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Abstract: This paper focuses on the modelling of a multimode double-pendulum overhead crane (MDPOC) system which 
generates double-pendulum phenomenon. The MDPOC is far more complex than those of single-pendulum overhead cranes 
due to the additional degree of freedom, greater nonlinearities, and stronger internal couplings especially involving two or 
more oscillation frequencies with multimode dynamic effects. More interestingly, two scenarios under fixed and varying cable 
lengths (payload hoisting) are considered which are closer to the real practical crane. The dynamic crane models are derived 
using Lagrange’s method. Simulations using the Matlab/Simulink block diagram, as well as experiments on a laboratory 
overhead crane are used to verify and validate the accuracy of MDPOC mathematical modelling. The simulation and 
experimental results demonstrate the superiority and similar pattern of the trolley position, hook oscillation and payload 
oscillation under fixed and varying cable lengths that verified the mathematical modelling of MDPOC. It is beneficial for crane 
operators to understand the dynamic model of MDPOC and useful for future analysis of controller implementation with 
confidence by researchers.  

Keywords: Double-pendulum; Lagrange’s method; Overhead crane; Payload hoisting; System modelling. 

1. INTRODUCTION 
In real-world industrial applications, dynamic modelling is crucial to be explored especially for robotics and control system 
design [1-2]. By exploring the various techniques of dynamic modelling, a set of mathematical equations can be formulated to 
represent the actual dynamic behavior of respective systems [3-4]. Interestingly, the system’s behavior can be predicted and 
helps in finding the best potential future outcomes based on the observed data, relationships, and its current state [5-7]. In fact, 
mathematical modelling enables engineers, designers, or researchers to extract as much information as possible about the 
particular system under respective conditions without having to practically build the real system, which can be very expensive 
and dangerous. Since crane system is one of the complex systems and widely used around the world, crane dynamics system 
is chosen as a suitable industrial application for this study [8]. 

Cranes are very useful transporters for moving large payloads or dangerous goods from one place to another [9-11]. 
Accurate positioning with minimal payload oscillation is preferred in the context of industrial cranes transportation to ensure 
the safe and effective functioning, which can immediately increase industrial production [12-14]. Unfortunately, the rapid 
motion of the crane is prone to excessive payload oscillation, which may have an impact on placement precision, effectiveness, 
quality, and safety [15-16]. Since the payload is likely to swing freely and behaves like a pendulum [6], the crane must be 
operated by highly competent crane operators to operate and minimize the payload’s oscillation motions. In that scenario, the 
crane operator may need to reduce their speed and make appropriate adjustments for the crane's movements to reduce the 
payload oscillation, which could affect the crane's operation. Therefore, the operation must be paused until the swinging stops. 

Most of the literature on cranes treats crane systems as a single pendulum and makes certain assumptions, including 
without accounting for a hook or an extra sling cable. In addition, the hook and payload are essentially combined and treated 
as a single mass point to reduce the complexity of the crane model [8,17-18]. These kinds of assumptions may have an impact 
on the actual behavior of dynamic crane. In fact, double-pendulum cranes with a hook, a payload, and a sling cable are 
employed in real-world situations. The hook mass is typically used in practical applications and bigger than payload mass [19]. 
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Moreover, the first cable length (between trolley and hook) is longer than the second cable length (between hook and payload), 
also known as a sling cable. It is because the first cable length can be varied (varying cable length) during payload hoisting 
[20-24]. In these circumstances, the hook and the payload cause greater oscillations in various frequency modes, resulting in 
multimode dynamic effects. Multimode is defined as the different oscillation modes between the hook and the payload that 
generate the phenomenon of two pendulums, known as multimode double-pendulum overhead crane (MDPOC) during 
transportation. 

The MDPOC consists of four outputs (trolley position, hook oscillation angle, payload oscillation angle, and hoisting 
position) from two input signals (trolley and hoisting forces). On top of that, the MDPOC dynamics are far more complex than 
those of a single-pendulum crane because of the additional degree of freedom, greater nonlinearities, and stronger internal 
couplings [25-27]. In other words, good handling of trolley movement is required to achieve hook and payload oscillation 
suppressions [12]. This is noticeably much more difficult to suppress both oscillations, even for experienced crane operators. 

The most popular modelling technique for overhead cranes is the Lagrange’s method [8,28-29]. Lagrange's method is a 
valuable tool in mathematical approach and able to solve complex problems with constraints in various practical scenarios. It 
simplifies the mathematical process and reduces the number of equations to be solved, primarily due to their effectiveness and 
simplicity. The Lagrange’s method involves with both kinetic energy and potential energy of the crane system to derive motion 
equations that represent the dynamic model of MDPOC system [30-33]. In this study, two scenarios of a MDPOC that involved 
fixed and varying cable lengths are considered, which are closer to the real practical crane. Simulations and experiments using 
a dynamic model and a laboratory MDPOC were conducted, respectively to verify the accuracy of the mathematical modelling. 
Trolley position, hook oscillation, payload oscillation, and payload hoisting are analyzed, and these are used to study the 
dynamic model of the MDPOC system. The main contributions of this work are as follows: 

1) Dynamic models of a MDPOC that involved a fixed cable length, and a varying cable length (payload hoisting) have 
been derived. The derived models have been executed via simulation and validated using a laboratory MDPOC. 

2) This paper evaluates the effect of hook and payload oscillation frequencies during varying cable length (payload 
hoisting). This knowledge is important and beneficial for crane operators to understand the dynamic model of 
MDPOC and can be used for future analysis of controller implementation with confidence by researchers. 

2. MATHEMATICAL MODELLING  
The dynamic equations for a MDPOC with fixed and variable cable lengths (payload hoisting) are given as provided in Sections 
2.1 and 2.2, respectively. 

2.1 Fixed Cable Length 
In this section, a fixed cable length is studied for the MDPOC as illustrated in Figure 1, where the MDPOC consists of three 
independent generalized coordinates (trolley position, 𝑥𝑥, hook angle, 𝜃𝜃1, and payload angle, 𝜃𝜃2). The trolley mass, the hook 
mass, the payload mass, the fixed cable length, the sling cable, the trolley viscous damping coefficient and the gravitational 
acceleration constant, represent 𝑚𝑚, 𝑚𝑚1, 𝑚𝑚2, 𝑙𝑙1, 𝑙𝑙2, 𝑓𝑓𝑥𝑥 and 𝑔𝑔, respectively. 𝐹𝐹𝑥𝑥 is an external trolley force that is applied directly 
to the MDPOC as the only input signal. 

Equation (1) is the Lagrangian equation with respect to the generalized coordinate, 𝑞𝑞𝑖𝑖, where 𝐿𝐿 represent the Lagrangian 
function. In addition, 𝑇𝑇𝑖𝑖  and 𝑞𝑞𝑖𝑖 (𝑖𝑖 =1, 2, 3) represent a non-conservative force and generalized coordinates (𝑞𝑞1, 𝑞𝑞2 and 𝑞𝑞3 
represent 𝑥𝑥, 𝜃𝜃1 and 𝜃𝜃2), respectively. 

𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝑞̇𝑞𝑖𝑖

� −
𝜕𝜕𝜕𝜕
𝜕𝜕𝑞𝑞𝑖𝑖

= 𝑇𝑇𝑖𝑖 (1) 

In addition, the 𝐿𝐿 can be written as Equation (2) where 𝐾𝐾 is the kinetic energy and 𝑃𝑃 is the potential energy. 

𝐿𝐿 = 𝐾𝐾 − 𝑃𝑃 (2) 

 
Figure 1. Illustration of MDPOC with a fixed cable length. 

 

 
Figure 2. Velocity of hook vector. 
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Therefore, total 𝐾𝐾 of the MDPOC can be obtained by summing up the trolley kinetic energy, 𝐾𝐾𝑥𝑥, hook kinetic energy, 𝐾𝐾𝜃𝜃1 and 
payload kinetic energy, 𝐾𝐾𝜃𝜃2  as in Equation (3):  

 𝐾𝐾 = 𝐾𝐾𝑥𝑥 + 𝐾𝐾𝜃𝜃1 + 𝐾𝐾𝜃𝜃2 (3) 
where: 

 𝐾𝐾𝑥𝑥 =
1
2
𝑚𝑚𝑣𝑣2 (4) 

 𝐾𝐾𝜃𝜃1 =
1
2
𝑚𝑚1𝑣𝑣12 (5) 

 𝐾𝐾𝜃𝜃2 =
1
2
𝑚𝑚2𝑣𝑣22 (6) 

The 𝑣𝑣, 𝑣𝑣1 and 𝑣𝑣2 vectors indicate the trolley velocity, hook velocity and payload velocity, respectively:  

𝑣𝑣 = 𝑥̇𝑥 (7) 

𝑣𝑣12 = (𝑣𝑣 + 𝑣𝑣𝑥𝑥1)2 + 𝑣𝑣𝑦𝑦12 (8) 

𝑣𝑣22 = (𝑣𝑣 + 𝑣𝑣𝑥𝑥1 + 𝑣𝑣𝑥𝑥2)2 + �𝑣𝑣𝑦𝑦1 + 𝑣𝑣𝑦𝑦2�
2
 (9) 

where 𝑣𝑣𝑥𝑥1, 𝑣𝑣𝑦𝑦1, 𝑣𝑣𝑥𝑥2 and 𝑣𝑣𝑦𝑦2 can be obtained by using the Pythagoras theorem that yield 𝑣𝑣𝑥𝑥1 = 𝑙𝑙1𝜃̇𝜃1 cos 𝜃𝜃1, 𝑣𝑣𝑦𝑦1 = 𝑙𝑙1𝜃̇𝜃1 sin𝜃𝜃1, 
𝑣𝑣𝑥𝑥2 = 𝑙𝑙2𝜃̇𝜃2 cos 𝜃𝜃2 and 𝑣𝑣𝑦𝑦2 = 𝑙𝑙2𝜃̇𝜃2 sin𝜃𝜃2. All the respective vectors can be illustrated as in Figures 2 and 3. 

By solving Equations (4)-(9) and substituting into Equation (3), the complete 𝐾𝐾 of the MDPOC can be obtained as: 
 

𝐾𝐾 =
1
2
𝑚𝑚𝑥̇𝑥2 +

1
2
𝑚𝑚1 �𝑥̇𝑥2 + 2𝑥̇𝑥𝑙𝑙1𝜃̇𝜃1 cos 𝜃𝜃1 + 𝑙𝑙1

2𝜃̇𝜃1
2� + 

1
2
𝑚𝑚2 �

𝑥̇𝑥2 + 2𝑥̇𝑥𝑙𝑙1𝜃̇𝜃1 cos𝜃𝜃1 + 2𝑥̇𝑥𝑙𝑙2𝜃̇𝜃2 cos𝜃𝜃2 + 𝑙𝑙1
2𝜃̇𝜃1

2 + 𝑙𝑙2
2𝜃̇𝜃2

2 
  +2𝑙𝑙1𝑙𝑙2𝜃̇𝜃1𝜃̇𝜃2 cos(𝜃𝜃1 − 𝜃𝜃2)

� 
(10) 

 

Furthermore, the total 𝑃𝑃 is only exhibited by the hook (𝑃𝑃𝜃𝜃1) and payload (𝑃𝑃𝜃𝜃2) whereas the trolley potential energy is kept 
unchanged (𝑃𝑃𝑥𝑥 = 0). Thus, the total 𝑃𝑃 in Figure 4 can be arranged as in Equation (11): 

 𝑃𝑃 = 𝑃𝑃𝜃𝜃1 + 𝑃𝑃𝜃𝜃2  (11) 

where: 

 𝑃𝑃𝜃𝜃1 = 𝑚𝑚1𝑔𝑔ℎ1 (12) 

 𝑃𝑃𝜃𝜃2 = 𝑚𝑚2𝑔𝑔(ℎ1 + ℎ2) (13) 

Similarly, ℎ1 and ℎ2 can be obtained by using the Pythagoras theorem that yield ℎ1 = 𝑙𝑙1(1 − cos 𝜃𝜃1) and ℎ2 =
𝑙𝑙2(1 − cos𝜃𝜃2). Thus, the complete 𝑃𝑃 of the MDPOC can be obtained as: 

 

 
Figure 3. Velocity of payload vector. 

 
Figure 4. Hook and payload potential energies. 
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           𝑃𝑃 =  𝑚𝑚1𝑔𝑔�𝑙𝑙1(1 − cos𝜃𝜃1)� + 𝑚𝑚2𝑔𝑔�𝑙𝑙1(1 − cos𝜃𝜃1) + 𝑙𝑙2(1 − cos 𝜃𝜃2)� (14) 

Therefore, a complete 𝐿𝐿 in Equation (2) can be written as: 

𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =
1
2
𝑚𝑚𝑥̇𝑥2 +

1
2
𝑚𝑚1 �𝑥̇𝑥2 + 2𝑥̇𝑥𝑙𝑙1𝜃̇𝜃1 cos𝜃𝜃1 + 𝑙𝑙1

2𝜃̇𝜃1
2� + 

1
2
𝑚𝑚2 �

𝑥̇𝑥2 + 2𝑥̇𝑥𝑙𝑙1𝜃̇𝜃1 cos 𝜃𝜃1 + 2𝑥̇𝑥𝑙𝑙2𝜃̇𝜃2 cos 𝜃𝜃2 + 𝑙𝑙1
2𝜃̇𝜃1

2 + 𝑙𝑙2
2𝜃̇𝜃2

2 
  +2𝑙𝑙1𝑙𝑙2𝜃̇𝜃1𝜃̇𝜃2 cos(𝜃𝜃1 − 𝜃𝜃2)

� − 

 𝑚𝑚1𝑔𝑔�𝑙𝑙1(1 − cos𝜃𝜃1)� − 𝑚𝑚2𝑔𝑔�𝑙𝑙1(1 − cos 𝜃𝜃1) + 𝑙𝑙2(1 − cos 𝜃𝜃2)� 

(15) 

By differentiating Equation (15) and obtaining terms as in Equation (1), the dynamic model of MDPOC system with 𝐹𝐹𝑥𝑥 and 𝑓𝑓𝑥𝑥 
can be obtained as in Equations (16)-(18) where all the outputs are coupled and highly nonlinear. 

(𝑚𝑚 + 𝑚𝑚1 + 𝑚𝑚2)𝑥̈𝑥  + (𝑚𝑚1 + 𝑚𝑚2)𝑙𝑙1𝜃̈𝜃1 cos 𝜃𝜃1 + 𝑚𝑚2𝑙𝑙2𝜃̈𝜃2 cos 𝜃𝜃2 
− (𝑚𝑚1 + 𝑚𝑚2)𝑙𝑙1𝜃̇𝜃1

2 sin𝜃𝜃1 −𝑚𝑚2𝑙𝑙2𝜃̇𝜃2
2 sin 𝜃𝜃2 = 𝐹𝐹𝑥𝑥 − 𝑓𝑓𝑥𝑥𝑥̇𝑥 (16) 

(𝑚𝑚1 + 𝑚𝑚2)𝑙𝑙1𝑥̈𝑥 cos𝜃𝜃1  + (𝑚𝑚1 + 𝑚𝑚2)𝑙𝑙1
2𝜃̈𝜃1 + 𝑚𝑚2𝑙𝑙1𝑙𝑙2𝜃̈𝜃2 cos(𝜃𝜃1 − 𝜃𝜃2) 

+ 𝑚𝑚2𝑙𝑙1𝑙𝑙2𝜃̇𝜃2
2 sin(𝜃𝜃1 − 𝜃𝜃2) + (𝑚𝑚1 + 𝑚𝑚2)𝑔𝑔𝑙𝑙1 sin𝜃𝜃1 = 0 (17) 

𝑚𝑚2𝑙𝑙2𝑥̈𝑥 cos𝜃𝜃2  + 𝑚𝑚2𝑙𝑙1𝑙𝑙2𝜃̈𝜃1 cos(𝜃𝜃1 − 𝜃𝜃2) + 𝑚𝑚2𝑙𝑙2
2𝜃̈𝜃2 

− 𝑚𝑚2𝑙𝑙1𝑙𝑙2𝜃̇𝜃1
2 sin(𝜃𝜃1 − 𝜃𝜃2) + 𝑚𝑚2𝑔𝑔𝑙𝑙2 sin𝜃𝜃2 = 0 (18) 

The nonlinearities (such as sin, cos, or even higher degree of variables) are considered to ensure that the dynamic model agrees 
with the laboratory MDPOC.  

2.2 Varying Cable Length (Payload Hoisting) 
In industrial practice, the 𝑙𝑙1 changes during payload hoisting, which involves lifting a payload up or down and transfer it at a 
specific location, as seen in Figure 5. Therefore, 𝐹𝐹𝑙𝑙 is needed as an external hoisting force signal for varying cable length and 𝑓𝑓𝑙𝑙 
denotes the viscous damping coefficients of 𝑙𝑙1. 

By considering the varying cable length, four independent generalized coordinates are obtained by adding an extra 
independent generalized coordinate that representing 𝑙𝑙1 into Equation (1) and accounting for the variable cable length. For that 
reason, the MDPOC’s total kinetic energy is updated with the additional hoisting kinetic energy, 𝐾𝐾𝑙𝑙  which is formulated in 
Equation (19): 

𝐾𝐾 = 𝐾𝐾𝑥𝑥 + 𝐾𝐾𝜃𝜃1 + 𝐾𝐾𝜃𝜃2 + 𝐾𝐾𝑙𝑙  (19) 

where 𝐾𝐾𝑥𝑥 is constantly similar with the previous Equations (4) and (7), and 𝐾𝐾𝑙𝑙  can be formulated as: 

𝐾𝐾𝑙𝑙 =
1
2
𝑚𝑚3𝑣𝑣32 (20) 

where 𝑣𝑣3 = 𝑙𝑙1̇. Therefore, 𝐾𝐾𝑙𝑙 = 0 due to the cable is assumed to be massless (𝑚𝑚3 = 0). Nevertheless, the existence of 𝑙𝑙1̇ 
provides new 𝑣𝑣𝑥𝑥3 = 𝑙𝑙1̇ sin𝜃𝜃1 and 𝑣𝑣𝑦𝑦3 = −𝑙𝑙1̇ cos𝜃𝜃1 as shown in Figure 6. 

 

 
Figure 5. Illustration of MDPOC with a varying cable length 

(payload hoisting). 

 
Figure 6. Velocity of hook and payload vectors with a 

varying cable length. 
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Thus, the new vectors of 𝑣𝑣1 and 𝑣𝑣2 can be obtained as: 

𝑣𝑣12 = (𝑣𝑣 + 𝑣𝑣𝑥𝑥1 + 𝑣𝑣𝑥𝑥3)2 + (𝑣𝑣𝑦𝑦1 + 𝑣𝑣𝑦𝑦3)2 (21) 

𝑣𝑣22 = (𝑣𝑣 + 𝑣𝑣𝑥𝑥1 + 𝑣𝑣𝑥𝑥2 + 𝑣𝑣𝑥𝑥3)2 + (𝑣𝑣𝑦𝑦1 + 𝑣𝑣𝑦𝑦2 + 𝑣𝑣𝑦𝑦3)2 (22) 

By substituting Equations (21) and (22) into Equations (5) and (6) respectively, the new 𝐾𝐾𝜃𝜃1and 𝐾𝐾𝜃𝜃2 can be formulated as: 

𝐾𝐾𝜃𝜃1 =
1
2
𝑚𝑚1 �𝑥̇𝑥2 + 2𝑥̇𝑥𝑙𝑙1𝜃̇𝜃1 cos 𝜃𝜃1 + 2𝑥̇𝑥𝑙𝑙1̇ sin𝜃𝜃1 + 𝑙𝑙1

2𝜃̇𝜃1
2 + 𝑙𝑙1̇

2� (23) 

𝐾𝐾𝜃𝜃2 =
1
2
𝑚𝑚2(𝑥̇𝑥2 + 2𝑥̇𝑥𝑙𝑙1𝜃̇𝜃1 cos 𝜃𝜃1 + 2𝑥̇𝑥𝑙𝑙2𝜃̇𝜃2 cos𝜃𝜃2 + 2𝑥̇𝑥𝑙𝑙1̇ sin 𝜃𝜃1 + 

2𝑙𝑙1𝑙𝑙2𝜃̇𝜃1𝜃̇𝜃2 cos(𝜃𝜃1 −𝜃𝜃2) + 2𝑙𝑙1̇𝑙𝑙2𝜃̇𝜃2 sin(𝜃𝜃1 −𝜃𝜃2) + 𝑙𝑙1
2𝜃̇𝜃1

2 +  𝑙𝑙2
2𝜃̇𝜃2

2 +  𝑙𝑙1̇
2) 

(24) 

Since the 𝑃𝑃𝑥𝑥 and 𝑃𝑃𝑙𝑙  are kept unchanged, the similar 𝑃𝑃 can be obtained as stated in Equation (14). Therefore, the new Lagrangian 
function can be expressed as in Equation (25). 

𝐿𝐿ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 =
1
2
𝑚𝑚𝑥̇𝑥2 +

1
2
𝑚𝑚1 �𝑥̇𝑥2 + 2𝑥̇𝑥𝑙𝑙1𝜃̇𝜃1 cos𝜃𝜃1 + 2𝑥̇𝑥𝑙𝑙1̇ sin 𝜃𝜃1 + 𝑙𝑙1

2𝜃̇𝜃1
2 + 𝑙𝑙1̇

2� + 
1
2
𝑚𝑚2(𝑥̇𝑥2 + 2𝑥̇𝑥𝑙𝑙1𝜃̇𝜃1 cos 𝜃𝜃1 + 2𝑥̇𝑥𝑙𝑙2𝜃̇𝜃2 cos 𝜃𝜃2 + 2𝑥̇𝑥𝑙𝑙1̇ sin𝜃𝜃1 + 2𝑙𝑙1𝑙𝑙2𝜃̇𝜃1𝜃̇𝜃2 cos(𝜃𝜃1 −𝜃𝜃2) + 

2𝑙𝑙1̇𝑙𝑙2𝜃̇𝜃2 sin(𝜃𝜃1 −𝜃𝜃2) + 𝑙𝑙1
2𝜃̇𝜃1

2 +  𝑙𝑙2
2𝜃̇𝜃2

2 + 𝑙𝑙1̇
2) − 

 𝑚𝑚1𝑔𝑔�𝑙𝑙1(1 − cos𝜃𝜃1)� − 𝑚𝑚2𝑔𝑔�𝑙𝑙1(1 − cos 𝜃𝜃1) + 𝑙𝑙2(1 − cos 𝜃𝜃2)� 

(25) 

By differentiating Equation (25) based on Equation (1), the dynamic MDPOC model with a varying cable length can be 
formulated as in Equations (26)-(29). 

(𝑚𝑚 + 𝑚𝑚1 + 𝑚𝑚2)𝑥̈𝑥 + (𝑚𝑚1 + 𝑚𝑚2)(2𝑙𝑙1̇𝜃̇𝜃1 cos 𝜃𝜃1 + 𝑙𝑙1𝜃̈𝜃1 cos 𝜃𝜃1 − 
𝑙𝑙1𝜃̇𝜃1

2 sin𝜃𝜃1 + 𝑙𝑙1̈ sin𝜃𝜃1) + 𝑚𝑚2𝑙𝑙2(𝜃̈𝜃2 cos 𝜃𝜃2 − 𝜃̇𝜃2
2 sin𝜃𝜃2) = 𝐹𝐹𝑥𝑥 − 𝑓𝑓𝑥𝑥𝑥̇𝑥 (26) 

(𝑚𝑚1 + 𝑚𝑚2)(𝑥̈𝑥𝑙𝑙1 cos𝜃𝜃1 + 𝑙𝑙1
2𝜃̈𝜃1 + 𝑔𝑔𝑙𝑙1 sin𝜃𝜃1 + 2𝑙𝑙1𝑙𝑙1̇𝜃̇𝜃1) + 

𝑚𝑚2𝑙𝑙1𝑙𝑙2(𝜃̈𝜃2 cos(𝜃𝜃1 −𝜃𝜃2) + 𝜃̇𝜃2
2 sin(𝜃𝜃1 −𝜃𝜃2)) = 0 (27) 

𝑚𝑚2𝑙𝑙2(𝑥̈𝑥 cos𝜃𝜃2 + 𝑙𝑙2𝜃̈𝜃2 + 𝑙𝑙1̈ sin(𝜃𝜃1 −𝜃𝜃2) −  𝑙𝑙1𝜃̇𝜃1
2 sin(𝜃𝜃1 −𝜃𝜃2) + 

𝑙𝑙1𝜃̈𝜃1 cos(𝜃𝜃1 −𝜃𝜃2) + 2𝑙𝑙1̇𝜃̇𝜃1 cos(𝜃𝜃1 −𝜃𝜃2) +  𝑔𝑔 sin𝜃𝜃2) = 0 (28) 

(𝑚𝑚1 + 𝑚𝑚2) �𝑥̈𝑥 sin 𝜃𝜃1 + 𝑙𝑙1̈ − 𝑙𝑙1𝜃̇𝜃1
2 + 𝑔𝑔(1 − cos 𝜃𝜃1)� + 

𝑚𝑚2𝑙𝑙2(𝜃̈𝜃2 sin(𝜃𝜃1 −𝜃𝜃2) − 𝜃̇𝜃2
2 cos(𝜃𝜃1 − 𝜃𝜃2))  = 𝐹𝐹𝑙𝑙 − 𝑓𝑓𝑙𝑙𝑙𝑙1̇ 

(29) 

3. SIMULATIONS AND EXPERIMENTS SETUP  
This section presents the dynamic characteristics of the MDPOC and evaluates the accuracy of the dynamic equations. The 
derived MDPOC dynamic models with a fixed cable length and a varying cable length were used for simulation, while 
experiments were carried out on a laboratory MDPOC. Fixed cable length refers to the manually setting of length 𝑙𝑙1 by the 
operator. In this situation, the 𝑙𝑙1 is fixed to 0.3 m during transportation. For varying cable length (payload hoisting), it refers 
to the continuously varying of 𝑙𝑙1 from 0.2 m to 0.4 m during payload transportation simultaneously. Figure 7 shows a general 
block diagram for the simulation and experimental implementation of the MDPOC system. 

3.1 Simulations 
The dynamic equations presented in Equations (16)-(18) and (26)-(29) were simulated using Matlab/Simulink. Figures 8 and 
9 illustrate the Simulink block diagrams for the purpose of solving the dynamic equations and obtaining the trolley motion, 
hook oscillation angle, payload oscillation angle and payload hoisting for the MDPOC system. The system parameters used in 
the simulations are listed in Table 1. In this work, the fcn block was utilized and run with the solver of ode45 (Dormand-
Prince) with a sampling time of 0.001 s. 
 

 
Figure 7. A general block diagram of MDPOC. 
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Figure 8. Simulink block of MDPOC. 

 
 

 

 
 

 
Figure 9. Simulink block of MDPOC with a varying cable length (payload hoisting). 
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Table 1. MDPOC parameters. 

Variables Parameters 
Symbol Values  

Trolley Mass 𝑚𝑚 1.155 kg  
Hook Mass 𝑚𝑚1 0.20 kg  

Payload Mass 𝑚𝑚2 0.10 kg  
Fixed Cable Length and Varying Cable Length 𝑙𝑙1 0.30 m and 0.20 – 0.40 m  

Sling Cable 𝑙𝑙2 0.20 m  
Viscous Damping Coefficient of Trolley 𝑓𝑓𝑥𝑥 82 Ns/m  

Viscous Damping Coefficient of Hoisting 𝑓𝑓𝑙𝑙  75 Ns/m  
Gravitational Constant 𝑔𝑔 9.81 m/s2  

 

 
Figure 10. A laboratory MDPOC. 

3.2 Experiments 
A laboratory overhead crane manufactured by INTECO is transformed as a MDPOC system as shown in Figure 10. This 
system is fully utilized to verify and validate multimode dynamic models. The crane has a trolley with two cylindrical loads 
that symbolize the hook and the payload. Three incremental encoders are used to measure the trolley distance, hook oscillation 
angle, and varying cable length during payload hoisting. In addition, two independent DC motors drive the trolley and hoisting 
motion systems, respectively. The payload lifting is raised down in a y-direction while the trolley is pushed along a rail in x-
direction as illustrated in Sections 2.1 and 2.2. Furthermore, a trolley-mounted with a Logitech C170 camera angled downward 
is used to measure the payload oscillation by analyzing the deviation of a red indication located at the top of the payload.  

The overhead crane's interface module (RT-DAC board) serves as a communication channel between the computer and 
the crane. The encoders' measured output signals are supplied to the computer for analysis, after which the computer issues a 
command to the DC motors. In contrast, the camera is employed to measure the oscillation of the payload and record its 
movements. Furthermore, executions are implemented in real time using the Matlab/Simulink Real-Time Toolbox. The similar 
system parameters in Table 1 are used for the experiments, which match the MDPOC employed in the laboratory. 

4. RESULTS AND DISCUSSION  
All the simulations and experiments were carried out in Matlab/Simulink environment. The responses of the laboratory 
MDPOC were compared with the simulation results with fixed and varying cable lengths in order to validate the multimode 
dynamic model. A Simulink block diagram was developed based on Equations (16)-(18) and (26)-(29). Figures 8 and 9 show 
the Simulink block diagram of the MDPOC system with a fixed cable length and a varying cable length, respectively. An 
external force (amplitude: 0.6 N and width: 2 seconds) as in Figure 11 was excited into the crane for the trolley movement as 
illustrated in Figure 12. The simulation and experimental findings of the trolley position, hook oscillation, and payload 
oscillation are displayed in Figures 12, 13(a) and 13(b), respectively. Interestingly, the patterns of experimental results were 
consistent with the simulation executions. 

Figure 12 illustrates the trolley movement from 0.00 m to 0.40 m within 2.01 seconds (simulation) and 2.18 seconds 
(experiment). As observed with a fixed cable length, the oscillation responses of the hook and payload were not perfectly in 
phase. However, the patterns of the oscillations were consistent across both simulations and experiments. Specifically, the 
maximum payload oscillation angles were recorded as 12.295 degrees in the simulation and 12.250 degrees in the experiment. 
The oscillation frequencies were 4.490 rad/s in the simulation and 4.621 rad/s in the experiment. These findings are 
encapsulated in Table 2 with complete details of the maximum oscillations and oscillation frequencies for both the hook and 
payload oscillation responses. A comparison of these executions reveals a close correlation between the simulated and 
experimental data, with a maximum relative error of just 3.20% which can be considered small and within an acceptable range. 
This close agreement underscores the reliability of the simulation model in predicting the dynamic behavior of the MDPOC 
under the specified conditions. 
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Figure 11. An external trolley force signal. 

 
Figure 12. Response of trolley position with a fixed cable 

length. 
 

 
(a) 

 
(b) 

Figure 13. Response of oscillation with a fixed cable length (a) Hook (b) Payload. 

 

 
Figure 14. Response of varying cable lengths during 

payload hoisting. 

 
Figure 15. Response of trolley position with a varying 

cable length. 

 
Table 2. Performance measurement under fixed cable length. 

Variables Max Oscillation Frequency 
Hook Payload Hook Payload 

Simulation 8.444 12.295 4.477 rad/s 4.490 rad/s 
Experiment 8.174 12.250 4.406 rad/s 4.621 rad/s 

Relative Error (%) 3.2 0.4 1.6 2.9 
 

To assess the impact of varying cable length (payload hoisting) on the dynamics of a MDPOC, a similar test of simulations 
and experiments were performed. A similar force signal in Figure 11 was also applied for the payload hoisting operation and 
excited into the crane system with the hoisting gain of 12.5 as simulated in Figure 9. This simulations and experiments test 
involved simultaneous trolley motion, hook and payload hoisting, constrained by the laboratory crane's capabilities to a hoisting 
range from 0.20 m to 0.40 m. Figure 14 shows the response of varying cable length from 0.20 m to 0.40 m during payload 
hoisting. It was observed that the payload arrived at the destination in 2.09 seconds for simulation and 2.24 seconds for 
experiment. Figures 15, 16(a) and 16(b) illustrate the oscillation responses of the varying cable length, trolley position, hook 
and payload oscillation of the MDPOC for both the simulated and experimental scenarios. 
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(a) 

 
(b) 

Figure 16. Response of oscillation with varying cable length (a) Hook (b) Payload. 
 

 

Table 3. Performance measurement under varying cable length. 

Variables Max Oscillation Frequency 
Hook Payload Hook Payload 

Simulation 8.602 14.044 9.173 rad/s 8.941 rad/s 
Experiment 8.438 13.900 9.299 rad/s 8.665 rad/s 

Relative Error (%) 1.9 1.1 1.4 3.1 
 
 

The analysis of the effects of varying cable length (payload hoisting) on the dynamics of the MDPOC was also conducted 
based on the oscillation responses as shown in Figure 16. The study revealed that varying the cable length during simultaneous 
trolley motion significantly impacts the oscillation behavior in terms of maximum hook/payload oscillations and frequencies. 
Both simulation and experimental results demonstrated similar effects on MDPOC dynamics. During the hoisting operation, 
specific changes in the maximum hook/payload oscillations were observed. In the simulations, the maximum oscillation value 
for the hook and payload increased by 1.9% and 14.2%, respectively. The experimental results exhibited a comparable trend, 
with 3.2% and 13.5% increase for the hook and for the payload, respectively. These findings are recorded in Table 3. As a 
result, the percentage errors between the simulation and experiment for the hook and payload were 1.9% and 1.1%, 
respectively, which is considered small. 

In addition, the oscillation frequency of both the hook and the payload also showed an increase due to the hoisting 
operation. Simulation yielded oscillation frequencies of 9.173 rad/s for the hook and 8.941 rad/s for the payload. Similarly, the 
experiments indicated 9.299 rad/s and 8.665 rad/s for the hook and payload, respectively. Therefore, increasing the cable length 
during payload hoisting (lowering) generally results in a two-fold increase in hook and payload oscillation frequencies 
compared to a fixed cable length situation. This behavior is due to the longer cable length providing a greater pendulum effect. 

5. CONCLUSION  

The dynamic characteristics of a MDPOC under fixed cable length and varying cable length (payload hoisting) are analyzed 
in this work. It includes the modelling, simulation, and validation of multimode dynamic effects, which generates double-
pendulum phenomenon. The impact of trolley position, hook oscillation, and payload oscillation is also explored in this work. 
The developed model is simulated and verified using a laboratory crane to verify the mathematical modelling of MDPOC. The 
results from both simulations and experiments show very good compliance with the theoretical predictions. Minor 
discrepancies between simulation and experimental results, such as maximum oscillation, hook frequency, payload frequency 
and percentage relative errors, are likely due to modelling assumptions and factors like air friction and wind disturbance that 
were not considered. Another important observation, the effect of varying cable length provides a two-fold increase in hook 
and payload oscillation frequencies compared to the fixed cable length scenario, which brings to safety concerns for crane 
operators. For future work, the effects of twisting, different hook/payload masses and various shapes of payload will be 
explored to further validate the accuracy of the models. It is beneficial for crane operators to understand the dynamic model 
of MDPOC and useful for future analysis of controller implementation with confidence by researchers, which can enhance the 
control and stability of MDPOC under various operating conditions. 
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