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Tis paper introduces a multiport monopole antenna featuring high isolation and a broad operating bandwidth, specifcally
designed for K-band and 5G applications. Te proposed antenna confguration comprises four antenna elements assembled to
achieve a compact design. A 0.254mm thick Rogers RT-5880 substrate is used, with an overall size of 24× 22mm. Each antenna
element is supported by a truncated ground plane, and four symmetrical slots are introduced into the radiating structures. As
a result, the proposed multiport antenna covers a frequency band of approximately 18–27GHz, based on the −10 dB criterion,
providing a wide bandwidth of nearly 9GHz. Te separation between the antenna elements is about 4.5mm. Additionally,
a decoupling structure is inserted between the radiating elements to enhance isolation within the desired band, also resulting in
a minor improvement in the operating bandwidth. Several performance metrics, including total active refection coefcient
(TARC), diversity gain (DG), envelope correlation coefcient (ECC), and channel capacity loss (CCL), are evaluated and show
satisfactory performance within the operating bandwidth.Te proposed antenna achieves more than 75% radiation efciency.Te
overall performance of the multiport antenna indicates its potential for K-band and 5G applications.
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1. Introduction

Due to the growing trafc on communication networks and
the demand for higher data rates and bandwidth, 5G has
garnered signifcant attention. Te 5G communication
spectrum is divided into two portions: mm-wave and Sub-

6GHz bands. In the Sub-6GHz frequency band, spectrum
congestion presents a challenge below 6GHz [1]. Tis is
because many services pre-existing before 5G, such as
Bluetooth, Wi-Fi, WiMAX, and various IEEE standards,
have already utilized substantial portions of this spectrum
[2]. Additionally, the predecessors of 5G are located near the
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5G Sub-6GHz spectrum [3]. As a result, achieving wide-
band coverage requires dedicating many channels as guard
bands to minimize interference.

In contrast, the mm-wave or high-frequency portion of
the spectrum ofers a larger bandwidth compared to Sub-
6GHz, as most of the mm-wave bands are less utilized and
have fewer transmission interference problems [4, 5]. For
5G applications, the 24.5–27.5GHz frequency band is al-
located [6], while the K-band, ranging from 18 to 27GHz, is
preferred for some short-range applications [7, 8]. More-
over, using multiple antennas can enhance performance by
mitigating attenuation issues at these high frequencies [9].
However, when multiple antennas share a common sub-
strate, mutual coupling can become a severe problem [10].
High mutual coupling between antenna elements can de-
grade signal integrity, so careful assembly is necessary to
maintain low mutual coupling.

In antenna arrays, elements are excited by a common
source, whereas in antenna systems, each element is excited
by separate sources. While antenna arrays can achieve high
gain through multiple antennas [11], they also increase the
antenna size and present challenges in minimizing mutual
coupling. Additionally, power dividers used in antenna
arrays can introduce losses. Metamaterials have been shown
to improve radiation performance and isolation [12], but
they require large surface areas due to their periodic
structures [13]. Similarly, incorporating various decoupling
structures with antennas can enhance isolation [14].

For example [15], presents a decoupling structure with
four strips of equal length connected by a hollow circular
stripe to improve isolation at two mm-wave frequency
bands. Tis confguration is supported by a full ground
plane, but our focus is on improving isolation across a wide
operating bandwidth using a truncated ground plane. Our
decoupling structure includes four strips of varying
lengths—two shorter and two longer—connected by
a common circular structure. Te impact of these diferent-
length strips is discussed. A compact UWB antenna with
four ports, described in [16], features a mesh-like decoupling
structure with a defected ground structure (DGS) to improve
isolation and realize a wide bandwidth from 4.5 to 16.4 GHz,
with isolation exceeding 20 dB. Te overall volume is
45× 45×1.6mm3. In [17], a multiport antenna for the Ka-
band, covering 24.1–30.9GHz, is proposed, achieving more
than 30 dB isolation and an utmost gain of 6.5 dBi, with
a compact overall size of 35× 40mm2. Another two-port
antenna in [18] has an overall size of 11.4× 5.3mm2, pro-
viding a gain of 6 dBi with a bandwidth of 0.8–1.0GHz
centered at 29GHz, and an isolation greater than 36 dB.Tis
isolation is improved by introducing slots in the radiators
and tilting them by 45°. In [19], a two-port antenna with
dimensions of 20.5×12mm2 operates within a bandwidth of
25.5–30GHz, providing a peak gain of 8.75 dBi and
achieving isolation ranging from 32 to 43 dB. In [20], a four-
port antenna covers 25.5–29.6GHz, with an isolation of
17 dB, an envelope correlation coefcient (ECC) of less than
0.01, and a peak gain of 8.3 dBi, all within a PCB size of
30× 35mm2. Another four-port antenna described in [21]
operates from 27 to 29.4 GHz, ofering isolation greater than

29 dB, an ECC of less than 0.16, and a gain of 6.1 dBi, with
dimensions of 30× 30mm2. In [22], a two-port antenna with
a size of 52× 23mm2 functions across 24–30GHz, achieving
isolation above 24 dB, an ECC below 0.0013, and a peak gain
of 12.4 dBi. Te two-port antenna presented in [23] has an
overall size of 26×11mm2, covering 26–29GHz and
36–41GHz, with isolation varying from 25 to 70 dB and
20–35 dB in the respective bands, and gains of 5 and 5.7 dBi.
Lastly [24], describes a two-port antenna with dimensions of
53× 31.7mm2, operating in the 22.5–50GHz range,
achieving more than 20 dB of isolation, an ECC of 0.12, and
a peak gain of 15 dBi, facilitated by an electromagnetic
bandgap (EBG) refector.

Overall, the proposed designs in the literature face
challenges with bandwidth and compactness, often strug-
gling with low isolation levels. In this article, we present
a wideband multiport antenna with a compact size for K-
band and 5G applications. Te proposed antenna features
improved bandwidth and enhanced decoupling between
antenna elements to ensure strong performance for both
transmission and reception.

Some key contributions of the proposed work are:

1. Our proposed antenna covers the entire K-band
(18–27GHz), suitable for short-range applications,
and also includes the 5G band (24.5–27.5GHz)
within its operating bandwidth.

2. Te antenna’s bandwidth is enhanced through the
strategic positioning and assembly of the antenna
elements.

3. With a separate ground confguration, the reduction
of higher-order modes is achieved, which are typically
developed in antennas with a large ground plane,
thereby reducing the bandwidth and radiation
efciency.

4. Isolation is improved using a decoupling structure.
We analyze the efects of short and long stubs on
decoupling levels and their role in mitigating coupled
currents between the antennas.

5. Additionally, the overall size of the antenna is
designed to be compact, making it suitable for por-
table devices and similar applications.

2. Antenna Geometry

2.1. Antenna Element. Te antenna element structure is
shown in Figure 1(a), featuring four symmetrical slots,
a strip on top of a circular ring-shaped patch, and a trun-
cated ground plane on the back of the substrate to achieve
a satisfactory operational frequency band, as illustrated in
Figure 1(c). Te proposed antenna element has an overall
size of 12×10mm2 and a substrate thickness of 0.254mm,
made from Rogers RT-5880. Tis substrate is chosen for its
low loss characteristics, evidenced by its low loss tangent of
0.0009 [25], making it suitable for millimeter-wave and
higher frequency applications. Te back of the proposed
antenna element is shown in Figure 1(b). Key dimensions of
the proposed antenna structure are listed in Table 1. Te
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antenna design utilizes a combination of circular patches,
with the radius estimated using the equations outlined in
[26].

R �
F

����������������������������
1 +(2h/πεF[ln(Fπ/2h) + 1.7726])

 ,

F �
8.791 × 109

f
�
ε

√ ,

(1)

where ‘R’ represents the radius of the patch and “h” is the
height of the substrate. While “f” is the resonance fre-
quency, and “ε” denotes the efective dielectric constant of
the substrate.

Te refection coefcient of the antenna is crucial, as it
directs whether the maximum power is efectively delivered
to the antenna. A higher magnitude of this scattering pa-
rameter signifes that minimal power is refected back to-
wards the input, allowing most of the power to be delivered
to the antenna and subsequently radiated as electromagnetic
felds. As illustrated in Figure 1(c), the refection coefcient
magnitude is less than −30 dB, indicating minimal power
refection losses. Te proposed antenna element operates
within a bandwidth of 20.317–27.122GHz, spanning ap-
proximately 6.8 GHz. Tis represents a substantial band-
width, which is further enhanced when the antenna elements
are integrated into the antenna system. Details of these
improvements are discussed in the subsequent section.
Additionally, the impedance of the antenna element design
is illustrated in Figure 1(d). At the fundamental frequency of
24GHz, the impedance is approximately 50Ω.
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Figure 1: Antenna element structure: (a) front, (b) back, (c) refection coefcient, and (d) Z-parameter.

Table 1: Key dimensions of the proposed antenna element.

Parameter Value (mm)
SFW 1.0
SFL 0.8
IFL 4.58
FL 5.6
GCW 1.5
GCL 1.5
GL 5.5

International Journal of Antennas and Propagation 3
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Figure 2: (a) Proposed antenna element design evolution and (b) refection coefcient comparison.
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Figure 3: (a) Radiation pattern and (b) gain over frequency.
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Figure 5: Multiport antenna confguration with a decoupling structure.
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Figure 6: Continued.
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In Figure 2(a), the design evolution of the proposed
antenna element is presented. Initially in step 1, a circular-
shaped patch is designed which resonates without a better
impedance matching and low bandwidth as shown in
Figure 2(b). Tus, in step 2, the slots are introduced com-
bined with another circular patch which improves the im-
pedance matching and bandwidth. While in step 3, adding
a strip at the center within the circular rings further im-
proves the impedance matching and bandwidth. Te gain
pattern of the proposed antenna element, shown in
Figure 3(a), is presented for both the E and H planes. Te

radiation pattern, illustrated in Figure 3(b), is observed to be
nearly omnidirectional with a gain of approximately 3 dBi at
24GHz.

2.2. Confguration of a Multiport Antenna. Te proposed
antenna element is expanded into a multiport confguration
(2-elements and then 4-elements), as shown in Figures 4(a),
4(b), 4(c), 4(d). Proper positioning of the antenna elements
is crucial for maintaining good isolation between them and
preventing performance degradation. To achieve this, a DGS
is often employed to create a band-stop efect, mitigating
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Figure 6: Proposed multiport antenna confguration: (a) fabricated prototype and experimental setup, (b) refection coefcient, and
(c) transmission coefcient.

Figure 7: Observation of decoupling through the surface current distribution.
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ground currents between antenna elements [27]. Addi-
tionally, surface waves difracted at the edges of a fnite
ground plane can lead to signifcant energy loss due to
refections [28]. To address this, using disconnected ground
planes can be benefcial. A decoupling network can also
improve isolation [29], which is discussed in further detail in
the subsequent section. Te total size of the proposed
multiport antenna confguration is 24× 22mm2, with
a separation of approximately 4.5mm between the antenna
elements. Two defected ground planes are positioned 2mm
from the substrate edge to reduce ground currents between
elements. Tis arrangement of antenna elements and

truncated ground planes not only improves isolation but
also enhances the bandwidth as shown in Figure 4(e). Te
antenna element ofers a bandwidth of approximately
6.8GHz, which increases to around 9GHz in the multiport
confguration, benefting from optimal positioning, assem-
bly, and truncation of the ground planes. More details are
discussed in the results section.

2.3. Multiport Antenna Confguration With a Decoupling
Structure. Figure 5 shows the proposed multiport antenna
confguration with the incorporated decoupling structure.
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Figure 8: Proposed multiport antenna radiation pattern: (a) element-1 with and with decoupling structure comparison (co and cross-polarized),
(b) element-4 with and without decoupling structure comparison (co and cross-polarized), (c) element-1 sim., and mea., results comparison with
decoupling structure (co-polarized), and (d) element-4 sim., and mea., results comparison with decoupling structure (co-polarized).
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Tis structure is designed to minimize the fow of coupled
feld currents between the antenna elements, thereby en-
hancing overall antenna performance. Te key design pa-
rameters for the decoupling structure are: W� 8.8mm,
L� 5.4mm, and R� 2mm.Te stub lengths are optimized to
achieve optimal performance. Due to diferent defected
ground positions for the respective antenna elements, as
illustrated in Figure 4(b), the lengths of the diagonal stubs
are varied to minimize coupling currents. Additionally, the
stubs for antenna elements 2 and 4 are kept shorter than
those for antenna elements 1 and 3 to compare their efects
on reducing coupling between the elements. Furthermore,
a minor improvement in bandwidth is observed after in-
corporating the decoupling structure, which is discussed in
more detail in the results section.

2.4. Comparison of Results for Multiport Antenna With and
Without Decoupling Structure. Tis section compares the
performance of the proposed multiport antenna with and
without the decoupling structure. Figure 6(a) shows the
fabricated prototype of the multiport antenna. Figure 6(b)
illustrates the refection coefcient of the antenna. Operating
near 24GHz, the antenna exhibits a wide bandwidth. Te
slight variation in the refection coefcient magnitude be-
tween antennas 1 and 4 is due to the diferent positions of the
truncated ground planes. Te refection coefcient magni-
tude ranges from −25 to −30 dB, indicating minimal power

refection losses. Te antenna element ofers a bandwidth of
approximately 6.8GHz, which increases to around 9GHz in
the multiport confguration, benefting from optimal posi-
tioning, assembly, and truncation of the ground planes.

Te decoupling performance between the antenna ele-
ments is illustrated in Figure 6(c). Without the decoupling
structure, the scattering parameter S13 shows a decoupling
level of approximately −15 dB at 24GHz. Introducing the
decoupling structure improves this to around −25 dB. No-
tably, stubs between antenna elements 1 and 3 difer in
length from those between elements 2 and 4, afecting the
decoupling levels. For the decoupling between elements 1
and 4, an improvement is observed from 18 to 24GHz, but
a drop occurs from 24 to 28GHz due to the difering stub
lengths. For elements 2 and 4, the decoupling level without
the structure ranges from −15 to −20 dB, improving
somewhat with the decoupling structure. Te shorter stubs
for elements 2 and 4 compared to elements 1 and 3 con-
tribute to these results. Te stubs for elements 1 and 3
generally perform better throughout the frequency range.
Te incorporation of the decoupling structure also leads to
a minor bandwidth improvement and enhances the re-
fection coefcient magnitude at several frequencies.

Figure 7 reveals the surface current distribution for
antenna element 4. At 23GHz, current distribution is
concentrated around this element, with low coupling cur-
rents around elements 2 and 3 due to the decoupling
structure (particularly the long stubs). Some increased
coupling current is observed around element 1, attributed to
the shorter stub between elements 1 and 4. Te long stubs
efectively mitigate coupled currents.

Radiation patterns for the proposed multiport antenna
in the E and H planes at 23GHz are illustrated in Figure 8,
while Figure 9(a) shows the gain plot. Te maximum gain,
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Figure 9: Proposed multiport antenna: (a) gain and (b) efciency.

Table 2: Gain measurement noted at selected frequency points.

Freq. (GHz) Gain (dBi)
24 5.15
26 6.14
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with and without the decoupling structure, ranges from 6 to
6.8 dBi, with the decoupling structure improving gain by
suppressing unwanted coupling felds. Te radiation ef-
ciency of antenna 4 is shown in Figure 9(b), exceeding 75%
within the operating bandwidth. Measured results, indicated
by “mea” in the fgures, are in good agreement with the
simulations, with minor discrepancies due to fabrication
errors, soldering, and environmental noise.

In Table 2, the gain measurement noted at selected
frequency points is provided. Figure 10 displays perfor-
mance metrics including the total active refection co-
efcient (TARC), diversity gain (DG), envelope correlation
coefcient (ECC), and channel capacity loss (CCL) for the
multiport antenna with the decoupling structure. Te ECC,
calculated using the far-feld method described in [30], is
less than 0.0009, indicating minimal coupling between the

antenna elements. Te DG of the antenna is approximately
10 dB, suggesting strong directional performance. Mean-
while, the CCL is below 0.4 bits/s/Hz, refecting efcient use
of the available bandwidth. Additionally, the TARC is
below −10 dB, which signifes good impedance matching
and reduced signal refection. Overall, these results col-
lectively demonstrate the satisfactory performance of the
proposed multiport antenna in terms of minimal element
coupling, high directivity, efcient bandwidth utilization,
and efective impedance matching.

2.5. Multiport Antenna With a Connected Ground Plane.
Tis section presents the performance of the proposed
antenna with a connected ground plane. Te structure
which is used as a decoupling structure is also utilized to
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Figure 10: Proposed multiport antenna performance metrics: (a) ECC, (b) DG, (c) CCL, and (d) TARC.
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connect the ground planes with each other. In Figure 11,
the geometry of the proposed multiport antenna is shown
with a connected ground plane. While the S-parameters are
presented in Figure 12(a). Overall, the isolation is better at
some frequency points ranging from 18 to 25 GHz, when
the ground plane is connected than the antenna without
connected ground plane as shown in Figure 12(b). How-
ever, at some frequency points, the response is nearly same
with and without connected ground plane. Overall, the
results are satisfactory with a connected ground plane and
can be potentially utilized for the K-band and 5G
applications.

3. Performance Comparison of the Proposed
Multiport Antenna With Other Multiport
Antennas

Table 3 presents a performance comparison of mm-wave
and high-frequency band antennas from the literature. Te
comparison is based on the electrical size of the antennas at
their lowest operating frequency within the desired band-
width. For instance, the antenna design in reference [20]
covers a bandwidth from 25.5 to 29.6GHz with an overall
size of 30× 35mm2. It achieves isolation above 17 dB and an
envelope correlation coefcient (ECC) of less than 0.01.
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(a) (b)

Figure 11: Proposed multiport antenna confguration with connected ground plane: (a) front side and (b) back side.
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Figure 12: (a) S-parameters of multiport antenna with a connected ground plane and (b) with and without connected ground plane,
isolation comparison.
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However, its operational bandwidth is only about 4GHz.
Similarly, the antenna design in reference [21] has a size of
30× 30mm2 and operates over a bandwidth of 27–29.4GHz,
with isolation above 29 dB and an ECC of less than 0.16.
While it has good isolation, the ECC is relatively high and
the operational bandwidth is limited to around 2.4GHz.
Reference [22] describes an antenna design with a size of
52× 23mm2, covering a bandwidth of approximately 6GHz
from 24 to 30GHz. It ofers isolation above 24 dB and an
ECC of less than 0.0013. Despite the satisfactory bandwidth
and low ECC, the size of the antenna is somewhat larger.
Reference [24] details an antenna design with an overall size
of 53× 31.7mm2 and a wide operational bandwidth ranging
from 22.5 to 50GHz. It provides isolation greater than 20 dB
with an ECC of 0.12. Although it covers a broad frequency
range, its size is large, and the ECC is relatively high. Te
inclusion of an EBG refector also adds complexity to the
design. In reference [31–33], the multiport antennas oper-
ating at mm-wave and THz frequency bands are reported.
Where some FSS or varying antennas orientation method is
utilized to improve the isolation. But rather the complexity
of the design is increased or low isolation is attained. In
reference [34, 35], multiport antennas are proposed for 5G
applications. Te slots are introduced in the ground plane,
tilting the radiators, or varying antenna elements orientation
is helpful to achieve a reasonable isolation. But with either
increasing geometrical complexity by involving power di-
viders or glass materials.

Overall, most of the antenna designs in the literature face
issues related to limited bandwidth, design complexity, or
compactness, along with lower isolation levels. In contrast,
the proposed multiport antenna in this study covers the
entire K-band (18–27GHz) and the 5G band
(24.5–27.5GHz). Te design achieves a signifcant im-
provement in bandwidth, extending up to approximately
9GHz, by optimizing the positioning, assembling, and
truncating of the ground planes. Tis results in better re-
fection coefcient magnitude, indicating minimal refection
losses and efcient power delivery. Additionally, the pro-
posed antenna incorporates a decoupling structure with four
stubs of varying lengths, which enhances isolation and
performance across the operating band. Te study also
explores the impact of diferent stub lengths on decoupling,
contributing to a deeper understanding of decoupling
structures in multiport antennas on a common substrate. In
summary, the proposed multiport antenna demonstrates
wide bandwidth, optimal gain, improved isolation, and high
efciency. It is well-suited for K-band and 5G applications,
ofering signifcant advantages over existing designs.

4. Conclusion

In this paper, a compact multiport antenna confguration is
achieved by assembling four antenna elements. Te design
incorporates truncated ground planes and symmetrical slots
in the radiating structures to attain a wide bandwidth.
Additionally, the inclusion of a decoupling structure further
enhances the bandwidth and improves the refection co-
efcient magnitude, indicating minimal refection losses. To

ensure high isolation within the desired frequency band,
a decoupling structure with four stubs of varying lengths is
used between the radiating elements, and the efect of dif-
ferent stub lengths on decoupling performance is analyzed.
Te proposed antenna exhibits a low ECC of less than
0.0009, a wide operational bandwidth spanning from 18 to
27GHz, optimum gain, high isolation (> 20 dB), low CCL (<
0.4 bits/s/Hz), and better efciency. Tese attributes high-
light the potential of the proposed multiport antenna for K-
band and 5G applications.
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