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 This paper discussed a few type linear motors for lift systems applications. 

First, a few types of lift systems are generally presented. Based on these types 

of lift systems, the common actuators used to operate the lifts are compared 

and analyzed. Basically, in traditional lift systems, rotational motors are 

commonly employed as actuators. However, to achieve simpler lift systems, 

linear motors are utilized instead of rotational motors in direct drive systems. 

There are three types of linear motors usually being adopted which are linear 

induction motors (LIM), permanent magnets linear synchronous motors 

(PMLSM) and switched-reluctance linear synchronous motors (SRLSM). 

LIM exhibits a simple structure but relatively have low performance, while 

the SRLSM demonstrates a similar simplicity yet delivering improved 

performance compared to the LIM. On the other hand, the PMLSM, despite 

its high-performance capabilities, suffers from notable cogging. 
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1. INTRODUCTION 

Vertical transportations have become one of the essential things in human daily lives. They help to 

move people and goods from one floor to another especially in high-rise buildings. A few examples of vertical 

transportations are escalators, travellators, lifts, and cranes. These vertical transportations require electrical 

power to operate. Therefore, they can reduce the usage of human energy. As for travellators and lifts, this type 

of vertical transportation is convenient for people with trolleys and wheelchairs. However, compared to lifts, 

travellators can usually be found in a shopping mall instead of residential buildings. On the other hand, lifts 

can be found in most multilevel buildings either business buildings or residential buildings. 

In a multilevel building, there is a regulation that requires the developer to provide lift to the physically 

handicapped people especially in a building that is impractical to construct and build a wheelchair ramp [1]. In 

Malaysia, there are a few Malaysian standard codes of practice on access for disabled persons that specifies 

the basic requirement of buildings and related facilities to permit access for disabled persons [2]. Apart from a 

person with a wheelchair, the lift can also help elderly people and obese people to easily move in a multistoried 

building. Early lift systems relied on DC series motors with high starting torque capability [3]. However, 

induction motors (IM) started to replace DC motors in lift system applications as power electronics and the 

ability to control AC motors advanced. In this paper, a few types of AC motors that are commonly used in lift 

system applications are discussed. 
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2. TYPES OF LIFT SYSTEMS 

The electrical lift system basically can be divided into three major categories which are geared traction 

systems, gearless traction systems, and direct drive (ropeless) systems. Traction systems can also be designed 

with machine-room or machine-roomless for both geared and gearless systems [4]. Depict its name, the roomed 

type requires separate accommodation of motor room meanwhile roomless type requires only minimal space 

for motor installation. In general, lift systems consist of the lift car, electrical motor, sheave, ropes and 

counterweight, control system as well as installation room. The summarization for each type of lift system is 

shown in Table 1.  

In the geared traction system, the motor is attached to the gearbox that is used to turn the hoisting 

sheave and move the rope [5]. Geared traction lift system basically is used for mid-rise to high rise applications. 

This type of lift system also has high or variable speed operation [6]. Geared traction lift system can be 

considered the most traditional lift system in the lift industry.  

Similar to geared traction system, a gearless traction system requires a counterweight to balance the 

weight of the lift car. However, in this system electrical motor is connected to the control system and directly 

transmits power to the sheave [7]. Despite their higher cost, gearless traction systems consume less energy than 

geared traction systems making them more efficient in high-rise buildings applications [6]. Apart from that, 

the elimination of the gearbox reduced space for motor installation. 

In contrast to the geared traction lift system, the direct drive lift system also known as rope-less lift 

systems are considered the newest type of lift system. This type of lift system eliminates the tractions in their 

systems [8], [9]. Thus, this type of lift system does not require a counterweight to balance the hoisting ropes. 

With the elimination of the traction system and counterweight, the lift car moves up and down by being directly 

attached to the mover of the linear motor [9]. Based on this operation, this type of lift system has a more 

compact design. 

 

 

Table 1. Electrical lift systems 
 Geared traction Gearless traction Direct drive 

Main 

components 

Electrical motors 

(rotational) 

Electrical motors (rotational/linear) Electrical motors (linear) 

Gearbox Lift car Lift car 

Lift car Cable  

Cable Pulley/sheave  

Pulley/sheave   
Applications Low-rise buildings Mid-rise buildings High-rise buildings 

Mid-rise buildings High-rise buildings  

Advantages Low cost High speed Higher efficiency 
Variable speed  Higher efficiency and space saving compared 

to geared traction systems 

Higher speed 

Disadvantage Environmental 
unfriendly 

Noise and vibration High cost 

 Low efficiency  Complex assembly process 

 Noise and vibration   
 High energy 

consumption 

  

Remarks   Requires more than two motors for a 
single lift car [10], [11] 

 

 

3. LINEAR MOTORS AS LIFT ACTUATORS 

In the design of the electrical lift systems, the electrical motor is used to drive the lift car. Depending 

on the design of the lift system, the electrical motor used may be either a rotational motor or a linear motor as 

depicted in Figure 1. For instance, only linear motors are eligible to power the direct drive lift systems to move 

the lift car up and down [8], [9], [12]. As for the conventional lift systems such as traction geared lift systems, 

the application of rotational motor [13] is required as the main operation driver. The same condition can be 

seen in the traction gearless lift system [14]–[16] where the main electrical motor used is a rotational motor. 

Generally, electrical motors in the application of lift systems can be divided into two major categories. 

They are rotational motors and linear motors. Each motor can be further divided into PM type or non-PM type 

based on the existence of PM in their structure. Performance-wise, PM motors have higher thrust density 

compared to non-PM motors. Mostly, the traction lift systems, either geared traction systems or gearless 

traction systems advocate rotational motors in their systems. In the geared traction systems, the traction motor 

which is the source of power is coupled to the gear reducer in order to control the speed and torque [17]. This 

mechanism however reduced the efficiency of the systems. In an attempt to overcome the performances of this 
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conventional systems, the gear reducer is integrated with the motor itself creating a new topology of a gear 

motor [18]. 

On the other hand, the rotational traction motors for the gearless traction systems is directly connected 

to the control system and transmits the power to a sheave. In the gearless traction systems, the rotational AC 

motors are used due to their higher efficiency and longer life span [6]. However, it is also possible to employ 

linear motors in the gearless traction systems [19]. By using linear motor in the traction lift systems, the motors 

act as both traction motors and counterweight [19]. The application of linear motor in a traction lift system not 

only minimized the accommodation space but increasing the efficiency and the reliability of the systems [19]. 

Linear motors are known for providing direct linear motion without any motion translations resulting 

in a simpler and more robust conversion of electrical input into linear motion [9]. Due to this direct linear 

motion mechanism, linear motors are advocates as the main actuator for direct drive lift systems applications. 

Direct drive lift systems are proposed as a solution to high-rise buildings applications to eliminate the usage of 

cables in traction systems [9]. For this applications, linear motors are required to have high thrust density and 

high control precision [20]. This paper reviews a few common types of linear motors found in the lift systems 

applications. The review includes the advantages and disadvantages of each type of linear motors as well as 

their different configurations found in the lift systems applications. 

 

 
Lift

Geared Gearless Direct drive

IM

PMSM

IM

PMSM

SRSM

LIM

LIM

PMLSM

SRLSM

 
 

Figure 1. Lift systems and motors classification 

 

 

3.1. Linear induction motor (LIM) 

LIM, like its rotational counterpart, is a common type of motor that is widely used in both the domestic 

and commercial industries [21]–[24]. A few advantages that contribute to the widespread of LIMs applications 

in industries are their simple structure, easy manufacturing, and high reliability. Nevertheless, LIMs also suffer 

from a few shortcomings that degrade their performances. One of the factors is due to their open structure. For 

example, to avoid the collision between stator and mover during operation, they have a larger air gap compared 

to the IM, resulting in a low power factor and low efficiency. Apart from that, due to the open iron core, they 

are affected by end effects phenomenon [25]–[28], such as transversal edge effect and longitudinal end effect.  

LIMs can be designed in many topologies with a variety of parameters. Changing one parameter may 

have the opposite effect and different sensitivity on different output characteristics [29]. Since each topology 

has its outputs and specialties, the applications will determine the adopted structure [30]. Therefore, the optimal 

design of LIMs is a comprehensive study by considering different outputs as objectives [29]. Though LIMs 

can be divided into a few categories based on their structure configurations [30], two of the major types of 

LIMs are single-side LIM (SLIM) and double-side LIM (DLIM). They are categorized based on the number 

of their primary part. The SLIM structure consists of only one primary and one secondary part [31]–[33], 

meanwhile, DLIM consist of two primary parts placed on both sides of the secondary part [27], [34], [35]. 

Basic configuration of SLIM and DLIM are depicted in Figures 2(a) and 2(b). 

In previous studies [19] and [36], SLIM have been designed for two different types of lift systems 

applications, respectively. A SLIM was designed for a direct drive lift system application [36]. Meanwhile, in 

[19], a SLIM was designed for an application of a room less traction lift system. In this lift system, the SLIM 

acts as a driver as well as a counterweight due to its characteristic of mass. 

 

 

(a) SLIM (b) DLIM
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Figure 2. Basic structure of LIM (a) SLIM and (b) DLIM 
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3.2. Permanent magnet linear synchronous motor (PMLSM) 

PMLSMs are well known for their excellent performances. Due to their high thrust density, high 

power density, high power factor and high reliability, PMLSMs have been proven to be one of the attractive 

and potential actuating sources for direct drive applications [37], [38]. The performances of the PMLSMs can 

be influenced by many factors. However, a few of the main factors are arrangement of PMs, air gap length, 

slot in primary, and material of the core [39]–[41]. Among these factors, the arrangements of the PMs typically 

have the most of an impact.  

Based on the arrangements of the PMs, PMLSMs can be generally divided into surface-mounted 

PMLSMs (S-PMLSMs), interior-mounted PMLSMs (I-PMLSMs). However, in order to reduce the usage of 

PMs in PMLSMs structure, consequent-pole PMLSMs (CP-PMLSMs) are proposed. Figures 3(a) and 3(b) 

shows the comparison between S-PMLSM and CP-PMLSM. In CP-PMLSMs, the PM is set between two 

salient ferromagnetic iron poles, where the magnetic direction of all the PMs are the same. This configuration 

can save half the number of PMs used in the PMLSM structure. Since they can save half the PM material on 

the long secondary, CP-PMLSMs have been shown to be particularly cost-effective in long stroke applications 

like the Maglev train and direct drive lift systems [42]. Apart from that, by combining the features of high PM 

utilization in the CP-PMLSM and high flux density in Halbach array, a new topology of PMLSM known as 

Halbach consequent-pole PMLSM (HCP-PMLSM) is developed as shown in Figure 3(c). 

 

 

(b) CP-PMLSM (c) HCP-PMLSM(a) S-PMLSM
 

(b) CP-PMLSM (c) HCP-PMLSM(a) S-PMLSM
 

(b) CP-PMLSM (c) HCP-PMLSM(a) S-PMLSM
 

(a) (b) (c) 

 

Figure 3. PMLSM’s secondary with different PM arrangements (a) S-PMLSM, (b) CP-PMLSM,  

and (c) HCP-PMLSM [42], [43] 

 

 

Xu et al. [43] proposed HCP-PMLSM which has great potential for direct drive lift systems 

application. In this paper, the authors compared three types of PMLSMs which are S-PMLSM, CP-PMLSM, 

and HCP-PMLSM. Initially, due to higher PM volume (quantity), the S-PMLSM produced the highest thrust, 

F with the lowest thrust ripple. However, through pole optimizations and thrust ripple suppression, the authors 

be able to improve the performances of the proposed HCP-PMLSM. In the final results comparing three types 

of PMLSMs, it shows that the proposed HCP-PMLSM can produced higher thrust at lower thrust ripple 

compared with S-PMLSM and CP-PMLSM as depicted in Table 2. 

 

 

Table 2. Final performance comparison of the three PMLSMs [43] 
Parameters SP-PMLSM CP-PMLSM HCP-PMLSM 

PM volume (cm3) 492.8 246.4 360.36 

Average thrust (N) 2372 1805 2499 
PM utilization coefficient (N/cm3) 4.81 7.33 6.94 

Thrust ripple (%) 1.54 3.73 0.87 

 

 

3.3. Switched-reluctance linear synchronous motor (SRLSM) 

The SRLSM’s basic configuration consists of toothed structures on both the primary and secondary 

sides. The primary side includes windings, whereas the secondary side does not require either PM or windings. 

Because of its simple structure and low material requirements, the SRLSM is very easy to manufacture and 

thus has a lower manufacturing cost [44], [45] when compared to other motor types. Apart from that, their 

inherent robustness and broad constant power operating range are a few additional features that contribute to 

their advantages and made them an interesting candidate in many applications [46], [47]. 

In the past few years, the researchers have been studied a new topology of the SRSLM which is the 

SRLSM with segmented primary and/or secondary [48]. According to the study by Wang et.al. [20], [49], and 

Higuchi et. al. [50], the segmental type SRLSM (SSRLSM) can produce higher thrust density compared to the 

conventional SRLSM. This SSRLSM can be designed with a stator pole width to stator pole pitch ratio of 

almost 1, much higher than 0.5 which is the limit for the conventional SRLSM. This condition increased the 

overlap area between the mover tooth and stator tooth, therefore the SSRLSM may carry more flux and have 

more co-energy at the same magnetic load yet uses fewer windings to produce the same flux. Figure 4 shows 

the basic structure of two different types of the SRLSM.  
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In the lift systems application, the SRSLM is normally used in the direct drive lift systems [11], [20], 

[51]. The direct drive lift systems require a driving actuator that can produced high thrust density in order to 

directly move the lift car without the traction systems. Therefore, in designing the SRLSM for direct drive lift 

systems, a few features that need to be considered are the weight of the mover and the thrust density. In order 

to design the appropriate SRLSM for the direct drive lift systems, the weight of the mover need to be minimized 

where the thrust density need to be maximized [52]. 

 

 

(b) Segmented SRLSM(a) Conventional SRLSM

Stator

MoverMover

Stator
 

(b) Segmented SRLSM(a) Conventional SRLSM

Stator

MoverMover

Stator
 

(a) (b) 

 

Figure 4. Basic structure of SRLSM (a) conventional SRLSM and (b) segmented SRLSM 

 

 

3.4. Summary on linear motors  

Based on the literatures, a few types of electrical motors applied in the lift systems are discussed. In 

general, the non-PM linear motors such as LIMs and SRLSMs have lower cost compared to the PM linear 

motors. However, the existence of the PMs in the linear motors’ structures increases their thrust density despite 

having higher manufacturing cost. In a nutshell, each type of linear motors has their own advantages and 

disadvantage. The advantages and disadvantages of each motor types are summarized as in Table 3.  

 

 

Table 3. Types of linear motors 
Criteria Non-PM PM 

LIM SRLSM PMLSM 

Structure Consist of stator and mover. Consist of teethed structure 

on both stator and mover 

side. 

Consist of winding on the primary side 

and PM on the secondary side. 

Very similar to SRLSM. Winding on the mover side.  
Advantage Simple structure Simple structure High thrust density 

Low cost Low cost High efficiency 

Robust Easy manufacturing Better dynamic response 
Disadvantage Lower power factor Thrust ripple Higher manufacturing cost 

Lower thrust density Vibration and acoustic noise High cogging thrust 

  Possibility of PM demagnetization 

Performance 

Greatly influenced by two kinds of end 

effect; transverse edge effect and 

longitudinal end effect 

The thrust is generated by a 

variation of self-inductance 

Can be affected by structure parameters 

such as PM sizes, PM arrangements, and 

air gap length 

 

 

4. CONCLUSION 

Over the years, lift systems technology has undergoing a lot of improvements since their first 

invention. Geared traction system was replaced by gearless traction system to increase the performance and 

efficiency. Then, the roomed gearless system is improved by room-less system to reduce the installation space. 

Further, the traction system is to be replaced by direct drive system for higher buildings applications and so 

on. All of these are some of the improvements that involve in the research of the lift system applications.  

These improvements are necessary in order to fulfil the consumers’ needs in providing lift systems with better 

quality ride.  

Based on the discussions, a traction lift system operates by linear motor for a domestic lift application 

is a viable option. In that aspect, the SRLSM can be considered to be a good candidate to operate the lift system. 

Compared to the LIMs, SRLSMs have higher performance despite their simple structure. Apart from that, 

SRLSMs operate without the use of permanent magnets, allowing them to handle high current operations. 

Moreover, because SRLSMs are not dependent on permanent magnets, there are no concerns about their 

availability or cost, making them an appealing choice for domestic lifts. Though SRLSMs might suffer from 

thrust ripple, high noise and vibration, they can be reduced either by control methods or designed methods.  
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