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This research addresses the challenge of improving the accuracy of face recognition in low-

resolution images using Digital Image Processing (DIP) and Generative Adversarial 

Networks (GANs). Recent advances in facial recognition have achieved high accuracy, 

although predominantly for high-resolution images. Low-resolution images, common in 

surveillance and mobile devices, pose significant accuracy challenges. The proposed 

DIP+GAN method integrates image preprocessing techniques such as cropping, resizing, 

normalization, and filtering with GANs to enhance low-resolution images. The study 

leverages the Georgia Tech Face Database for experiments and employs various DIP 

techniques and GAN architecture. The results demonstrate improved facial recognition 

accuracy in low-resolution images and contribute significantly to the fields of digital image 

processing and artificial intelligence. This research highlights the importance of 

preprocessing in face recognition and the effectiveness of GANs in dealing with low-

resolution images. 
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1. INTRODUCTION

In recent years, a variety of research initiatives have been 

undertaken to address the problem of improving the accuracy 

of facial recognition methods. Algorithmic approaches have 

been successfully used to achieve a significant level of 

optimization, resulting in an accuracy rate of over 99% [1] on 

the Labeled Faces in the Wild (LFW) dataset [2]. The 

application of deep neural network techniques has 

significantly contributed to increasing the effectiveness of 

models used in facial recognition tasks [3]. However, there are 

still difficulties in accurately recognizing people under various 

contextual differences such as posture, age, lighting conditions 

and facial expressions. This requires the implementation of 

innovative modeling approaches to effectively address these 

limitations [4]. The highest performance in terms of facial 

recognition accuracy is generally achieved with high 

resolution images. Empirically, high-resolution images 

facilitate the identification process. However, the situation 

changes when dealing with low resolution facial images, 

which tend to result in lower accuracy [5]. Low resolution in 

facial recognition brings its own challenges [6, 7]. There are 

several options when dealing with low-resolution images. This 

is mainly due to factors such as limited viewing angles and 

distances to the subject, which result in lower image quality 

[8]. 

The basic concept underlying this research is the strategy to 

address the challenge of low resolution in the visual 

representation of a face, to enable computational capabilities 

to recognize people based on the features contained in such 

images [9]. Various approaches have been tried in the context 

of deep learning, including high-resolution development 

methods, the application of convolutional methods through 

Convolutional Neural Networks (CNN) [10, 11], and even the 

newest and currently popular approach, Generative 

Adversarial Networks (GANs), which can generate synthetic 

images that resemble the originals [12]. 

A study has found that the main focus of face recognition is 

still on the feature extraction and classification phases, while 

the image pre-processing phase takes a back seat. However, 

this phase plays an important role in improving face 

recognition accuracy, especially in the context of low-

resolution facial images [13, 14].  

One of the main limitations of today's technology, 

particularly the problem of low-resolution face recognition, is 

that face recognition algorithms tend to have difficulty 

identifying faces that are blurry or have minimal detail, and 

face recognition techniques are often faced with different pose 

variants. Lighting conditions sometimes pose a significant 

challenge for face recognition, so faces that are not visible due 

to lack of light can affect the accuracy of face recognition. One 

way to solve this problem is to combine image processing 

techniques with deep learning techniques using GANs. 

A study on GANs was applied to design a custom model 

that can correct blurry QR code images to make them clearer. 

GANs help generators generate more realistic and higher-
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quality QR code images through continuous training, thereby 

improving the quality of QR code image recognition [15]. 

Other research on GANs has also explored the use of a dual 

parallel convolution module for image restoration and the 

implementation of pixel-level discriminators to identify small 

errors in images. Its main contribution is the ability to better 

capture multi-scale features in image restoration and overcome 

distortions of local details in images [16]. In addition, GANs 

are widely used in medicine, statistics, law, gaming and other 

object recognition fields [17-21]. 

Therefore, based on the background context and 

fundamental questions presented, we propose a research 

initiative that adopts a methodology called Digital Image 

Processing (DIP) and the application of generative adversarial 

networks (GANs) for low-resolution facial recognition. This 

initiative is abbreviated as "DIP+GAN."  

The findings of this study make a significant contribution to 

enriching the body of knowledge, particularly in the field of 

digital image processing and artificial intelligence, 

particularly in the paradigm of deep learning techniques. 

 

 

2. RELATED WORK 

 

2.1 Super resolution (SR) 

 

Superresolution (SR) aims to reconstruct missing high-

frequency information from certain low-resolution images and 

restore the corresponding high-resolution images [22]. The 

summary of the related work shown in Table 1. Based on Table 

1, previous work revealed that super-resolution techniques are 

used for bicubic interpolation [23]. This produces higher 

resolution images with minimal computational effort. Recent 

developments in the use of super-resolution techniques are 

being used to improve low-resolution face recognition in 

combination with Generative Adversarial Networks (GANs) 

techniques, with results shown in improving acupuncture in 

image identification of SCface datasets [24]. In 2017, the 

SRGAN technique was introduced, which uses a deep residual 

network (ResNet) with skip connections to deviate from the 

Mean Squared Error (MSE) approach [25]. SRGAN 

significantly improves image quality.  

The following year, Wang et al. introduced an extension for 

SRGAN. They introduced Enhanced Super-Resolution 

Generative Adversarial Networks (ESRGAN), which improve 

image quality by integrating three crucial elements [26]. 

 

2.2 Face recognition (FR) 

 

Facial recognition (FR) is widely studied by researchers. 

Facial recognition studies have been applied to the areas of 

information security, access management, biometrics, law 

enforcement, personal security, and synthetic photos [27-29]. 

Recent developments in the Convolutional Neural Network 

(CNN) method have solved the RF problem in the LFW 

dataset with an accuracy rate of over 99%. 

 

2.3 Low-resolution face recognition (LRFR) 

 

The LRFR study was presented in 2018 on the topic of low-

resolution facial recognition using Deep Coupled Resnet 

(DCR) and incorporates the CNN technique by producing 96.6% 

accuracy for an image size of 16×16 pixels [6].  

Another researcher proposed two architectures in 2019 that 

combine deep convolutional neural networks with CNN super-

resolution [30], where this architecture is composed of 14 

layers for transforming high-resolution images, and the other 

branch is for low-resolution face imaging The transmission of 

images into the common space includes a 5-layer super-

resolution network connected to a 14-layer network. 

 

Table 1. The summary of related works 

 
Author Problem Methods and Evaluation Result 

[11] 

This study focuses on low-resolution 

face recognition and proposes a new 

model. 

The study's methods use a combination of GPEN Super Resolution and FaceNet for low-

resolution facial recognition. The proposed method achieved a training accuracy value of 82.8%, 

a validation accuracy value of 66.6%, and a testing accuracy value of 69% with data augmentation 

[21] 
The performance degradation of facial 

recognition systems. 

Evaluates the performance of FaceNet on low-resolution face images compared to high-resolution 

face images. The analysis was carried out using the Labeled Faces in the Wild (LFW) data set. 

The performance evaluation results of FaceNet on the LFW dataset show an accuracy of 95.12%. 

[22] The challenges of face recognition  
The method uses super-resolution techniques to improve the quality of low-resolution images and 

improve the recognition performance of a high-resolution facial recognition system. 

[23] 

The problem addressed in this study is 

single-image super-resolution (SISR), 

which aims to recover high-resolution 

(HR) images from low-resolution 

(LR) images) 

The method proposed in this study is a framework called SRGAN, which consists of a generator 

network and a discriminator network. The results of this study show that SRGAN far outperforms 

all reference methods and sets a new state-of-the-art for photorealistic image super-resolution. 

The evaluation was carried out using both quantitative measures such as PSNR and SSIM. 

[25] 

The challenges and recent 

developments in automated facial 

recognition that impact forensic facial 

recognition 

The studies highlight various techniques and challenges in matching probe images to gallery 

images, including the use of facial landmarks, facial aging, and near-infrared imaging. The studies 

also provide clues to future research directions on facial recognition in forensics. 

[28] 
The problem of detecting low-

resolution probe face images 

The approach leverages Deep Convolutional Neural Networks (DCNNs) and demonstrates 

superior detection accuracy compared to existing state-of-the-art methods, especially on very 

low-resolution probe images. In addition, the authors evaluate the effectiveness of this method on 

extremely low-resolution probe images. 

[29] 

Several research gaps and 

improvement areas for GANs. One of 

the gaps is the limited work on 

applying GANs in other areas such as 

audio, music, etc 

Offer insights into the current status of GANs research, their applications as well as research gaps 

and potential for improvement. It also highlights the importance of model variation and how 

GANs can generate synthetic realistic data through unsupervised learning 
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3. METHODS 

 

3.1 Datasets 

 

This study uses unstructured datasets in the form of images, 

particularly facial images. Datasets from public data, namely 

the Georgia Tech Face Database with the URL address 

http://www.anefian.com/research/face_reco.htm.The capacity 

is 128 MB and contains images of 50 subjects taken in two or 

three sessions between 06/01/99 and 11/15/99 at the Center for 

Signal and Image Processing at the Georgia Institute of 

Technology. 

All individuals in the database are represented by 15 color 

JPEG images with cluttered backgrounds captured at a 

resolution of 640 × 480 pixels. Up to 50 people could be seen 

in the pictures taken. Each one has 15 different face poses. The 

number of image data is therefore 750 images. This means that 

the population of this data is 750 data images.  

 

3.2 Proposed methods 

 
The techniques proposed in this study can be performed in 

the phases of facial image input, image preprocessing, feature 

extraction, GANs techniques and result classification, as 

shown in Figure 1.   

Based on Figure 1, some of the main reasons for proposing 

the technique are to consider the adaptability of the lr, the use 

of lost features, and the training effectiveness of the GANs 

themselves. The ability of the RMSprop optimization 

algorithm to adaptively modify the lr for every parameter to 

facilitate faster convergence led to its selection. The difference 

between the actual class label and the model's predictions is 

measured using the binary cross-entropy loss function. The 

training algorithm used allows the generator and discriminator 

to be updated simultaneously via their respective loss 

gradients. This technique allows the generator to produce 

images that are harder for discriminators to distinguish, which 

helps the two models correct each other during training.  

 

3.3 Image processing techniques 

 

Preprocessing data images using cropping, resizing, 

normalization, and filtering techniques. First, cropping is a 

technique for reducing the size of an image by cropping the 

image at predetermined coordinates in an image area. The 

cropping process creates a cropping object from an image or 

part of an image of a specific size. Second, resizing is a process 

of changing the size of an object larger or smaller. For images, 

however, resizing means increasing or decreasing the height 

or width of an image. There are two resizing methods, namely 

scaling and cropping. To resize an image, the scaling method 

uses the interpolation function.  

The third, normalization technique in this experiment uses 

the Histogram Equalization technique. The histogram 

represents the statistical likelihood of the distribution of each 

gray level within a digital image. The basic concept of 

histogram equalization is to menstruate the histogram, 

resulting in a larger pixel difference, or in other words the 

image information becomes stronger so that the eye can 

capture the image information conveyed. The formula that can 

be used to calculate the histogram equalization is: 

 

𝐾𝑜 = 𝑟𝑜𝑢𝑛𝑑 (
𝐶𝑖.(2

𝑘−1)

𝑤.ℎ
)  (1) 

 

where, Ci is the cumulative distribution of the grayscale value 

to -i of the original image, round is the rounding function to 

the nearest number, Ko is the greyness value of the 

equalization histogram, w is the width of the image and h is 

the height of the image. Fourth, filtering is a fundamental 

technique used in image processing to enhance or modify 

images by removing noise or unwanted features from the 

image. 

 

 
 

Figure 1. The Techniques of proposed methods 
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The filtering techniques in this research use medium 

methods. The process involves applying a mathematical 

operation to each pixel of the image to produce a new image 

with improved visual quality or better suitability for further 

processing. 

In addition to the above techniques, there are various more 

advanced image enhancement techniques that can improve 

image quality and prepare training data for deep learning 

models. These techniques include Super-Resolution GANs 

(SR-GANs), noise reduction, histogram equalization, Contrast 

Limited Adaptive Histogram Equalization (CLAHE), Canny, 

Smoothing, Sharpening, and so on. 

 

3.4 Working of Generative Adversarial Networks (GANs) 

 

The first step is to first sample batches of random vectors 

from a Gaussian distribution and then generate synthetic 

images using a generator model. Since the generator is not yet 

trained at this point, the generated images have no similarity 

to the actual input data distribution. Stacks of real images from 

the input data distribution are then fed into a discriminator 

model along with the synthetic images produced by the 

generator. This is intended to train the discriminator to 

distinguish between authentic and synthetic images. 

The batch of images generated by the generator then goes 

through the discriminator again after the discriminator training 

is complete. In this case, no authentic images are included in 

the input. The discriminator provides probability values as 

output. These output probabilities are then compared to the 

expected probability of one for the generator's output. An error 

is then calculated and propagated back via the generator. This 

error is instrumental in updating the generator model weights. 

This iterative process mentioned above continues until the 

synthetic images produced by the generator are very similar to 

those obtained from the actual input data distribution. Shown 

in Figure 2. 

 

 
 

Figure 2. The Working of Generative Adversarial Networks 

(GANs) [31] 

 

 

4. EXPERIMENT, RESULT AND DISCUSSION  

 

4.1 Experiment of Image Processing with Cropping 

 

The image cropping formula in image processing is a 

relatively simple process that removes or crops certain parts of 

an image to create a new, smaller image. This technique is 

often used to remove unwanted parts of an image and focus on 

a specific object or area. The mathematical formula for image 

cropping can be expressed as follows: 

 

cropped_image = original_image[y1:y2, x1:x2] (2) 

 

In this formula, “original_image” represents the image to be 

cropped, while “cropped_image” represents the resulting 

image that has undergone the cropping operation. The 

coordinates “x1” and “y1” indicate the position of the upper 

left corner of the area to be cropped, while the coordinates “x2” 

and “y2” indicate the position of the lower right corner of the 

area to be cropped. 

 

Table 2. The algorithm of cropping in image processing 

 
Algorithm of Cropping in Image Processing 

1. Load the image. 

2. Define the top-left and bottom-right corners of the crop region. 

3. Determine the pixel coordinates of the corners. 

4. Determine the size of the crop region, either in pixels or as a 

percentage of the original image size. 

5. Calculate the dimensions of the cropped image. 

6. Create a new image with the cropped dimensions. 

7. Loop through the rows and columns of the cropped image. 

8. Calculate the corresponding pixel coordinates in the original 

image. 

9. Copy the pixel values from the original image to the cropped 

image. 

10. Display the cropped image. 

 

Based on Table 2, it is implemented into the python 

programming language so that the results can be obtained as 

shown in Figure 3. The image is read from the drive and 

contains the following information: image size 640 px × 480 

px, Joint Photographic Experts Group (JPEG) file format, and 

RGB image mode. Next, determine the coordinate points of 

the parts to be trimmed at the top left and bottom right. The 

result of the cropping can be seen in Figure 4. The information 

obtained from the image is an image of size 241×281 pixels, 

an image without format and an image in RGB mode. 

 

 
 

Figure 3. Original image (size 640 px × 480 px) 

 

 
 

Figure 4. Image cropping result (size 241 px × 281 px) 

 

4.2 Experiment of image processing with resizing 

 

The resizing algorithm, a well-known method in image 

processing, allows changing the dimensions of an image while 

maintaining its aspect ratio. This algorithm is often used to 
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either reduce or increase the size of an image in Table 3. 

Based on pseudocode in Table 3, it is translatable to the 

Python programming language by reducing 10% of the 

original face image, which originally had dimensions of 

241×181 pixels in RGB mode. Figure 4 into dimensions 

measuring dimensions of 28 pixels × 21 pixels with RGB 

models Figure 5. Therefore, referring to the previous literature, 

it is stated that the image of the face is of low resolution as it 

has dimensions below 32 pixels. 

 

Table 3. The image processing resizing algorithm using 

downscaling methods 

 
Algorithm of Resizing in Image Processing Using Downscale 

Methods 

1. Define a function called downscale_image that takes in the 

following arguments: 

image: the original image 

scale_factor: the factor by which the image needs to be 

downscaled 

2. Get the dimensions of the original image and calculate the 

new dimensions based on the scale_factor: 

new_width = original_width / scale_factor 

new_height = original_height / scale_factor 

3. Create a new image with the new dimensions: 

Create an empty image with dimensions (new_width, new_height) 

4. Loop over each pixel in the new image: 

Calculate the corresponding position in the original image based 

on the scale_factor: 

orig_x = pixel_x * scale_factor 

orig_y = pixel_y * scale_factor 

Get the color of the corresponding pixel in the original image: 

color = image[orig_x, orig_y] 

Set the color of the pixel in the new image to the color obtained in 

the previous step: 

new_image[pixel_x, pixel_y] = color 

5. Return the new image. 

 

 
 

Figure 5. Resizing image downscale methods (28 px×21 px) 

 

4.3 Experiment of image processing with normalization 

 

The next stage of image processing is normalization. 

Normalization in image processing involves adjusting the 

intensity values of an image to a desired scale or range. This 

process is often used to improve the contrast, brightness and 

visibility of an image. The normalization process involves 

rescaling pixel values so that they fall within a certain range, 

typically between 0 and 255 for 8-bit images. This can be done 

using various techniques including linear scaling, histogram 

equalization, and contrast stretching. Histogram equalization 

is a technique that redistributes the pixel values in an image to 

improve its contrast. The intensity histogram of the image is 

transformed to have a flat distribution. This makes the dark 

pixels darker and the light pixels brighter, resulting in an 

image with improved contrast and visibility, as shown in Table 

4: 

Table 4. The algorithm of normalization in image processing 

using histogram equalization 

 
Algorithm of Normalization in Image Processing Using 

Histogram Equalization 

1. Input an image 

2. Calculate the histogram of the image (i.e., the frequency 

distribution of the intensity values of the pixels in the image) 

3. Calculate the cumulative distribution function (CDF) of the 

histogram 

4. Normalize the CDF so that it has the same range as the 

intensity values in the image 

5. Apply the normalized CDF to each pixel in the image to get 

the new intensity value for that pixel 

6. Output the new image with the equalized histogram 

 

 
 

Figure 6. Result of normalization image 

 

 
 

Figure 7. Result of histogram normalization image 

 

Based on Figure 6 and Figure 7 the results of applying the 

histogram equalization technique are shown, which aims to 

increase the contrast of the image by flattening the pixel 

intensity distribution. Visually, the increase in contrast is 

particularly noticeable in areas of low intensity (low contrast) 

that were previously less noticeable. This technique has made 

it possible to highlight facial features such as the contours of 

the nose, eyes and mouth more clearly. However, on low-

resolution images, this normalization process also introduces 

side effects in the form of noise and visual artifacts that make 

facial texture appear rougher. The resulting pixel intensity 

distribution results in greater sharpness, but can eliminate fine 

details that are essential for natural image quality.  

The Histogram in Figure 7 shows a more even distribution 

of pixel intensity, with intensity values now ranging from 0 to 

255. This indicates that the overall contrast of the image has 

been improved and the available dynamic range has been 

maximized. However, sharp peaks in the histogram indicate a 

significant increase in intensity in certain areas, which may 

result in excessive amplification. 
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4.4 Experiment of Generative Adversarial Networks 

(GANs) 

 

4.4.1 Import the libraries 

Some libraries imported and required in this experiment are 

Tensorflow, Keras, Numpy, Matplotlib, OpenCV, TQDM and 

other libraries deemed necessary. The coding begins with the 

integration of TensorFlow, a comprehensive and flexible deep 

learning framework, along with Keras, a resource that 

provides a more intuitive platform for building and training 

neural networks. Matplotlib was used to create educational 

visualizations, OpenCV was utilized for sophisticated image 

processing, and the NumPy library was also imported for its 

effective numerical processing capabilities. To further 

enhance the flexibility of data processing, standard Python 

modules like "os" for operating system interaction and "re" for 

regular expressions were added. Additions like “tqdm” for 

interactive progress bars and Keras utilities like “img_to_array” 

for image conversion and “plot_model” for model architecture 

visualization make it easier to explore and evaluate machine 

learning models. 

 

4.4.2 Load the datasets 

The algorithm that is used to process a group of images 

stored in a directory is listed in Table 5. 

 

Table 5. The algorithm of load the datasets 

 
Algorithm Load the Datasets 

Input: directory_path (default = '../input/low-resolution') 

Output: Sorted list of files based on alphanumeric order 

 

1. DEFINE convert_text AS a lambda function: 

1.1. IF text IS numeric: 

RETURN the integer value of text 

1.2. ELSE: 

RETURN the lowercase version of text 

 

2. DEFINE key_extractor AS a lambda function: 

2.1. SPLIT each key (string) into segments, separating numbers 

from text 

2.2. CONVERT each segment using the convert_text function 

2.3. RETURN the list of converted segments as the sorting key 

3. LIST image_files = list of files in directory_path 

4. SORT image_files using key_extractor AS sorting key 

5. FOR each image_name IN image_files: 

5.1. DISPLAY progress using tqdm 

5.2. IF image_name IS 's45_15.jpg': 

        EXIT the loop 

5.3. ELSE: 

        CONTINUE processing (specific action not defined) 

6. RETURN image_files         

 

Based on Table 5, the sorted_alphanumeric function is 

defined to sort data alphanumeric. This function uses a lambda 

conversion expression that converts text to an integer if it is a 

digit, or to lowercase if it is not. This ensures that the sorting 

is done taking into account the numeric value of the numbers 

contained in the string. Directories containing low-resolution 

images are specified as paths. A list of filenames is retrieved 

from the directory using os.listdir and then sorted using the 

defined sorted_alphanumeric function. The iteration is 

performed on the sorted file list using tqdm, which is normally 

used to display a progress bar in the loop. If the file name in 

the loop matches “s45_15.jpg”, the loop stops. This indicates 

that the process only goes up to that specific file, perhaps as 

part of a validation or test. If the file name does not match, the 

image is read using cv2.imread, which is then converted from 

BGR to RGB color space, since OpenCV reads images in BGR 

format by default. The image is then resized to the size 

specified by the SIZE constant. The image is normalized by 

subtracting each pixel with a value of 127.5 and then dividing 

by the same value. This normalization step changes the range 

of pixel values from [0, 255] to [-1, 1], which is a common 

practice in image processing before feeding into a neural 

network. The image is then converted to a float data type. It is 

then appended to a list or array, preparing it for further 

processing, perhaps as part of a data batch used by the machine 

learning model. 

The result of load the datasets in the Figure 8: 

 

 
 

Figure 8. The result of load the datasets 

 

4.4.3 Visualization current images 

This algorithm defines a function plot_images for 

visualizing images. This function accepts a parameter sqr that 

specifies the number of images to display in a square grid, as 

shown Table 6. 

 

Table 6. The algorithm of visualization current images 

 
Algorithm of Visualization Current Images 

Input: grid_size (default = 5) 

Output: Grid of sample images displayed 

 

1. Setting figure size to (15, 15) 

2. Setting title of the figure to "Sample of Real Images" 

with font size 35 

3. For each index idx from 0 to (grid_size * grid_size - 1) 

do: 

3.1. Setting up a subplot at position (grid_size, grid_size, idx 

+ 1) 

3.2. Show the image at index idx scaled by 0.5 and shifted 

by 0.5 

3.3. Remove x-axis ticks 

3.4. Remove y-axis ticks 

4. End For 

5. Call Show_Images with grid_size = 15 

 

Based on Table 6, it is known that this function begins by 

specifying the size of the visualization figure using plt.figure 

with size (15,15), which will create a plot area with the 

specified size. The title of the figure is set via plt.title with the 

title "Real Images" and a font size of 35.  

 

 
 

Figure 9. The sample result of visualization current images 
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Based on Figure 9 the function is iterated with a for loop 

that executes sqr by sqr, effectively creating a square grid for 

placing the image captions. The position of the subplot to be 

displayed in the grid is determined by plt. Subplot in every 

iteration. The ith image from the img array is then displayed 

by calling plt. imshow. This is done by adding 0.5 to the pixel 

values that have already been normalized to the value range [-

1.1]. [0.1] was normalized. Reach. The plt.xticks and plt.yticks 

functions with empty list arguments are used to remove the 

label ticks from the x and y axes on each subplot to display an 

image without labels on these axes. After the function 

definition, the plot_images function is called with the 

argument 15, which indicates that this function plots the 

images in the 15 × 15 grid, thus displaying a total of 225 

images if available in the img array. 
 

4.4.4 Define batch size  

The algorithm in Table 7 illustrates the dataset creation 

process in TensorFlow, a popular machine learning framework. 
 

Table 7. The algorithm of define of batch size 
 

Algorithm Define of Batch Size 

Input: _image (list of images), bsize (def= 32) 

Output: Dataset divided into batches 

 

1. SET bsize TO 32 

2. CONVERT _image list to a NumPy array and store in 

variable `image_array` 

3. CREATE a TensorFlow Dataset using `image_array` 

with from_tensor_slices method and store in variable `dataset` 

4. DIVIDE `dataset` into batches of size bsize using the 

batch method 

5. RETURN `dataset` 

Base on Table 7, the variable batch_size is initialized with 

a value of 32, which defines the number of samples per batch 

to be processed in one iteration during model training. The 

dataset was created from an array of img that was converted to 

a tensor using NumPy, through the function call np.array(img). 

NumPy is a widely used library in scientific computing that 

provides support for large and efficient multidimensional 

arrays. The tf.data.Dataset.from_tensor_slices function is 

called with the image tensor as an argument. This function is 

tasked with creating a Dataset object in TensorFlow that 

allows iteration through the image tensor in smaller chunks or 

"slices". The.batch(batch_size) method is applied to the 

created Dataset object. This method groups batch_size 

consecutive elements of the dataset into a single batch, 

facilitating more efficient parallel processing during model 

training. 

 

4.4.5 Build generator network 

This generator model is often used in the context of 

Generative Adversarial Networks (GANs), where it plays a 

role in generating new data that is similar to the original data 

distribution. The algorithm reflects the best practices of 

generative modeling in Table 8 and integrates modern 

techniques into the network architecture for effective and 

robust learning. 

The output of the generator network can be characterized as 

a multi-layer artificial neural network designed to perform 

complex machine learning tasks. According to Table 8, the 

model consists of the following layers: convolutional layer 

(Cnv2D), activation function (LeakyReLU), batch 

normalization (BatchNormalization), dense layer (Dns) and 

convolutional transposition layer (Cnv2DTrans). 

 

 

Table 8. Model summary of generator network architecture 

 

Layer (Type) 
Output 

Shape 
Parameter # 

g_dns (Dns) (None, 49152) 4915200 

g_rshp (Dns) (None, 128, 128, 3) 0 

g_cnv2d (Cnv2D) (None, 128, 128, 128) 6144 

g_cnv2d_1 (Cnv2D) (None, 64, 64, 128) 262144 

g_bnorm (BatchNormalization) (None, 64, 64, 128) 512 

g_lky_re_lu (LeakyReLu) (None, 64,64,128) 0 

g_cnv2d_2 (Cnv2D) (None, 64, 64, 256) 524288 

g_cnv2d_3 (Cnv2D) (None, 32, 32, 256) 1848576 

g_bnorm_1 (BatchNormalization) (None, 32, 32, 256) 1824 

g_lky_re_lu_1 (LeakyRelu) (None, 32, 32, 256) 0 

g_cnv2d_trans (Cnv2Dtrans) (None, 32, 32, 512) 2807152 

g_cnv2d_4 (Cnv2D) (None, 16, 16, 512) 4194384 

g_lky_re_lu_2 (LeakyReLu) (None, 16, 16, 512) 0 

g_cnv2d_trans_1 (Cnv2Dtrans) (None, 16, 16, 512) 4194384 

g_cnv2d_trans_2 (Cnv2Dtranspose) (None, 32, 32, 512) 4194384 

G_bnorm_2 (BatchNormalization) (None, 32, 32, 512) 2848 

g_lky_re_lu_3 (LeakyReLu) (None, 16, 16, 512) 0 

g_cnv2d_trans_3 (Cnv2Dtrans) (None, 32, 32, 256) 2897152 

g_cnv2d_trans_4 (Cnv2Dtrans) (None, 64, 64, 256) 1848570 

g_bnorm_3 (BatchNormalization) (None, 64, 64, 256) 2848 

g_cnv2d_trans_5 (Cnv2Dtrans) (None, 128, 128, 128) 524288 

g_cnv2d_trans_6 (Cnv2Dtrans) (None, 128, 128, 128) 262144 

g_bnorm_4 (BatchNormalization) (None, 128, 128, 128) 512 

g_cnv2d_trans_7 (Cnv2Dtrans) (None, 128, 128, 3) 6147 

G_Total Parameters 25,379,843 

G_Trainable G_Parameters 25,377,283 

G_Non-trainable G_Parameters 2,568 
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Base on of Figure 8, it can be described that in the first layer 

there is a dense layer with a very large number of parameters, 

which means that a significant number of neurons are required 

to capture high-level features. The layer is then reshaped to 

ensure that the input data conforms to the dimensions required 

for the next convolutional layer. After applying filters to 

extract spatial features from the data, the convolution layer 

(Cnv2D) is followed by a batch normalization layer, which 

aims to increase training stability and convergence speed. The 

network can learn more complex relationships between input 

and output data by introducing nonlinearity into the model 

using the LeakyReLU activation function. The convolutional 

transposition layer (Cnv2DTranspose) is used to increase the 

dimensionality of the learned representation. It is often used in 

architectures such as autoencoders to decompress data to the 

original dimensions after the compression process. 

The overall architecture suggests that this model could be 

designed for tasks related to image processing such as image 

segmentation or image generation, where the convolutional 

transposition layer is usually instrumental in forming an output 

that has the same dimension as the original input. 

The model consists of millions of trainable parameters, 

indicating that it is very deep and may require large data sets 

and significant computing power for training. The presence of 

untrainable layers indicates the use of fixed parameters during 

the training process, which may be related to layers such as 

BatchNormalization, which require parameters for 

normalization that are not updated during backpropagation. 

This architectural structure reflects a complex and well-

structured design that has the ability to learn feature 

representations at different levels and produce detailed outputs 

from the given inputs. 

 

4.4.6 Build discriminator network 

Base on Table 9, the discriminator architecture is defined in 

the GAN context, which is designed to identify and distinguish 

between the original data and the data generated by the 

generator. This architecture is typical for two-class 

classification tasks and incorporates good design principles 

such as batch normalization and appropriate weight 

initialization to support an efficient training process. 

Specifically, this architecture features sequentially arranged 

convolution layers (Conv2D), followed by batch 

normalization and an intercalated nonlinear activation 

function (LeakyReLU). The structure is shown in Table 9. 

Base on Table 9, it can be described that in the 

convolutional layer, it can be seen that the feature size (feature 

map) gradually decreases, from 64x64 to 4x4, indicating that 

the network compresses spatial information into a more 

abstract and dense representation. This reduction in spatial 

dimension is accompanied by an increase in the number of 

filters from 128 to 512. This is usually done to compensate for 

the reduction in spatial resolution by increasing the depth of 

features that can encode more complex information at a higher 

level. Batch normalization, applied after each convolution 

layer, aims to stabilize and accelerate the learning process by 

eliminating the internal covariate shift problem, i.e. h. the shift 

in the input distribution of the layers during the training phase 

is reduced. 

LeakyReLU is a variation of the ReLU activation function 

that allows small gradients when units are inactive (negative 

input values) to overcome the dead neuron problem that can 

occur with traditional ReLU. After a sequence of convolution, 

batch normalization and LeakyReLU layers, the architecture 

ends with a flattening layer that converts two-dimensional 

features into one-dimensional vectors, preparing them for 

integration into a dense or fully connected layer. The final 

dense layer shows only one entity, meaning the architecture is 

designed for binary regression or classification tasks. 

 

4.4.7 Defining plot image generated by generator before 

training 

The generator model in Table 10 is intended to learn from 

the distribution of the training data and generate new data that 

is similar to the original data. This approach is common in 

GAN networks. This algorithm is specifically used to visualize 

the results of a single image generation instance and provides 

visual insights into the performance and capabilities of the 

generator model. 

 

Table 9. Model summary of discriminator architecture 

 

Layer (Type) 
Output 

Shape 
Parameter # 

d_cnv2_d5 (Cnv2D) (None, 64,64,128) 6144 

d_bnorm_5 (BatchNormalization) (None, 64,64,128) 512 

d_Lky_re_lu_4 (LeakyReLu) (None, 64,64,128) 0 

D_cnv2_d6 (cnv2D) (None, 32,32,128) 262144 

d_bnorm_6 (BatchNormalization) (None, 32,32,128) 512 

d_Lky_re_lu_5 (LeakyReLu) (None, 32,32,128) 0 

d_cnv2_d7 (Cnv2D) (None, 16,16,256) 524288 

d_bnrom_7 (BatchNormalization) (None, 16,16,256) 1024 

d_Lky_re_lu_6 (LeakyReLu) (None, 16,16,256) 0 

d_cnv2_d8 (Cnv2D) (None, 8,8,256) 0 

d_bnorm_8 (BatchNormalization) (None, 16,16,256) 1024 

d_Lky_re_lu_7 (LeakyReLu) (None, 8,8,256) 0 

d_cnv2_d9 (Cnv2D) (None, 4,4,512) 2097152 

d_Lky_re_lu_8 (LeakyReLu) None, 4,4,512) 0 

d_flatten (Flatten) (None 8192) 0 

d_dense_1 (Dense) (None, 1) 0 

D_Total Parameters 3,494,569 

D- Trainable Parameters 3,948,033 

D_Non-trainable Parameters 1,536 
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Table 10. Defining plot image generated 

 
Algorithm of Defining the Plot Image Generated 

Input: generator_model 

Output: Display the generated image 

 

1. GENERATE random_noise: 

    1.1 DEFINE mean AS -1 

    1.2 DEFINE standard_deviation AS 1 

    1.3 DEFINE shape AS (1, 100) 

    1.4 CREATE random_noise FROM normal distribution with 

mean and standard deviation, and with the specified shape 

 

2. GENERATE generated_image BY passing random_noise TO 

generator_model 

 

3. DISPLAY the first generated image: 

    3.1 EXTRACT the first image FROM generated_image array 

    3.2 USE Imshow TO display the image 

    3.3 CALL plt.show() TO display the image 

 

 
 

Figure 10. Plot image generated by generator 

 

Based on Figure 10, a generative process is performed to 

generate images using the deep learning model. First, the noise 

vector is initialized using a normal distribution. This vector 

has a dimension of 1×100 and the values are drawn from a 

normal distribution with mean -1 and standard deviation 1. 

The noise vector is then fed as input to the generator function. 

Since this function is a pre-trained model, it can generate 

image data from the noise vector. To retrieve the first image 

from the generation stack, the image tensor, the output of the 

generator function is indexed. Then the image is visualized 

using the Matplotlib library (symbolized as plt) using the 

imshow function. This function displays the image generated 

by the model generator. Finally, plt.show() is called to display 

the generated chart to the user, as shown in Figure 10. 

 

4.4.8 Defining loss function and optimizer   

A decay rate of 1e-8, a clip value of 1.0, and an lr of 0.0001 

are all set for the RMSprop optimization algorithm. Because 

RMSprop can adaptively change the lr for each parameter, it 

is a popular optimization technique in neural networks that 

helps accelerate convergence. The binary cross-entropy loss 

function is configured to work with logits, meaning it does not 

go through sigmoid activation first. It measures the 

discrepancy between the actual class label and the prediction 

generated by the model. The generator loss function is 

calculated assuming that all outputs generated by the generator 

(fake_output) are positive class samples (1). The binary cross-

entropy function is then used to calculate the loss by 

comparing these fake outputs with the label output. 

The discriminator loss function is calculated with two 

components: fake_loss and real_loss. The fake loss is 

calculated by comparing the generator's fake output with a 

label of zero, indicating that the sample is fake. The actual loss 

is calculated by comparing the actual output with the label one, 

which indicates that the sample is real. The total loss for the 

discriminator is the sum of the false loss and the actual loss. 

 

4.4.9 Defining the training model 

The algorithm is a standard training iteration in GAN, where 

the generator and discriminator are simultaneously updated via 

the calculated gradients of their respective loss functions. This 

algorithm allows both models to correct each other in the 

training process, with the aim of the generator producing 

images that are increasingly difficult for the discriminator to 

distinguish. This method underlies effective GAN training and 

is the basis for adversarial learning. 

 

4.4.10 Training and model performance 

The algorithm in Table 11 consists of a set of two functions 

used to train and visualize the performance results of the 

Generative Adversarial Network (GAN) model. 

Based on Table 11, it can be interpreted that the model 

achieved a final generative loss of 1.4768 and a final 

discriminative loss of 0.7807 in the first experiment with 50 

epochs and a learning rate (lr) of 0.0001. The training time was 

7:00 p.m. (time unit not specified) with a final accuracy of 

70.62%. 

In the second experiment, the number of epochs was 

increased to 60 at the same lr, which resulted in a slightly 

higher final generator loss (1.7887) and a lower final 

discriminator loss (0.6954) compared to the first experiment. 

The accuracy increased to 72.12%, showing improved 

performance despite the increased generator loss. In the third 

experiment, the number of epochs was reset to 50, but with a 

lower lr (0.00001), resulting in a lower loss of the final 

generator (0.6797) but a much higher loss of the final 

discriminator (1.6408) compared to the two previous 

experiments. The accuracy drops drastically to 50.92%, 

indicating that a reduction in the lr is unfavorable to the 

performance of this model. 

The conclusion that can be drawn from this table is that 

adjusting the lr and number of epochs has a significant impact 

on the training results. A higher lr with more epochs (in the 

second experiment) seems to improve the accuracy of the 

model more effectively. Meanwhile, reducing the lr (in the 

third experiment) negatively affected the accuracy of the 

model, although the generator loss decreased, which may 

indicate that the model did not evolve enough during training 

to generalize well to unseen data. This highlights the 

importance of balancing the lr and number of epochs to 

achieve optimal performance in machine learning models. 
 

Table 11. The result of model training 

 

No. of Datasets No. of Sample Epoch 
Parameter Optimization Training Process 

lr Clip Value Decay Last GenerativLoass Last Discriminative Loss Time Accuracy 

750 674 50 0.0001 1.00 1,00E-08 1.4768 0.7807 19.00 70.62% 

750 674 60 0.0001 1.00 1,00E-08 1.7887 0.6954 19.00 72.12% 

750 674 50 0.00001 1.0 1,00E-08 0.6797 1.6408 19.00 50.92% 
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4.4.11 Model visualization 

To evaluate and understand the dynamics between 

components in a Generative Adversarial Network (GAN), a 

series of experiments were conducted to observe the changes 

in metrics related to generator and discriminator losses as well 

as discriminator accuracy during the training phase. The 

following three graphs (Figures 11-13) show the measured 

results of the experiments conducted over different epochs. 

Through these visualizations, it is possible to interpret how the 

adjustment and adjustment of the model parameters affects the 

efficiency and effectiveness of the training process, as well as 

the balance between the generator's ability to generate 

convincing data and the discriminator's ability to distinguish 

between them, to judge original samples and samples 

generated by the generator. These metrics serve as a basis for 

improving and refining the GAN architecture and training 

strategy to improve the model's performance in generating 

samples that not only outsmart the discriminator but also 

maintain high quality and consistent variability. 

 

  

Figure 11. Comparison of Generator loss, discriminator loss, and discriminator accuracy and result of visualization model 

during GAN training with 50 epoch and LR 0.0001  

 

 
 

Figure 12. Comparison of generator loss, discriminator loss, and discriminator accuracy and result of visualization model 

During GAN training with 60 Epoch and LR 0.0001 

 

 
 

Figure 13. Comparison of generator loss, discriminator loss, and discriminator accuracy and result of visualization model 

during GAN training with 50 Epoch and LR 0.00001  
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The Figure 11 shows the progression of the metrics for the 

two components within the Generative Adversarial Networks 

(GANs) over the course of 50 training epochs. The two 

components are the generator and the discriminator, each of 

which performs different tasks and is characterized by two 

metrics: loss and accuracy. On the vertical axis, the chart 

displays the metric values, while the horzontal axis indicates 

the number of epochs. The training timeline shows that the 

generator loss tends to increase from the beginning to the end 

of training, while the discriminator loss gradually decreases. 

Accordingly, the discriminator accuracy appears relatively 

stable and high throughout the training process. 

An increase in generator loss indicates that over time the 

generator is finding it increasingly difficult to fool the 

discriminator with its output, which could indicate that the 

discriminator is getting better at distinguishing between the 

real data and the fake ones generated by the generator 

distinguish data. 

Reducing the discriminator's loss means increasing its 

ability to identify the data generated by the generator. 

However, if the discriminator loss drops too much, there is a 

risk that the discriminator will become too powerful compared 

to the generator, which could hinder the co-learning process. 

High and stable discriminator accuracy indicates that the 

discriminator is consistently good at classifying real and fake 

data. However, if the accuracy is too high, an overfitting 

phenomenon may occur, where the discriminator is overfitted 

to the training data set and may not perform well on data that 

has not yet been seen. 

Figure 12 shows the dynamics of the interaction between 

generators and discriminators in the Generative Adversarial 

Network (GAN) over 60 training epochs. Metrics evaluated 

include generator loss, discriminator loss, and discriminator 

accuracy. From the graphical observations, it can be seen that 

the generator loss value varies, but generally increases 

gradually as the number of epochs increases. This indicates 

that it is becoming increasingly difficult for the generator to 

produce samples good enough to defeat the discriminator. In 

contrast, the discriminator loss decreases very little over time, 

indicating that the discriminator is becoming more and more 

effective in distinguishing between the original data and the 

data generated by the generator. This can be interpreted as an 

improvement in the performance of the discriminator. The 

accuracy of the discriminator, however, remained relatively 

constant and showed no significant increasing or decreasing 

trend. This stable and high accuracy may reflect that the 

discriminator can maintain its performance in classifying real 

and fake samples with a constant success rate. 

The Figure 13, presented shows the performance of the two 

key components in a Generative Adversarial Network (GAN), 

namely the generator and the discriminator, as measured by 

loss and accuracy metrics, over 50 training epochs. 

On the vertical axis, the chart measures the metrics 

associated with the performance of both components, while 

the horizontal axis reflects the number of training epochs. 

Based on the graph, the generator loss has a high variability 

with relatively stable values, but tends to increase slightly as 

the training process progresses. This high variability may 

indicate that the generator continues to have difficulty 

generating data compelling enough to defeat the discriminator. 

Regarding the discriminator loss, the graph shows a gradual 

decrease, indicating an increase in the efficiency of the 

discriminator in identifying the samples generated by the 

generator as incorrect. This is reinforced by the accuracy graph, 

which shows a gradual and steady increase during training, 

suggesting that the discriminator is getting better and better at 

performing correct classification between the original data and 

the data generated by the generator. 

The pattern emerging from this graph may indicate that the 

discriminator is in a favorable position compared to the 

generator, as the discriminator shows a consistent 

improvement in performance while the generator does not 

show a significant improvement in performance. However, in 

ideal practice, both components should simultaneously 

improve performance, indicating the presence of a healthy 

adversarial dynamic where the generator becomes better at 

producing convincing samples and the discriminator becomes 

better at detecting the authenticity of the samples. 

 

4.5 Discussion 

 

According to the study's results, face recognition accuracy 

in low-resolution images can be improved by up to 72-12% 

when combining Digital Image Processing (DIP) and 

Generative Adversarial Networks (GANs). Although these 

results are very promising, some aspects require further 

discussion to understand model generation and its 

performance on larger, more complex real-world datasets. 

Model generalization shows good performance for the 

dataset used, but there are several factors associated with 

generalization, namely data variability and overfitting. The 

dataset used in this study may have limited variations in poses, 

lighting, facial expressions, and backgrounds. To evaluate the 

generalization capabilities of the model, tests must be 

performed on data sets that have higher variability and reflect 

more diverse real-world conditions. The model may be at risk 

of overfitting if it performs well on training data but poorly on 

test data. Testing a larger, more diverse additional data set can 

help find and resolve overfitting issues. 

 

 

5. CONCLUSION 

 

Based on the results and discussions conducted, as well as 

the stages of the research method, it can be concluded that 

there is an improvement in face recognition accuracy in low 

resolution images using Digital Image Processing (DIP) 

techniques and Generative Adversarial Networks (GANs). 

The proposed DIP+GAN method successfully shows an 

accuracy improvement of face detection on low resolution 

images of 72.12% with a number of epochs of 60 from a 

sample dataset of 674 face image data. It makes an important 

contribution to the development of digital image processing 

and artificial intelligence in the context of facial recognition. 

The innovative aspects of this research include combining 

Digital Image Processing (DIP) and Generative Adversarial 

Networks (GANs) techniques to improve the accuracy of face 

recognition on low-resolution images, demonstrating that 

combining traditional methods and deep learning Methods 

successful is achieving better results. This study also 

highlights the importance of setting parameters such as lr and 

number of epochs to achieve optimal model training results.   

The results of this study may have implications for future 

studies, so we hope that the research on GAN architecture will 

become more diverse and sophisticated to improve the quality 

of low-resolution image processing. Larger and more diverse 

aspects of testing datasets need to be an important focus to 

evaluate the effectiveness of the technique in different 
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conditions and environments. Integration with other image 

processing methods can improve accuracy under more 

complex conditions such as low light conditions or variations 

in facial pose.  

The results of this study may have implications for future 

studies, so we hope that the research on GAN architecture will 

become more diverse and sophisticated to improve the quality 

of low-resolution image processing. Larger and more diverse 

aspects of testing datasets need to be an important focus to 

evaluate the effectiveness of the technique in different 

conditions and environments. Integration with other image 

processing methods can improve accuracy under more 

complex conditions such as low light conditions or variations 

in facial pose. 

Some recommendations that may be relevant for future 

research, based on research on low-resolution facial 

recognition using DIPs and GANs, include exploring more 

diverse and sophisticated GAN architectures to improve the 

quality of low-resolution image processing. Conducting tests 

on larger and more diverse data sets to evaluate the 

effectiveness of the technique in different conditions and 

environments. Integrating facial recognition techniques with 

other image processing methods to improve accuracy under 

more complex conditions such as low lighting or different 

facial poses. 

 

 

ACKNOWLEDGMENT 

 

I would like to thank STMIK IKMI Cirebon and FTMK 

UTeM Malaysia for the moral and material support to enable 

this article to be published. 

 

 

REFERENCES  

 

[1] Wen, G., Chen, H., Cai, D., He, X. (2018). Improving 

face recognition with domain adaptation. 

Neurocomputing, 287: 45-51. 

https://doi.org/10.1016/j.neucom.2018.01.079 

[2] Zhang, N., Deng, W. (2016). Labeled Faces in the Wild: 

A database for studying face recognition in 

unconstrained environments. In 2016 International 

Conference on Biometrics (ICB), Halmstad, Sweden, pp. 

1-11. https://doi.org/10.1109/ICB.2016.7550057 

[3] Robert, B., Brown, E.B. (2017). Face recognition in real-

world surveillance videos with deep learning method. In 

2017 2nd International Conference on Image, Vision and 

Computing (ICIVC), Chengdu, China, pp. 239-243. 

https://doi.org/10.1109/ICIVC.2017.7984553 

[4] Guo, G., Zhang, N. (2019). A survey on deep learning 

based face recognition. Computer Vision and Image 

Understanding, 189: 102805. 

https://doi.org/10.1016/j.cviu.2019.102805 

[5] Li, S., Liu, Z., Wu, D., Huo, H., Wang, H., Zhang, K. 

(2022). Low-resolution face recognition based on 

feature-mapping face hallucination. Computers and 

Electrical Engineering, 101: 108136. 

https://doi.org/10.1016/j.compeleceng.2022.108136 

[6] Lu, Z., Jiang, X., Kot, A. (2018). Deep coupled ResNet 

for low-resolution face recognition. IEEE Signal 

Processing Letters, 25(4): 526-530. 

https://doi.org/10.1109/LSP.2018.2810121 

[7] Cheng, Z., Zhu, X., Gong, S. (2020). Face re-

identification challenge: Are face recognition models 

good enough? Pattern Recognition, 107: 107422. 

https://doi.org/10.1016/j.patcog.2020.107422 

[8] Li, P., Prieto, L., Mery, D., Flynn, P. (2018). Face 

recognition in low quality images: A survey. arXiv 

preprint arXiv:1805.11519. 

http://arxiv.org/abs/1805.11519 

[9] Herrmann, C., Willersinn, D., Beyerer, J. (2016). Low-

resolution convolutional neural networks for video face 

recognition. In 2016 13th IEEE International Conference 

on Advanced Video and Signal Based Surveillance 

(AVSS), Colorado Springs, CO, USA, pp. 221-227. 

https://doi.org/10.1109/AVSS.2016.7738017 

[10] Shi, J., Liu, T., Chen, N., Liu, J., Dou, Y., Zhao, Y. 

(2021). Low resolution and multi-pose face recognition 

based on residual network. In IEEE Advanced 

Information Technology, Electronic and Automation 

Control Conference (IAEAC), Chongqing, China, pp. 

1587-1593. 

https://doi.org/10.1109/IAEAC50856.2021.9390821 

[11] Kurnia, D. A., Setiawan,  A., Amalia, D. R., Arifin, R. 

W., Setiyadi, D., (2021). Image processing identifacation 

for indonesian cake cuisine using CNN classification 

technique. Journal of Physics: Conference Series, 1783: 

012047. https://doi.org/10.1088/1742-

6596/1783/1/012047 

[12] Zebua, K.S., Kartowisastro, I.H., Kusuma, G.P. (2023). 

Low resolution face recognition using combination of 

gpen super resolution and facenet. Journal of Theoretical 

and Applied Information Technology, 101(12): 4991-

5000. 

[13] Oloyede, M.O., Hancke, G.P., Myburgh, H.C. (2020). A 

review on face recognition systems: Recent approaches 

and challenges. Multimedia Tools and Applications, 

79(37-38): 27891-27922. 

https://doi.org/10.1007/s11042-020-09261-2 

[14] Kurnia, D.A., Mohd, O., Abdollah, F., Sudrajat, D., 

Wijaya, Y.A. (2021). Face recognition techniques : A 

systematic literature review (research trends, datasets, 

and methods). Journal of Theoretical and Applied 

Information Technology, 99(21): 5217-5231. 

[15] Dong, H., Liu, H., Li, M., Ren, F., Xie, F. (2024). An 

algorithm for the recognition of motion-blurred QR 

codes based on generative adversarial networks and 

attention mechanisms. International Journal of 

Computational Intelligence Systems, 17(1): 83. 

https://doi.org/10.1007/s44196-024-00450-7 

[16] Ren, H., Sun, K., Zhao, F., Zhu, X. (2024). Dunhuang 

murals image restoration method based on generative 

adversarial network. Heritage Science, 12(1): 1-20. 

https://doi.org/10.1186/s40494-024-01159-8 

[17] Usman Akbar, M., Larsson, M., Blystad, I., Eklund, A. 

(2024). Brain tumor segmentation using synthetic MR 

images - A comparison of GANs and diffusion models. 

Scientific Data, 11(1): 1–17. 

https://doi.org/10.1038/s41597-024-03073-x 

[18] Kim, J., Lim, M.H., Kim, K., Yoon, H.J. (2024). 

Continual learning framework for a multicenter study 

with an application to electrocardiogram. BMC Medical 

Informatics and Decision Making, 24(1): 1-13. 

https://doi.org/10.1186/s12911-024-02464-9 

[19] Murgas, B., Stickel, J., Ghosh, S. (2024). Generative 

adversarial network (GAN) enabled statistically 

equivalent virtual microstructures (SEVM) for modeling 

2262



 

cold spray formed bimodal polycrystals. npj 

Computational Materials, 10(1): 1-14. 

https://doi.org/10.1038/s41524-024-01219-4 

[20] Yin, Y., Yuan, Z., Tanvir, I. M., Bao, X. (2024). 

Electronic medical records imputation by temporal 

generative adversarial network. BioData Mining, 17(1): 

1-22. https://doi.org/10.1186/s13040-024-00372-2 

[21] Yamada, F.M., Batagelo, H.C., Gois, J.P., Takahashi, H. 

(2024). Generative approaches for solving tangram 

puzzles. Discover Artificial Intelligence, 4(1): 12. 

https://doi.org/10.1007/s44163-024-00107-6 

[22] Hao, X., Hongfeng, L., Jun, L., Nian, C. (2021). Survey 

on deep learning based image super-resolution. 

Computer Engineering and Application, 57(24): 51-60. 

https://doi.org/10.3778/j.issn.1002-8331.2105-0418 

[23] Golla, M.R., Sharma, P. (2019). Performance evaluation 

of FaceNet on low resolution face images. In 

Communication, Networks and Computing: First 

International Conference, CNC 2018, Gwalior, India, pp. 

317-325. https://doi.org/10.1007/978-981-13-2372-0_28 

[24] Ullah, M., Hamza, A., Taj, I.A., Tahir, M. (2021). Low 

resolution face recognition using enhanced SRGAN 

generated images. In 2021 16th International Conference 

on Emerging Technologies (ICET), Islamabad, Pakistan, 

pp. 1-6. 

https://doi.org/10.1109/ICET54505.2021.9689885 

[25] Ledig, C., Theis, L., Huszár, F., Caballero, J., 

Cunningham, A., Acosta, A. (2017). Photo-realistic 

single image super-resolution using a generative 

adversarial network. In Proceedings of the IEEE 

Conference on Computer Vision and Pattern Recognition, 

Honolulu, HI, USA, pp. 105-114. 

https://doi.org/10.1109/CVPR.2017.19 

[26] Wang, X.T., Yu, K., Wu, S.X., Gu, J.J., Liu, Y.H., Dong, 

C., Qiao, Y., Loy, C.C. (2018). Esrgan: Enhanced super-

resolution generative adversarial networks. In 

Proceedings of the European conference on computer 

vision (ECCV) workshops, pp. 63-79. 

https://doi.org/10.1007/978-3-030-11021-5_5 

[27] Jain, A. K., Klare, B., Park, U. (2011). Face recognition: 

Some challenges in forensics. In 2011 IEEE International 

Conference on Automatic Face and Gesture Recognition 

Workshops (FG 2011), Santa Barbara, CA, USA, pp. 

726-733. https://doi.org/10.1109/FG.2011.5771338 

[28] Lohiya, R., Shah, P. (2015). Face recognition techniques: 

A survey for forensic applications. International Journal 

of Advanced Research in Computer Engineering & 

Technology (IJARCET), 4(4): 1-8. 

[29] Bah, S.M., Ming, F. (2020). An improved face 

recognition algorithm and its application in attendance 

management system. Array, 5: 100014. 

https://doi.org/10.1016/j.array.2019.100014 

[30] Zangeneh, E., Rahmati, M., Mohsenzadeh, Y. (2020). 

Low resolution face recognition using a two-branch deep 

convolutional neural network architecture. Expert 

Systems with Applications, 139: 112854. 

https://doi.org/10.1016/j.eswa.2019.112854 

[31] Luo, G., He, G., Jiang, Z., Luo, C. (2023). Attention-

based mechanism and adversarial autoencoder for 

underwater image enhancement. Applied Sciences, 

13(17): 9956. https://doi.org/10.3390/app13179956 

 

2263




