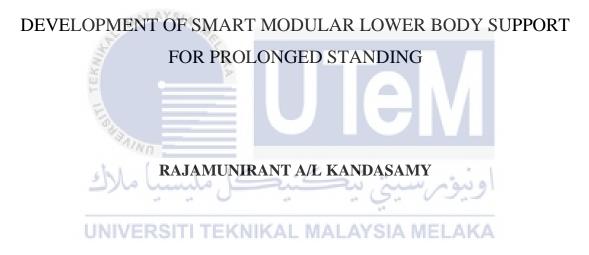


UNIVERSITI TEKNIKAL MALAYSIA MELAKA


DEVELOPMENT OF SMART MODULAR LOWER BODY SUPPORT FOR PROLONGED STANDING

MASTER OF MANUFACTURING ENGINEERING (INDUSTRIAL ENGINEERING)

FACULTY OF INDUSTRIAL AND MANUFACTURING TECHNOLOGY AND ENGINEERING

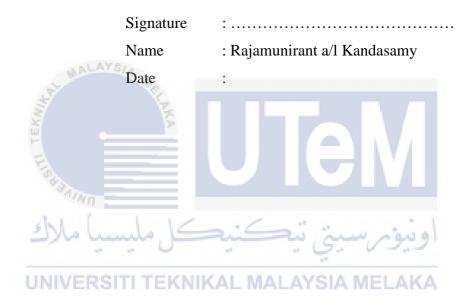
MASTER IN MANUFACTURING ENGINEERING (INDUSTRIAL ENGINEERING)

2024

DEVELOPMENT OF SMART MODULAR LOWER BODY SUPPORT FOR PROLONGED STANDING

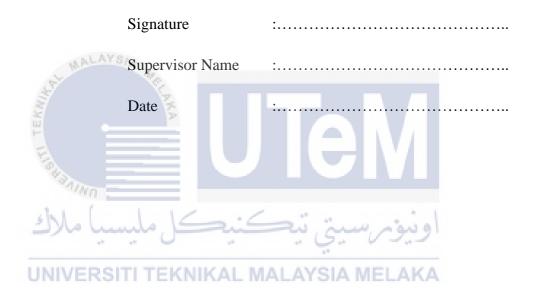
RAJAMUNIRANT A/L KANDASAMY

A thesis submitted in fulfillment of the requirements for the master of Master of Manufacturing Engineering (Industrial Engineering)


UNIVERSITI TEKNIKAL MALAYSIA MELAKA

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2024


DECLARATION

I declare that this report entitled "Development of Smart Modular Lower Body Support for Prolonged Standing" is the result of my own research except as cited in reference. The thesis has not been accepted for any master and is not concurrently submitted in candidature of any master.

APPROVAL

I hereby declare that I have read this report and in my opinion this report is sufficient in terms of scope and quality for the award of Master of Manufacturing Engineering (Industrial Engineering)

DEDICATION

This report is dedicated to my beloved family, friend and my lecturers.

ABSTRACT

Musculoskeletal diseases (MSD) remain a major source of threat for industry workers. A good understanding and handling musculoskeletal health in the workplace establish a secure and effective working environment. Workers in industry are more likely to have MSD disease in the workplace due to overexertion from manually operating machinery. In this project a metal fabrication company which uses a large number of welders requested to carry out a study and find solution on MSD faced by metal inert gas (MIG) welders. The welders were influenced by prolonged standing when they carried out their daily task which leads to MSD. To overcome the MSD during work, the welders took a long break in interval for recovery which leads the increase of cycle time in producing a product. The aim of this research is to improvise current Modular Lower Body Support in the market which lack of height adjustability and lack of sensor to detect poor bending movements and prolonged sitting. The objectives of this study were to analyze the user's requirements, technical specifications and ergonomics considerations for developing the Smart Modular Lower Body Support, designing and developing the Smart Modular Lower Body Support and carry out evaluation on the functionality and usability for the Smart Modular Lower Body Support. The current Smart Modular Lower Body is not similar to the other Modular Lower Body Support in the market. The Smart Modular Lower Body Support is a portable product which can be located in any flat desired location. The height of the lower body support is adjustable, solve the height issue of the welders in the industry and well-integrated with Internet of Things (IoT) monitoring system required by the industry. This Smart Modular Lower Body Support is equipped with 2 types of sensors which are load cells and ultrasonic sensors, play a crucial role in identifying the load exerted by the welders on the lower body support and detects the over bending movement of the welders when they carry out their daily task. The IoT system was build up with a notification system connected to cellular phone software, email notification and alarming electronic product such as buzzer and LED. To develop the Smart Modular Lower Body Support, technical data, user's requirements, ergonomics and work space specifications had been collected at the workplace. House of Quality (HoQ) had been carried out to reflect welder's idea on the product to be developed. The data that had been gathered were used to design a lower body support using SolidWorks software and been tested with Finite Element Analysis (FEA) to understand how the product behave under various physical condition. The best design had been chosen and fabricated from the analysis of (FEA), (HoQ) and Pugh Matrix Analysis (PMA). The fabricated lower body support had been fixed with a few mechanical parts and electrical components. IoT system had been set up with parameter for internal testing. Finally, the Smart Modular Lower Body Support had been tested in the fabrication industry for evaluation on the functionality and usability. As a result, the cycle time of the welding process had been reduced, MIG welders are free from MSD and the welders can use the Smart Modular Lower Body Support continuously without prolong standing issue. A questionnaire had been carried out with 21 respondents on the usability testing of the Smart Modular Lower Body Support and the usability testing gained a score of 51.31 which stand in the grade of "D" with the acceptability of "OK".

PEMBANGUNAN SOKONGAN BADAN BAWAH MODULAR PINTAR UNTUK

BERDIRI BERPANJANGAN

ABSTRAK

Gangguan otot berangka kekal (MSD) sebagai ancaman utama bagi pekerja industri. Adalah penting untuk memahami dan mengendalikan kesihatan otot berangka di tempat kerja untuk mewujudkan persekitaran kerja yang selamat dan cekap. Pekerja industri berisiko mengalami gangguan otot berangka MSD disebabkan oleh penggunaan tenaga yang berlebihan ketika mengendali mesin secara manual. Dalam projek ini, sebuah industri fabrikasi yang menggunakan banyak pengimpal gas inert logam (MIG) meminta untuk menjalankan kajian dan mencari solusi terhadap masalah gangguan otot berangka MSD yang dihadapi oleh pengimpal. Pekerja kimpalan terpengaruh dengan posisi berdiri yang lama dalam menjalankan tugasan harian mengakibatkan kepada gangguan otot berangka MSD. Untuk mengatasi gangguan otot berangka MSD, pengimpal rehat untuk jangka masa panjang ketika berkerja bagi pemulihan sakit yang mengakibatkan peningkatan dalam kitaran masa dalam penghasilan produk. Tujuan kajian ini adalah untuk penambahbaikan Sokongan Bawah Badan Modular yang kini digunakan mempunyai kekurangan daripada aspek kebolehlarasan ketinggian dan deria untuk mengesan pergerakan postur badan yang tidak neutral dan posisi berdiri yang lama. Kajian ini bertujuan untuk menganalisis spesifikasi teknikal dan pertimbangan ergonomik keperluan pengguna, untuk membangunkan Sokongan Bawah Badan Modular Pintar, mereka bentuk dan membangunkan Sokongan Bawah Badan Modular Pintar dan penilaian kefungsian dan kebolehgunaan Sokongan Bawah Badan Pintar. Sokongan Bawah Badan Modular Pintar terkini tidak sama seperti sokongan bawah badan di pasaran. Sokongan Bawah Bawah Badan Modular Pintar adalah produk mudah alih dan boleh digunakan di mana-mana lokasi rata. Ketinggiannya boleh dilaras dan menyelesaikan isu ketinggian pengimpal dan disepadukan dengan sistem pemantauan Internet Pelbagai Benda (IoT) yang diperlukan oleh industri. Sokongan Bawah Badan Modular Pintar ini dilengkapi dengan 2 jenis penderia iaitu sel beban dan penderia ultrasonik yang memainkan peranan penting dalam mengenal pasti beban yang dikenakan oleh pengimpal pada sokongan bawah badan dan mengesan pergerakan postur badan yang tidak neutral pengimpal ketika menjalankan tugas harian. Sistem pemantauan Internet Pelbagai Benda dibina dengan sistem notifikasi berhubungan melalui perisian telefon selular, notifikasi e-mel dan produk elektronik seperti buzzer dan LED. Untuk membangunkan Sokongan Bawah Badan Modular Pintar, spesifikasi teknikal, keperluan pengguna, ergonomik dan ruang kerja telah diambil kira. Analisa rumah kualiti (HoQ) telah dijalankan untuk mendapatkan idea pengimpal untuk membina produk. Data yang telah dikumpul digunakan untuk mereka sokongan bawah badan menggunakan perisian "SolidWorks" dan diuji dengan kaedah unsur terhingga (FEA) untuk memahami bagaimana produk berkelakuan di bawah pelbagai keadaan fizikal. Reka bentuk yang terbaik telah dipilih dan direka melalui analisa (FEA), (HoQ) dan Matriks Pugh (PMA). Sokongan bawah badan yang telah dibangunkan telah dipasang dengan beberapa barang mekanikal dan elektrik. Sistem pemantauan Internet Pelbagai Benda telah diaplikasi dengan parameter untuk ujian dalaman. Akhirnya, Sokongan Bawah Badan Modular Pintar telah diuji dalam industri fabrikasi untuk penilaian kefungsian dan kebolehgunaan. Kesimpulanya, kitaran

masa telah dikurangakan, pengimpal bebas daripada gangguan otot berangka dan pengimpal boleh menggunakkan Sokongan Badan Bawah Modular Pintar secara berterusan tanpa berdiri untuk jangka masa panjang. Satu soal selidik telah dijalnkan dengan 21 responden mengenai ujian kebolehgunaan Sokongan Bawah Badan Modular Pintar dan kebolehgunaan memperoleh skor 51.31 yang berapa dalam gred "D" dengan kobolehterimaan "OK". Semua pengimpal boleh menggunakan produk ini tanpa sebarang keraguan.

ACKNOWLEDGEMENT

I would like to thank to my supervisor, Dr Isa bin Halim from the Faculty of Industrial and Manufacturing Technology and Engineering Universiti Teknikal Malaysia Melaka (UTeM) for his unconditional guidance, support and continuous encouragement toward completing the thesis.

Furthermore, I would like to appreciate the Faculty of Industrial and Manufacturing Technology and Engineering of Universiti Teknikal Malaysia Melaka (UTeM) for providing the opportunity to conduct my project.

Besides that, I would like to thank Wentel Engineering Sdn Bhd to allow me attend for an Industrial Visit to their company, offers valuable information to carry out this project and to carry out product testing in their company.

Apart from that, a special thanks to my family and friends for their moral support in completing this degree and not forgetting, those who have directly or indirectly contributed to the realization of this thesis.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

TABLE OF CONTENT

PAGES

i
ii
iv
v
viii
Х
xii
xiii

CHAPTER

CHAI	PTER		BALAYSIA	
		~	ALC: NO.	
1.	INTR	ODUC	TION	1
	1.1	Backg	round	1
	1.2	Proble	em Statement	6
	1.3	Object	tive	7
		1.3.1	Relationship between problem statement and objective	7
	1.4	Scope	of Project	9
	1.5	Summ	lary	11
		NE	اويتوم سيتز تتكنيكا مليسيا م	
2.		-	RE REVIEW	13
	2.1	Design	n Requirements for Developing a Smart Modular Lower Body	
		Suppo	RSITI TEKNIKAL MALAYSIA MELAKA	13
		2.1.1	Analysis of Literature on Purposes of Smart Modular	14
			2.1.1.1 Improve Body Alignment	14
			2.1.1.2 Remove Back and Neck Pain	14
			2.1.1.3 Higher Lung Capacity & Energy Levels	14
		2.1.2	Standing	15
			2.1.2.1 Health Issue Due to Non-Neutral Standing Posture	16
		2.1.3	Sitting	18
			2.1.3.1 Health Issue Due to Poor Sitting Posture	18
		2.1.4	A Poor Posture	21
		2.1.5	Musculoskeletal System	21
			2.1.5.1 Musculoskeletal System Disorders Conditions	21
		2.1.6	A Good Posture	24
		2.1.7	Ergonomics	24
			2.1.7.1 The Best Practice of Ergonomics	24
		2.1.8	Synthesis of Literature on Methodologies to Determine Design	
			Requirements	25
			2.1.8.1 Worker Anthropometry	25
			2.1.8.2 Malaysia Anthropometric Parameter	26

	2.1.8.3 Sensors	27
	2.1.8.4 Ergonomic Lower Body Support	31
	2.1.8.5 Allowable Pressure	32
	2.1.9 Evaluation of Literature on Methodologies to Determine	
	Design Requirements	33
2.2	Design and Development of Smart Modular Lower Body Support	35
	2.2.1 Types of Lower Body Support	35
	2.2.2 Design Consideration	37
	2.2.2.1 Material	37
	2.2.2.2 Durability	39
	2.2.2.3 Cost	40
2.3	Internet of Things (IoT)	41
	2.3.1 Blynk	41
2.4	MIG Welding	42
2.5	Modular Lower Body Support in Welding Industry	42
2.6	Fabrication and Evaluation of functionality and Usability of Smart	
	Modular Lower Body Support	43
	2.6.1 Fabrication of Lower Body Support	43
	2.6.2 Evaluation of Lower Body Support Functionality	46
	2.6.3 Evaluation of Lower Body Support Usability	47
2.7	Standards of Industrial Exoskeletons	49
2.8	Summary	50
	TH <mark>O</mark> DOLOGY	53
3.1	Introduction	53
3.2	Workflow Planning	54
	3.2.1 Workflow	54
	3.2.2 Planning	55
	2.2.2.1 Stage of Study	56
3.3	Phase 1: Preliminary Study	57
3.4	Phase 2: Define The User Requirements	57
3.5	Technical Specifications	58
	3.5.1 Anthropometric Parameter of Worker	58
	3.5.2 Comparison of Wental Engineering Sdn Bhd and Malaysia	50
	Anthropometric Parameter	59
3.6	3.5.3 Ergonomics Considerations Engineering Characteristics	60 61
5.0	3.6.1 Product Design and Develop Specification	61
3.7	Phase 3: Evaluation of Functionality and Usability	62
5.7	3.7.1 Von Mises Stress	63
	3.7.2 Resultant Displacement	63
	3.7.3 Factor of Safety	64
3.8	Concept Generation	64
5.0	3.8.1 Concept Design	65
	3.8.1.1 Design 1	66
	3.8.1.2 Design 2	67
	3.8.1.3 Design 3	68
3.9	Concept Evaluation	69
	3.9.1 House of Quality	69
	3.9.2 Data of Concept Design 1, Design 2 and Design 3	70

3.

		3.9.2.1 Comparison of Data	73
		3.9.3 Pugh Matrix Concept Selection	73
		3.9.4 Best Concept	74
	3.10	Detail Design	75
		3.10.1 Product Structure	76
		3.10.2 Finite Element Analysis	77
		3.10.2.1 Von Mises Stress	78
		3.10.2.2 Resultant Displacement	78
		3.10.2.3 Factor of Safety	79
		3.10.2.4 Strain	79
	3.11	Justification on Self Designed Smart Modular Lower Body Support	80
	3.12	Hardware Platform	80
		3.12.1 Sensors and Electronic Parts of Smart Modular Lower Body	
		Support	82
	3.13	Software	85
	3.14	Cost Estimation	86
	3.15	Fabrication of Smart Modular Lower Body Support	87
	3.16	System Usability Scale (SUS)	89
	3.17	Summary	89
		MALAYSIA	
4.	RESU	JLTS AND DISCUSSION	91
	4.1	Welder requirements and technical specifications	92
	4.2	Discussion on welder requirements and technical specifications	94
	4.3	Developing of Smart Modular Lower Body Support	96
	4.4	Discussion on Developing a Smart Modular Lower Body	
		Support	101
	4.5	Evaluation of the Functionality and Usability of Smart Modular	
		Lower Body Support	103
		4.5.1 Welder utilizing Smart Modular Lower Body Support	103
		4.5.2 Blynk Software Data	104
		4.5.3 Blynk Software Message and Email Notifications	105
		4.5.4 Improvement on Number of Product Production vs Actual	106
		4.5.5 Questionnaire Survey	107
		4.5.5.1 Basic Information of Respondent	107
		4.5.5.2 System Usability Scale	108
		4.5.5.3 Acceptance	110
	4.6	Discussion on data of Functionality and Usability of the Smart	
		Modular Lower Body Support	112
	4.7	Impact on the quality of welded parts when using Smart Modular	
		Lower Body Support during MIG Welding Process	115
_	~ ~ ~ ~ ~		
5.		CLUSION	116
	5.1	User's requirements technical specifications and ergonomics	116
	5.2	Designing and Developing a Smart Modular Lower Body	
		Support	117
	5.3	Evaluation of the Functionality and Usability of the Smart Modular	
		Lower Body Support	117
DEFF	DENC	EC	110
			119
APPE	APPENDICES 132		

LIST OF TABLES

TABLE	TITLE	PAGE
Table 1.1	Relationship between problem statement and objectives	8
Table 1.2	Relationship between scope and objective	10
Table 1.3	Scope of Smart Modular Lower Body Support	11
Table 2.1	Health issue due to non-neutral standing posture	16
Table 2.2	Health issue due to poor sitting posture	19
Table 2.3	The types of disorders condition	22
Table 2.4	Essential ergonomic technique	25
Table 2.5	Malaysia anthropometric parameter	27
Table 2.6	Types of load sensor/load cell	29
Table 2.7	Types of ultrasonic sensor	30
Table 2.8	Example of ergonomic lower body support	31
Table 2.9	Evaluation of literature on methodologies to determine design	
	requirements	34
Table 2.10	Types of human lower body support	36
Table 2.11	Types and characteristics of material	38
Table 2.12	The evaluation of lower body support functionality	46
Table 2.13	The evaluation of lower body support usability	47
Table 2.14	The standards for industrial exoskeletons	49
Table 2.15	Analysis of literature review of the past five year studies related to	
	human behaviour on exoskeleton use	50
Table 3.1	Target of producing a product/hour	58
Table 3.2	Anthropometric parameters of workers	59
Table 3.3	Comarison parameter between Wentel Engineering Sdn Bhd and	
	Malaysia Anthropometry	60
Table 3.4	Ergonomics risk factors faced by workers	61
Table 3.5	Engineering characteristics with units	61

Table 3.6	Design and develop specification of Smart Modular Lower Body	
	Support	62
Table 3.7	Concept generation for Smart Modular Lower Body Support	65
Table 3.8	Data of user requirements	69
Table 3.9	Comparison data of Design 1, Design 2, Design 3	73
Table 3.10	Pugh Matrix Concept Evaluation of Smart Modular Lower Body	
	Support	74
Table 3.11	Selection of the best design concept	75
Table 3.12	Fundamental of hardware and electronic platform	81
Table 3.13	Sensors and electronic part	82
Table 3.14	Cost estimation of the project	86
Table 3.15	Fabrication process of Smart Modular Lower Body Support	87
Table 3.16	Relationship between objective and methodology	90
Table 4.1	Current situation of the welder	93
Table 4.2	Medical leave taken by welder due musculoskeletal disease	93
Table 4.3	Finalized product of the Smart Modular Lower Body Support	97
Table 4.4	Function of each mechanical mechanism used in Smart Modular	
	Lower Body Support	99
Table 4.5	Function of IoT used in Smart Modular Lower Body Support	100
Table 4.6	Modularity of Smart Modular Lower Body Support	101
Table 4.7	Parameter of Arduino System (Testing in Industrial Visit)	103
Table 4.8	The welders use the Smart Modular Lower Body Support	103
Table 4.9	The reading of Blynk software	104
Table 4.10	Blynk software message and email notifications	106
Table 4.11	Producing a product/hour (Actual vs After Improvement)	107
Table 4.12	Grade ranking of SUS score	109
Table 4.13	Acceptance for the Smart Modular Lower Body Support	111

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 1.1	Annual musculoskeletal disease statistics reported by SOCSO 1995 –	
	2009	3
Figure 1.2	Prolonged standing position of worker at a fabric manufacturing	
	company	3
Figure 1.3	Prolong standing position of worker at a air conditioning copper pipe	
	welding assembly line	4
Figure 1.4	Prolonged standing and sitting may cause discomfort, muscle fatigue,	
	swelling inflammation, varicose vein and pain in the back and feet	4
Figure 1.5	An employee implements the usage of Sit-Stand Exoskeleton	7
Figure 2.1	A good standing posture	15
Figure 2.2	Standard anthropometry dimension to ease collecting anthropometric	
	data data	26
Figure 2.3	Relationship between materials & element of design	39
Figure 2.4	ويبور سيني به A welder perfoming MIG welding	42
Figure 2.5	Modular Lower Body Support	43
Figure 2.6	Design and fabrication of an ergonomic sitting stool with storage	
	capability	43
Figure 2.7	Fabrication of Exoskeleton Chair with Simple Linkage Mechanism	44
Figure 2.8	Wearable lower body exoskeleton for lumbar pain reduction	45
Figure 3.1	Project workflow of development of Smart Modular Lower Body	
	Support	54
Figure 3.2	Process flow of development of Smart Modular Lower Body Support	55
Figure 3.3	The stage of study development of Smart Modular Lower Body	56
Figure 3.4	Design 1 of Smart Modular Lower Body Support	66
Figure 3.5	Design 2 of Smart Modular Lower Body Support	67
Figure 3.6	Design 3 of Smart Modular Lower Body Support	68

Figure 3.7	Results of Von Mises Stress for Design 1	70
Figure 3.8	Results of Factor of Safety for Design 1	70
Figure 3.9	Results of Von Mises Stress for Design 2	71
Figure 3.10	Results of Factor of Safety for Design 2	71
Figure 3.11	Results of Von Mises Stress for Design 3	72
Figure 3.12	Results of Factor of Safety for Design 3	72
Figure 3.13	Assembly parts of The Smart Modular Lower Body Support	76
Figure 3.14	The product structure of Smart Modular Lower Body Support	77
Figure 3.15	Von Mises Stress of Smart Modular Lower Body Support	78
Figure 3.16	Resultant Displacement of Smart Modular Lower Body Support	78
Figure 3.17	Factor of Safety of Smart Modular Lower Body Support	79
Figure 3.18	Strain of Smart Modular Lower Body Support	79
Figure 3.19	How the Blynk App works	85
Figure 4.1	Welder rotates his body to achieve welding angle	95
Figure 4.2	The label of mechanical mechanism used in the Smart Modular	
	Lower Body Support	98
Figure 4.3	Built-up hardware of IoT system	99
Figure 4.4	Percentage of male and female gender answered the feedback	
	questions TEKNIKAL MALAYSIA MELAKA	108
Figure 4.5	The age range of welder	108
Figure 4.6	The usability score for Smart Modular Lower Body Support	109
Figure 4.7	Average score for each question on the questionnaire	110
Figure 4.8	The pie chart of the acceptance level	112

LIST OF ABBREVIATIONS

IoT	Internet of Things
ICT	Information and Communication Technology
MIG	Metal Inert Gas
MSD	Musculoskeletal Disorders
SOCSO	Social Security Organization
WMSD	Work Related Musculoskeletal Disorders
AusDiab	Australian Diabetes, Obesity and Lifestyle Study
FEA	Finite Element Analysis
GMAW	Gas Metal Arc Welding
TIG	Tungsten Inert Gas
CNC	Computer Numerical Control
CAD	Computer Aided Design
ASTM	American Society for Testing and Materials
ISO	International Organization for Standardization
LED	Light Emitting Diode
HoQ	اويور سيني بيڪني House of Quality
PMA	Pugh Matrix Analysis
	UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF UNITS

lb/ft^3	Density
kg/m^3	Mass Density
kg/m²	Mass Index
kg	Kilogram
N/m^2	Yield Strength
ksi	Yield Strength
10^6 psi	Young Modulus
N/m^2	Tensile Strength
ksi	Tensile Strength
N/m^2	Elastic Modulus
Kg	Mass
Seconds	Time
mm	Millimeter
Ν	Newton
IN	loing mun in Sinch alumate
m^3	Volume (Solid)
g	UNIVEGravity I TEKNIKAL MALAYSIA MELAKA
m	Mass of load
mAH	Ampere-Hour

CHAPTER 1

INTRODUCTION

The first chapter of this master project report sets the stage by providing a comprehensive overview of the study. It begins with an exploration of the background of the study, delving into the intricacies of the musculoskeletal system. The focus then shifts to the health issues experienced by employees as a result of musculoskeletal problems, with specific attention given to ergonomic considerations, the working environment, and the body posture of employees while performing various tasks. The problem statement identifies and articulates the challenges faced by employees in their daily tasks, particularly the prolonged periods of standing and bending posture required in industrial settings. These challenges serve as the driving force behind the conceptualization and execution of the project, leading to the development and evaluation of innovative solutions. Within the framework of this chapter, the objectives of the project are clearly defined, encapsulating the primary goals that the research aims to achieve. Additionally, the scope of the study is outlined, providing insights into the specific focus and limitations inherent in the project. Together, these elements lay the foundation for a comprehensive understanding of the context, purpose, and boundaries of the research endeavor.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

1.1 Background of Study

The industrial landscape comprises a diverse array of businesses and organizations engaged in the creation and provision of products, services, and revenue streams across various sectors such as wholesale, retail, transportation, professional services, tourism, and entertainment. Within this expansive array, the working conditions in an industrial environment are often characterized by challenges more demanding than those encountered in conventional workplaces.

Industrial workers shoulder responsibilities ranging from machinery operation and product assembly to quality assurance inspections. Their duties extend beyond operational tasks to encompass maintaining workspaces, equipment, and adherence to safety regulations. Proficiency in interpreting technical drawings, familiarity with technical software, and adept utilization of a range of tools and equipment are integral to their roles.

Given the multitude of industries, a substantial workforce is essential for their seamless operation. Consequently, an effective strategic approach is indispensable for organizing the workflow of employees within a company. This study, however, narrows its focus to metal inert gas (MIG) welders engaged in tasks requiring either standing or sitting postures. It is noteworthy that not all industries uniformly implement standing or sitting postures; specific departments mandate prolonged periods of standing or sitting.

Examining statistical data provided by Social Security Organization (SOCSO), Figure 1.1 illustrates a significant upward trend in musculoskeletal diseases. This alarming trend underscores the magnitude of the issues faced by employees, particularly those related to prolonged standing as shown in Figure 1.2 and Figure 1.3 which provides a comprehensive depiction of the exact working conditions prevalent in the manufacturing industry, contributing to the onset of musculoskeletal diseases.

Figure 1.2 and Figure 1.3 collectively highlight the challenges inherent in performing

tasks in a standing position. These conditions may result in discomfort, muscle fatigue, swelling inflammation, varicose veins, and pain in the back and feet, as illustrated in Figure 1.4. The empirical evidence presented in these figures forms the basis for the critical investigation undertaken in this study to address the ergonomic issues associated with prolonged standing and sitting in industrial settings.

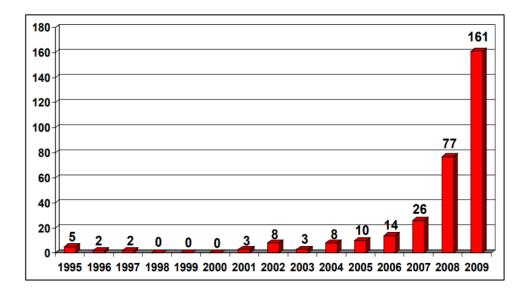


Figure 1.1: Annual musculoskeletal disease statistics reported by SOCSO 1995 – 2009. Department of Occupational Safety and Health, 2023

Figure 1.2: Prolonged standing position of worker at a fabric manufacturing company. Vietnam News (2023)

Figure 1.3: Prolong standing position of worker at an air conditioning copper pipe welding assembly line. Taizhou Youyi Automation Technology Co., Ltd. China (2023)

Figure 1.4: Prolonged standing and sitting may cause discomfort, muscle fatigue, swelling inflammation, varicose vein and pain in back and feet. Strauss Scoliosis Correction (2024)

In recent years, the impact of work-related musculoskeletal diseases (WMSD) has become increasingly evident, particularly in occupations demanding prolonged standing and maintaining an upright posture, revealing a notable association between WMSD and adverse effects on the lower back and lower extremities (Anderson et al., 2007; Coenen et al., 2016). The elevated risk observed in these occupational settings prompts a critical examination of the ergonomic challenges faced by workers, laying the foundation for the investigation undertaken in this study.

Beyond the musculoskeletal and cardiovascular impacts, the study extends its purview to the exoskeleton of the human body. While an internal endoskeleton provides structural support beneath soft tissues, prolonged standing and sitting postures can exert detrimental effects on the external exoskeleton. Unlike endoskeletons, exoskeletons offer external support to shield and enhance a person's bodily functions. Recognizing their potential to reduce fatigue, increase productivity, and assist in various physical tasks, the study acknowledges the role of exoskeletons in preventing musculoskeletal diseases. Besides that, a programmed software is developed to study the usage of the Smart Modular Lower Body Support by the MIG welder Implementation of IoT had been carried out to study on the usage of pressure sensors and postural angle sensors which seamlessly integrated with a smartphone through the Blynk cloud platform. This project is not only covered by providing comfortability to worker whereas to record and send signals to user of lower body support regarding the pressure and postural angle exerted by the welder during the MIG welding process.

This study aims to contribute significantly to addressing these multifaceted challenges by developing a "Smart Modular Lower Body Support" tailored for welders engaged in prolonged standing tasks. By doing so, it seeks to impact the workforce positively, not only by addressing musculoskeletal and occupational health but also by advancing the integration of innovative solutions to enhance work environments and employee well-being.