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 This study provides a thorough examination of power losses and total 

harmonic distortion (THD) in single-phase 9-level cascaded H-bridge 

multilevel inverters (CHB MLI) at low switching frequencies. The aim is to 

analyze the efficiency of a single-phase 9-level cascaded CHB MLI using 

three distinct switch configurations: 16-switch, 11-switch, and proposed 8-

switch. The calculated switching angles are optimized using the feed-

forward methodology. Two types of load conditions—R load and R-L 

load—are being examined. The results suggest that the proposed 8-switch 

design exhibits superior efficiency by limiting power losses compared to 

other topologies. Regarding THD, the conventional topology yields a 

somewhat lower value, however, the disparity is less than 1% when 

compared to both reduced switch topologies. 
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1. INTRODUCTION 

The multilevel inverter (MLI) has several advantages compared to the standard bipolar inverter [1], 

[2]. The voltage stress on each switch is reduced as a result of the switches being connected in series [3], [4]. 

Hence, by increasing the rated voltage, the overall power of the inverter can be safely augmented. 

Furthermore, the decrease in voltage swing during each switching cycle leads to a reduction in the rate of 

change of voltage (dv/dt) [5], [6]. Additionally, the increase in output levels leads to a reduction in harmonic 

distortion [7], [8]. Unfortunately, raising the level will result in an increase in the components, thereby 

leading to an increase in power losses. In order to address this problem, a high level MLI with a low switch 

configuration has recently been proposed [9]-[12]. The primary advantages of these topologies include a 

lower number of switches, cost-effectiveness, minimal losses during switching, ease of operation, and high-

resolution output voltage [12], [13]. 

The consideration of power loss is crucial in the design of more efficient inverters, and precise 

calculation directly affects both the technical and economic evaluation [14], [15]. The power losses in a 

converter circuit include switching loss, gate loss, snubber loss, conduction loss, and off-state loss [14]. For 

the purpose of enhancing the efficiency and size of MLIs in the future, it is imperative to analyze the power 

losses [15]. This paper examines and highlights the differences in performance between a newly proposed 

reduced switch topology and the standard 9-level cascaded H-bridge (CHB) MLI architecture. The 

recommended evaluations include power losses and total harmonic distortion (THD) analysis. 

https://creativecommons.org/licenses/by-sa/4.0/
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2. CASCADED H-BRIDGE MULTILEVEL INVERTER TOPOLOGY 

A 9-level output voltage is generated by cascading four standard H-bridge modules in a CHB MLI 

[16]-[18]. The topology referred to as standard or conventional topology consists of 16 switches and 4 DC 

sources, as depicted in Figure 1(a). Meanwhile, the proposed circuit modification in [19], depicted in  

Figure 1(b), showcases a switch reduction technique. It effectively reduces the number of switches by 5. This 

research suggests an alternative structure, depicted in Figure 1(c), that utilizes only 8 switches to achieve a 

further reduction in the number of switches. The switching pattern for the suggested topology is provided in 

Table 1. Table 2 presents a concise overview of the variations in component requirements among the three 

topologies of the single-phase 9-level CHB MLI. 

 

 

 

 
(b) 

 
(a) (c) 

 

Figure 1. 9-level CHB MLI topologies (a) conventional, (b) 11-switch, and (c) proposed 8-switch 

 

 

Table 1. Proposed 8-switch CHB MLI switching patterns 

Output voltage 
Switch status (1 – ON) 

S1 S2 S3 S4 S5 S6 S7 S8 

+4 VDC 1 1 1 1 1 1 1 1 

+3 VDC 1 0 0 1 1 1 1 0 
+2 VDC 1 0 0 1 1 1 0 0 

+1 VDC 1 0 0 1 1 0 0 0 

0 VDC 0 0 1 1 0 0 0 0 
-1 VDC 0 1 1 0 1 0 0 0 

-2 VDC 0 1 1 0 1 1 0 0 

-3 VDC 0 1 1 0 1 1 1 0 

-4 VDC 0 1 1 0 1 1 1 1 
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Table 2. List of components for conventional and reduced switch topologies 
Components Conventional 11-Switch 8-Switch 

Insulated gate bipolar transistor (IGBT) 16 11 8 
Gating block 16 11 8 

DC voltage source 4 4 4 

Number of H-Bridge 4 1 1 
Diode 0 0 4 

 

 

3. SWITCHING ANGLES OPTIMIZATION USING FEED FORWARD METHOD 

Switching angle has a substantial impact on the harmonic generated by the output voltage [20]-[22]. 

Inadequate planning of the switching angle might result in issues related to suboptimal power quality and an 

increase in overall harmonic distortion [22], [23]. The total switching angles required for the output voltage 

can be determined using (1) based on the quarter wave symmetry analysis. 

 

𝑆𝐴 =
(𝑚−1)

2
 (1) 

 

Where 𝑆𝐴 is the total switching angles required for quarter wave symmetry and 𝑚 is the CHB MLI  

level number. 

The utilization of a feed-forward method (FFM) allows for the generation of switching angles and 

high-quality output voltage waveforms, hence circumventing the limitations [23], [24]. The primary objective 

of this technique is to reduce the disparities between waveforms with negative and positive polarity, as well 

as the overall contour of the waveform [24]. The FFM exhibits a THD percentage when compared to other 

methods for computing switching angles. The mathematical expression used to calculate the switching angle 

is presented in (2) [23]. 

 

𝑎𝑖 =
1

2
[𝑠𝑖𝑛−1 (

2𝑖−1

𝑚−1
)] (2) 

 

Where 𝑖 is the angle numbers. Table 3 summarizes the value of the main switching angles of the CHB MLI 

obtained by FFM. 
 
 

Table 3. Switching angles value 
Switching angle Value 

𝛼1 3.59 

𝛼2 11.01 

𝛼3 19.34 

𝛼4 30.52 

 
 

4. POWER LOSSES FORMULATION 

The four fundamental types of power losses that occur during the operation and switching of power 

components in a power circuit are conduction loss, off-state loss, switching loss, and gate loss [25]. The 

negligible value of off-state loss and gate loss is commonly overlooked [15]. Conduction loss pertains to the 

energy losses that occur when a device is in its active or conducting condition [14]. The cumulative 

conduction loss of an MLI is the aggregate of the individual losses incurred by its components during the 

conduction period. Thus, the multiplication of the on-state saturation voltage (𝑉𝑜𝑛) and the on-state current 

(𝐼𝑜𝑛) can be employed to indicate the power loss [14]. 

 

𝑃𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 𝑃𝑐𝑜𝑛𝑑(𝐼𝐺𝐵𝑇) + 𝑃𝑐𝑜𝑛𝑑(𝐷𝑖𝑜𝑑𝑒) (3) 

 

𝑃𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = (𝑉𝐶𝐸 × 𝐼𝐶 ) + (𝑉𝐷 × 𝐼𝐷) (4) 

 

Switching loss occurs due to sluggishness in transitioning from the off state to the on state and vice 

versa. Switching loss is the result of combining the average IGBT turn-off loss, IGBT turn-on loss, and diode 

reverse recovery loss. The losses can be computed using the switching energy equations, which are 

dependent on the switch current [14]. 
 

𝑃𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 = 𝑃𝑡𝑢𝑟𝑛−𝑂𝑁 + 𝑃𝑡𝑢𝑟𝑛−𝑂𝐹𝐹 + 𝑃𝑟 𝑒𝑐.𝑑𝑖𝑜𝑑𝑒   (5) 
 

𝑃𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 = [(𝐸𝑡𝑢𝑟𝑛−𝑂𝑁 + 𝐸𝑡𝑢𝑟𝑛−𝑂𝐹𝐹) × 𝑓𝑠𝑤(𝐼𝐺𝐵𝑇)] + [𝐸𝑟𝑒𝑐𝑡.𝑑𝑖𝑜𝑑𝑒 × 𝑓𝑠𝑤(𝑑𝑖𝑜𝑑𝑒)] (6) 
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Figure 2 illustrates the schematic representation of the process for calculating the overall power 

losses associated with each switch. The simulation result can immediately provide all the power loss 

information from the switch. The losses in the IGBT module can be categorized into two primary 

components: the IGBT itself and the diode. During circuit operation, both the IGBT and diode will produce 

conduction and switching losses. To account for the entire power losses of each switch, the combined losses 

in both the IGBT and diode can be summed together [25]. 

 

 

 
 

Figure 2. Flow model for the loss’s calculation [14] 

 

 

5. RESULTS AND DISCUSSION 

By incorporating the switching angles derived from the FFM approach in Table 3 into the 

simulation circuit for all topologies, all the required data such as THD and power losses are obtained. Two 

distinct loads are being tested, first with a resistive (R) load and subsequently with a resistive-inductive (RL) 

load. The parameters used in the simulation are listed in Table 4. 

 

 

Table 4. Simulation parameters 
Parameter Value/model 

IGBT FZ825R33HE4D. 
IGBT thermal resistance 0.007 ℃/W 

Diode 150EBU04 

Ambient temperature 30 ℃ 

R-load 60 Ω  

L-load 20 mH 

 

 

Figure 3 displays the THD values acquired for all circuit configurations under No load, R load, and 

R-L load circumstances. Examined this figure, it becomes evident that the pattern of THD values is nearly 

the same. The typical cascaded CHB MLI exhibits the lowest THD for both load circumstances, with the 11-

switch design ranking second. The proposed architecture exhibits the largest THD throughout all load 

conditions, despite having the lowest THD value when there is no load. Nevertheless, the disparity in value is 

between 0.24% and 1.01% between the standard methods, which is not particularly significant. 

Figure 4 displays the simulated losses for all topologies under load circumstances. The impact of 

switching losses on overall losses is reduced due to the smaller number of switching transitions required to 

achieve the output voltage. The total power losses of the suggested 8-switch design were 11.8 W in the R-L 

load configuration and 12 W in the R load configuration. Both numbers are the lowest compared to the other 

two topologies, where the conventional topology resulted in the highest total losses of 17.1 W and 17 W  

for the R-L and R loads configurations, respectively. The increased number of losses can be attributed to the 

utilization of a greater quantity of active components during the circuit's development, as indicated in  

Table 2. 
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Figure 3. THD values 

 

Figure 4. Analysis of losses 

 

 

6. CONCLUSION 

This work presents a simulation of three different CHB MLI topologies: conventional, 11-switch, 

and 8-switch. The THD and power losses are recorded and compared. When evaluating the load circuits  

(R and RL loads) in THD analysis, the conventional switch topology demonstrates superior performance 

compared to the reduced switch topologies (11-switch and 8-switch). Regarding power losses, the proposed 

8-switch architecture outperforms the other two topologies. In general, both reduced switch topologies 

effectively minimize power dissipation, hence enhancing system efficiency. 
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