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ABSTRACT 

 

The study of the effect of magnesium (Mg) content and artificial aging on the microstructure 

and mechanical properties of homogenized Al-Si-Cu alloys was critical for advancing the 

development of lightweight, high-strength materials for automotive and aerospace 

applications. Several studies on the modification and addition of alloying elements conducted 

previously reported positive improvements to enhance the mechanical properties of Al-Si-Cu 

alloys, including the addition of Magnesium (Mg) content, Copper (Cu), Silicon (Si), and 

other alloying elements. However, there was a lack of technical data that correlated both the 

effect of magnesium added and artificial aging as T6 Heat treatment into Al-Si-Cu alloy.   

Despite extensive research on Al-Si-Cu alloys, the specific impact of varying Mg 

concentrations on their homogenized microstructure and resultant mechanical properties 

remained inadequately understood. This research aimed to fill this gap by systematically 

investigating the influence of 0.5%wt, 0.8%wt, and 1.2%wt of Magnesium (Mg) contents on 

A356 alloys under 1, 3, and 5 hours of artificial aging after casting through permanent mold 

casting and thixoforming process. To achieve the project objectives, nine (9) combination of 

Taguchi method runs for A356 alloy samples with varying Mg concentrations and different 

artificial aging were prepared through Permanent Mold and Thixoforming casting process. As 

a results, the microstructural characteristics were analyzed using Optical microscopy (OM), 

Scanning electron microscopy (SEM) incuding energy-dispersive X-ray spectroscopy (EDS) 

for elemental mapping for specific area. Hence, a mechanical properties evaluation was 

performed, including tensile strength (E8M) and Vicker microhardness (E92), through 

standardized ASTM testing procedures. The results revealed that increasing Mg content 

significantly refined the microstructure, enhancing the dispersion of secondary phases and 

reducing the size of primary Si particles. This refinement of microstructure led to notable 

improvements in mechanical properties. Specifically, alloys with higher Mg content exhibited 

increased yield strength (YS) and ultimate tensile strength (UTS) while reducing the 

elongation to fractures. In addition, artificial aging also tends to increase yield strength (YS) 

and ultimate tensile strength (UTS). Other than that, the hardness results show an increasing 

trend with a longer artificial aging period while reducing Vickers Hardness (HV) value under 

the influence of the increment of Mg addition into the alloying system. These findings 

highlighted the critical role of Mg and artificial aging in optimizing the performance of Al-Si-

Cu alloys and provided valuable insights for their application in high-performance 

engineering components. This study not only elucidated the relationship between Mg content 

and the microstructure-mechanical property interplay in homogenized Al-Si-Cu alloys but 

also offered a pathway for designing advanced materials with superior properties for 

industrial applications. 
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ABSTRAK 

 

 

 

Kajian tentang kesan kandungan magnesium (Mg) dan tempoh penuaan buatan ke atas 

struktur mikro dan sifat mekanikal aloi Al-Si-Cu terhomogen adalah kritikal untuk 

memajukan pembangunan bahan ringan, berkekuatan tinggi untuk aplikasi automotif dan 

aeroangkasa. Beberapa kajian mengenai pengubahsuaian dan penambahan unsur aloi yang 

dijalankan sebelum ini melaporkan peningkatan positif untuk meningkatkan sifat mekanikal 

aloi Al-Si-Cu, termasuk penambahan kandungan Magnesium (Mg), Kuprum (Cu), Silikon 

(Si), dan lain-lain unsur pengaloian. Walau bagaimanapun, terdapat kekurangan maklumat 

data teknikal yang mengaitkan kedua-dua kesan penambahan magnesium dan penuaan buatan 

daripada Rawatan haba jenis T6 ke atas aloi Al-Si-Cu. Walaupun penyelidikan meluas ke atas 

aloi Al-Si-Cu, kesan khusus kepekatan Mg yang berbeza-beza dengan penuaan berlainan pada 

struktur mikro homogen dan sifat mekanikal yang terhasil masih tidak difahami dengan 

secukupnya. Penyelidikan ini bertujuan untuk mengisi jurang ini dengan menyiasat secara 

sistematik bagi pengaruh kandungan Magnesium (Mg) 0.5%wt, 0.8%wt, dan 1.2%wt 

Magnesium (Mg) pada aloi A356 di bawah pengaruh selama 1, 3, dan 5 jam penuaan buatan 

selepas penuangan melalui proses penuangan acuan kekal dan acuan pembentukan thixo. 

Untuk mencapai objektif projek, sembilan (9) kombinasi melalui keadah Taguchi bagi sampel 

aloi A356 dengan kepekatan Mg yang berbeza-beza dan penuaan berlainan telah disediakan 

melalui proses tuangan Acuan kekal dan acuan pembentukan thixo dengan tertakluk kepada 

penghomogenan dari penuaan buatan berbeza beza. Hasilnya, ciri-ciri mikrostruktur telah 

dianalisis menggunakan mikroskop optik (OM), Mikroskopi elektron pengimbasan (SEM) 

termasuk spektroskopi sinar-X (EDS) penyebaran tenaga untuk pemetaan unsur bagi kawasan 

tertentu. Oleh itu, penilaian sifat mekanikal telah dilakukan, termasuk kekuatan tegangan 

(E8M) dan kekerasan mikro Vicker (E92), melalui prosedur ujian piawaian ASTM. Hasilnya 

menunjukkan bahawa peningkatan kandungan Mg telah menapis struktur mikro dengan 

ketara, meningkatkan penyebaran fasa sekunder dan mengurangkan saiz zarah Si primer. 

Penambahbaikan struktur mikro ini membawa kepada peningkatan ketara dalam sifat 

mekanikal. Khususnya, aloi dengan kandungan Mg yang lebih tinggi menunjukkan 

peningkatan kekuatan hasil (YS) dan kekuatan tegangan muktamad (UTS) sambil 

mengurangkan pemanjangan patah putus. Selain itu, penuaan buatan juga cenderung untuk 

meningkatkan kekuatan hasil (YS) dan kekuatan tegangan muktamad (UTS). Selain daripada 

itu, keputusan kekerasan menunjukkan trend yang meningkat dengan tempoh penuaan buatan 

yang lebih lama sambil mengurangkan nilai Kekerasan Vicker (HV) di bawah pengaruh 

penambahan Mg ke dalam sistem pengaloian. Penemuan ini menyerlahkan peranan kritikal 

rawatan haba Mg dan T6 dalam mengoptimumkan prestasi aloi Al-Si-Cu dan memberikan 

pandangan berharga untuk aplikasinya dalam komponen kejuruteraan berprestasi tinggi. 

Kajian ini bukan sahaja menjelaskan hubungan antara kandungan Mg dan interaksi sifat 

mikrostruktur-mekanikal dalam aloi Al-Si-Cu yang dihomogenkan tetapi juga menawarkan 

laluan untuk mereka bentuk bahan termaju dengan sifat unggul untuk aplikasi industri. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1      Overview  

 

Cast aluminum alloys are significant Aluminum (Al) alloy classes with a wide range 

of automotive and aeronautics applications because of their established casting, shaping 

capability, low density, high specific strength, good toughness, and excellent corrosion 

resistance. Several studies on the modification and addition of alloying elements conducted 

previously reported positive improvements to enhance the mechanical properties of Al-Si-

Cu alloys, including the addition of Magnesium (Mg) content, Copper (Cu), Silicon (Si), and 

other alloying elements. Recently, a lot of development approaches of Al-Si-Cu alloy studies 

had performed to improve the microstructure capability through several technical methods 

such as microstructure grain refinery, alteration of atomic scale, alloying casting technique, 

and others provide more possibility to improve the alloy strength, microhardness value and 

more stable phase transition during alloy formability.  

Processing these Al-Si-Cu alloys such as A356 to improve their mechanical 

properties requires homogenization treatment, which is an essential step for ensuring the 

alloy performance quality. The accepted practice closely monitors homogenization 

temperatures to prevent the early melting of Mg-rich phases at high temperatures. One of the 

crucial alloying elements that possibly enhances Al-Si-Cu alloy mechanical properties is 

Magnesium (Mg), which was proven by Salleh et. al. (2015a), who concluded that the size 

of the a-Al globule and eutectic silicon in the microstructure of the thixoformed samples had 

been marginally refined by the addition of magnesium to Al–5%Si–Cu. Other than that, the 

function of Magnesium (Mg) in Al-Si-Cu alloy is to increase the strength by forming 

different types of precipitates, such as β' (Mg2Si-type), Q' (Al5Cu2Mg8Si6-type), and 

S'(Al2CuMg-type) according to the amount of element addition as per stated by Zang et. al. 

(2022). Other than that, thixoforming processing is a sophisticated manufacturing technology 

that shapes metals while they are in a semi-solid state, exhibiting properties of both liquids 

and solids that offers notable benefits in terms of mechanical qualities, near-net form 

possibilities, and material utilisation as per mentioned by Husain et. al. (2017) . 
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The strength of the modified alloy was enhanced by the creation of the compact π-

Al8FeMg3Si6 phase and the reduction of the β-Al5FeSi phase's sharp and plate-like structure, 

which was caused by an increase in the Mg content as per reported by Arif et. al. (2020a). 

Recently, Son et. al. (2023) have shown an increased interest in the alteration of homogenous 

heat treatment by changing their process temperature and aging time as per reported. The 

improved mechanical properties of the heat treated Al-Si-Cu alloy with high melt-holding 

temperature were attributed to several microstructural changes, including microstructure 

refinement and acceleration of precipitation kinetics caused by enhanced second-phase 

dissolution. Different constituent particles, such as Mg2Si, Al2Cu, Al5Cu2Mg8Si6, b-Al5FeSi, 

Al8Mg3FeSi6, and Al15(MnFe)3Si2, were formed during solidification under different 

conditions. T6 heat treatment is used to enhance the mechanical properties of alloys 

containing magnesium was proof by Salleh et. al. (2015a). 

In general, the microstructure of as-cast alloys under standard solidification 

conditions is composed of coarse Si flakes in the eutectic phase and a dendritic structure, 

which encourages brittle behavior. Brittle behavior is characterized by low strength and 

ductility during its application. In order to reduce the dendritic arm in the microstructure of 

Al-Si-Cu alloy, Samat et. al. (2022a) suggest that one of the suitable casting methods is a 

thixotropic process, which employs semi-solid state behavior and reduces macrosegregation, 

microporosity, and forming applied force during the forming process. 

In this study, the research task was to evaluate microstructural features and 

mechanical properties of thixoformed Al–Si–Cu alloys with different Mg contents (0.5 % 

wt, 0.8 % wt, and 1.2 % wt) with different artificial aging duration period started with 1,3 

and 5 hours at 180ºCas reheating temperature. The Different Scanning Calorimetry (DSC) 

used to determine the optimum thermal behaviour changes before the suitable processing 

temperature used for the selected process. Other than that, X-Ray Diffraction (XRD) is 

utilized to find the related all aluminum homogenized element by study the crystallographic 

structure, chemical composition, and physical properties of materials. Scanning Electron 

Microscopy (SEM) and Optical Microscope (OM) were utilized to observe and visualize 

dendritic microstructures and interdendritic channels of the Al-Si-Cu eutectic region. For 

mechanical properties testing such as tensile and hardness were carried out to evaluate and 

compare their theoretical value. Adding Magnesium (Mg) is expected to significantly 

improve all the tensile and hardness material values with better intermetallic compounds 

transition phase. For future benefit, exploring more opportunities for optimum magnesium 

levels of amount addition as alloying for the high strength of  Al-Si-Cu alloy is essential. 



3 
 

1.2 Problem Statements 

A material's microstructure with microstructural constituents precipitating during the 

solidification phase determines the alloying performance, including its mechanical 

properties. These alloying elements are linked to the material's composition and process 

technology selection. Nowadays, new alloying material requirements are crucial to be 

utilized in the automotive body panel industry and some of the aerospace applications which 

require high-strength material with excellent properties such as high tensile yield strength 

(YS), high ultimate tensile strength (UTS), good chemical resistance, excellent corrosion 

resistance, lightweight and excellent impact strength.  

However, most of aluminium alloys have less than 250 MPa of ultimate tensile 

strength. Therefore, there is a need to improve the mechanical properties of the Al-Si-Cu 

alloys to comply with the material current requirement. Recently,  investigated developing 

application of Al-Si-Cu for Aluminum alloy which effected by Magnesium (Mg) which is 

still limited by their low strength even though it has been improved by the casting method 

with T6 temper condition. In addition, Aluminium alloys and other lightweight materials can 

be used to create lightweight cars, with a potential weight reduction of 30% to 40% when 

compared to steel. The precipitation hardening process can be enhance with better 

mechanical properties by adding alloying elements such as magnesium (Mg). Other than that, 

Salleh et. al. (2015b) concluded through his study that significant improvement is obtained 

from the hardening during artificial aging caused by the cooperative precipitation of the 

Mg2Si and Al2Cu phases in the alloy's mechanical characteristics compared to alloys that 

have not been heated. 

By adding magnesium (Mg) into Al-Si-Cu alloying system, the grain becomes more 

refined and more uniform microstructure, as justified by Alhawari where semi-solid 

processing allows for the production of aluminum-silicon alloys with fine microstructures, 

reduced coarse phase segregation, and uniform distribution of second phases with addition 

of Mg. The coarse Mg2Si phase needs to be changed to guarantee appropriate mechanical 

strength and ductility, as mentioned by Alhawari et. al. (2017). 
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Additionally, the thixoforming method was used in this study. There are insufficient 

data on the thixoforming fabrication method that utilizes the material studies on alloying 

elements added into the casting process such as Cobalt (Co), Copper (Cu), Ferum (Fe), 

Silicon (Si), including Magnesium (Mg) which require more information and investigation 

results for mechanical properties enhancement. Through the material characterization on 

Magnesium (Mg), the homogenization of various intermetallic phases can be further 

explored and analyzed. This study is supported by research by Arif et al. (2020), which 

proves that the alloy's microstructure consists of a solid spheroidal structure in a liquid 

matrix during processing with compromised mechanical properties. The method of 

experimental design used to analyze the data is lacking through the Taguchi method 

approach, where more detailed explanation using several direct factors as best optimization 

solution for better mechanical properties.   

Technically, the difference was attributed to the lowering of solidus lines in alloys 

with higher Mg content, increasing the solid solubility of these alloying elements. 

Furthermore, alloys with higher Mg contents also presented faster responses to aging 

treatments. According to Salim et. al. (2023), The addition of more magnesium content has 

the potential to significantly enhance the hardness of the thixoformed samples, with a 

maximum increase of 73%. Increasing the Mg concentration up to 2 wt.% enhances the 

hardness, rising from 43 HRB to 74 HRB.  

Many studies have extensively documented the impact of adding Mg to the 

traditional casting of aluminum alloys. However, there is still a scarcity of information 

regarding the influence of varying Mg content on thixoformed alloys. Hence, this study 

assessed the impact of different magnesium concentrations in thixoformed with Taguchi 

method for Al–Si–Cu alloys on both the microstructure and mechanical properties. The 

alloys were produced using the permanent mold casting with continuous stirrer up to 5 

minutes to achieve a non-dendritic structure and subsequently thixoformed using a hydraulic 

press. Following a T6 heat-treatment procedure with 1,3 and 5 hours of artificial aging, an 

examination was conducted to analyze the microstructure and mechanical properties of the 

samples. 
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1.3 Research Objectives 

The objectives and purpose of this study are: 

 

 

1. To determine the optimum content of magnesium elements for maximizing 

mechanical properties of thixoformed Aluminum alloys through Taguchi 

method. 

 

2. To examine the effect of magnesium content for microstructural evolution of 

Thixoformed A356 aluminium alloy. 

 

3. To investigate the mechanical properties of different Magnesium (Mg) 

content for Thixoformed A356 aluminium alloys during artificial aging 

duration of T6 heat treatment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 
 

1.4 Scope of the study 

This study investigated the effects of different amounts of magnesium (Mg) added 

into A356 alloy based on the microstructures and mechanical properties using the 

thixoformed process with various artificial aging T6 conditions. Three different alloys 

containing various amounts of Mg (0.5, 0.8 and 1.2 % wt) were prepared through the 

permanent mold casting technique before they were thixoformed using a compression press 

machine. Initial samples were taken using Different scanning calorimetry (DSC) equipment 

to evaluate heat flow required. Then, the samples were categorized according to the Taguchi 

method approach where two factors with three levels were used (L9) for formulation 

optimization. Several of the thixoformed samples were then treated with a T6 heat treatment 

and immersed into solution treatment at 540 ºC for 8 hours, quenching in normal water at 25 

ºC, followed by aging at different artificial aging conditions started with 1,3 and 5 hours at 

180ºC. After that, the sample was cut, etched, polished, and prepared before proceeding with 

the subsequent microstructure evaluation and mechanical testing. All samples were 

characterized by using optical microscopy (OM) and scanning electron microscopy (SEM) 

for microstructure evaluation study. The cast A356 Aluminum sample also performed an X-

ray diffraction (XRD) analysis to determine the optimum phase observed after precipitation. 

For the mechanical properties evaluation of Al alloy, tensile tests were performed for each 

weight ratio of magnesium content using a universal testing machine (UTM), and a 

microhardness test was conducted through a Vickers tester for each sample.  
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 Aluminum alloy  

Aluminium is a malleable metal that can form alloys with various elements such as 

copper, magnesium, silicon, zinc, and manganese, thereby modifying its mechanical and 

physical properties. These metals are added in precise ratios to attain the desired 

characteristics for a particular use. Combining magnesium with Aluminium yields a robust 

and lightweight alloy that is exceptionally suitable for application in the aerospace and 

automotive sectors. Also, aluminum alloys are widely utilized in various industries due to 

their low density, corrosion resistance, and thermal conductivity. According to the review 

publication by Raj et al. (2021), Aluminum alloys are utilized to produce various items, such 

as consumer electronics, automobiles, and aircraft. 

In addition, aluminum alloys possess low densities, rendering them lightweight and 

well-suited for situations where weight is crucial. Aluminum alloys have inherent corrosion 

resistance due to the formation of a protective oxide layer on their surfaces, effectively 

shielding them from corrosion in various environments. Moreover, Aluminum alloys possess 

a high strength-to-weight ratio, meaning they are both strong and durable despite their 

relatively low mass. Raj et al. (2021) mentioned that This characteristic makes them highly 

valuable in a wide range of applications where the careful balance between strength and 

weight is crucial. Aluminum alloys exhibit excellent malleability and ductility, rendering 

them highly adaptable for various manufacturing procedures. 

Moreover, aluminum alloys are extensively utilized in the Automotive and 

Aerospace industries due to their ability to undergo heat treatment, improving their 

exceptional strength, workability, thermal and electrical conductivity, and corrosion 

resistance, all while maintaining a low weight. The heat treatment processes used for 

Aluminium alloys include homogenization, annealing, and precipitation hardening. These 

processes involve solution treatment, quenching, and aging, which can be done at either 

room temperature (natural aging) or at a higher temperature (artificial aging). In order to 
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ensure uniformity in the temperature-time cycle, Palanisamy et.al. (2018) reported that it is 

necessary to carry out heat treatment processes in properly equipped furnaces, adhering to 

the appropriate thermal conditions. In recent studies of Aluminum alloy, Niu et. al. (2023) 

also suggest that an increase the upper limit of Fe element content tolerance in casting 

aluminum alloys is viewed as a viable method to encourage the use of recycled aluminum 

production. 

This aluminum alloy material provides more benefit to the current product 

application. For instance, aluminium metal matrix composites find application in various 

functional, non-structural, and structural roles within the industrial and engineering sectors. 

Novel materials with reduced density, enhanced stiffness, and increased strength are required 

to surpass the limitations of currently utilized alloys. Two approaches to achieve this are 

enhancing the strength-to-weight ratio or reducing the weight of the composite. Materials 

must be produced to achieve greater stiffness, lower density, greater ultimate tensile strength, 

and higher yield strength as per reported by Deshmukh et. al. (2023). 

 

Figure 2.1: As-cast microstructure showing dendritic microstructure 

 (Sadeghi et. al., 2017) 

In 2017, Sadeghi et. al. (2017) performed studies about the roughness of the 

microstructure is determined by the solidification rate, which in turn is influenced by the rate 

at which the material cools from its solidifying temperature. The Al17(Fe3.2Mn0.8)Si2 

structure is characterized by needle-like shapes, which have a negative impact on its 

mechanical properties. Additionally, the structure also exhibits a more rounded skeleton-like 

appearance, as shown in Figure 2.1.  
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Based on experiment by Ravi & Wolverton (2004), the degree of strengthening is 

contingent upon the microstructural morphology of the precipitates, which was determined 

by the interfacial and strain energies of the precipitate/matrix system. The interfacial and 

strain energies was influenced by the specific crystal structure of the precipitate phases, the 

matrix phase, and the interface connecting them. Consequently, significant research has been 

dedicated to comprehending the precipitation kinetics and crystal structure of precipitate 

phases in alloys containing Aluminium, magnesium, silicon, and possibly copper. On the 

other hand, the particles were structured by stacking two rows of Mg and one row of Si 

alternately on the lattice planes of the matrix, specifically the (011) planes, as shown in 

Figure 2.2. The growth of these particles occurs along the [100] direction. When the GP zone 

model was expanded in all three dimensions, it forms a complete bulk crystal structure 

known as Mg2Si stacking of (011) planes. This arrangement of atoms corresponds to an 

orthorhombic structure based on the face-centered cubic (FCC) lattice, similar to the MoPt2-

type structure. 

 

Figure 2.2: Bulk structural models of GP zones proposed in Al–Mg–Si alloys. The 

orthorhombic fcc superstructure was proposed by Thomas (Ravi & Wolverton, 2004)  
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2.1.1 Aluminum alloy - A356 

 

An aluminum alloy is a distinctive amalgamation of various metallic elements that 

exhibits heightened strength and durability. This aluminum is conventionally known for its 

low weight and exceptional ability to resist corrosion. These alloys are created through the 

amalgamation of liquid/molten aluminum with other elements, which undergoes cooling and 

solidification, forming a uniform solid material. When combined with aluminum to create 

these alloys, the other constituents can account for as much as 15 percent of the overall mass. 

Some examples of these additional elements are Zinc (Zn), Iron (Fe), Magnesium (Mg), 

Copper (Cu), and Silicon (Si). Other than that, these elements in aluminum result in an alloy 

that exhibits improved electrical conductivity, corrosion resistance, workability, and strength 

compared to pure metallic elements. Significant disparities exist between cast and wrought 

aluminum alloys. According to the Emmanuel et. al. (2021), the primary categories of 

aluminum alloys are cast alloys and wrought alloys.  

Furthermore, many types of Aluminum alloy exist for certain applications, including 

A356 made from the casting process. This A356 aluminum is commonly used in casting 

alloy collection, particularly for aircraft applications. A distinct nomenclature system, unlike 

wrought alloys, characterizes cast aluminum. Additionally, aluminum die casting for various 

industries produces A356 aluminum casting parts of exceptional quality. Moreover, A356 is 

a specific aluminum alloy used for the process of casting. According to Paul et. al. (2014), 

the cast aluminum alloy designation system consists of nine series: 1xx.x, 2xx.x, 3xx.x, 

4xx.x, 5xx.x, 6xx.x, 7xx.x, 8xx.x, and 9xx.x. The 3xx.x series indicates that the primary 

alloying element is silicon, along with the addition of copper and magnesium. Hence, the 

second and third digits indicate the minimum aluminum content as a percentage. In terms of 

the decimal number of the Alumnium code, the decimal digit after the point denotes whether 

the alloy is in the form of a casting (designated as .0) or an ingot (set as .1 or .2). The prefix 

"A" preceding an alloy designation indicates a refined and more pure form of the chemical 

composition. The material from the Aluminum Association (AA) was designated as A356.0. 

Plus, the A356 aluminum die-casting alloy exhibits excellent casting and machining 

characteristics, making it well-suited for applications in aircraft, pump housings, impellers, 

high-velocity blowers, and other structural castings that demand exceptional strength. From 

reviewed by Li et.al. (2023), A356 aluminum is frequently employed to produce intricate 

and complex aluminum castings due to its lightweight nature, ability to withstand pressure, 
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