastically declined to 418,245 cases in 2020 due to the implementation of movement control order (MCO) during Covid-19 pandemic before rapidly rising to 915,874 cases from 2021 to 2022 (MIROS, 2021).

In most countries around the world, young drivers have higher accident rates than older and more experienced drivers. Harith (2022) used the phrase "young drivers" to refer to those aged 18 to 24. A study looked into the ratio and distribution pattern of vehicular incidents by age in Klang Valley, Malaysia, and discovered that drivers aged 15 to 25 are