
Digital Image Processing (DIP) and Generative Adversarial Networks (GANs) Techniques

for Improvement Low-Resolution Face Recognition

Dian Ade Kurnia1* , Othman Mohd2 , Mohd Faizal Abdollah2 , Dadang Sudrajat1 , Dwi Marisa Efendi3 , Sidik

Rahmatullah3

1 Department of Informatics Management, STMIK IKMI Cirebon, Cirebon 45142, Indonesia
2 Faculty of Information Communication and Technology, Universiti Teknikal Malaysia, Melaka 76100, Malaysia
3 Information System, DCC Language and Business Technology Institute, Lampung 35111, Indonesia

Corresponding Author Email: dianade2014@gmail.com

Copyright: ©2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.290615 ABSTRACT

Received: 28 November 2023

Revised: 11 July 2024

Accepted: 2 October 2024

Available online: 25 December 2024

This research addresses the challenge of improving the accuracy of face recognition in low-

resolution images using Digital Image Processing (DIP) and Generative Adversarial

Networks (GANs). Recent advances in facial recognition have achieved high accuracy,

although predominantly for high-resolution images. Low-resolution images, common in

surveillance and mobile devices, pose significant accuracy challenges. The proposed

DIP+GAN method integrates image preprocessing techniques such as cropping, resizing,

normalization, and filtering with GANs to enhance low-resolution images. The study

leverages the Georgia Tech Face Database for experiments and employs various DIP

techniques and GAN architecture. The results demonstrate improved facial recognition

accuracy in low-resolution images and contribute significantly to the fields of digital image

processing and artificial intelligence. This research highlights the importance of

preprocessing in face recognition and the effectiveness of GANs in dealing with low-

resolution images.

Keywords:

DIP, GANs, low-resolution, image

processing, artificial intelligence

1. INTRODUCTION

In recent years, a variety of research initiatives have been

undertaken to address the problem of improving the accuracy

of facial recognition methods. Algorithmic approaches have

been successfully used to achieve a significant level of

optimization, resulting in an accuracy rate of over 99% [1] on

the Labeled Faces in the Wild (LFW) dataset [2]. The

application of deep neural network techniques has

significantly contributed to increasing the effectiveness of

models used in facial recognition tasks [3]. However, there are

still difficulties in accurately recognizing people under various

contextual differences such as posture, age, lighting conditions

and facial expressions. This requires the implementation of

innovative modeling approaches to effectively address these

limitations [4]. The highest performance in terms of facial

recognition accuracy is generally achieved with high

resolution images. Empirically, high-resolution images

facilitate the identification process. However, the situation

changes when dealing with low resolution facial images,

which tend to result in lower accuracy [5]. Low resolution in

facial recognition brings its own challenges [6, 7]. There are

several options when dealing with low-resolution images. This

is mainly due to factors such as limited viewing angles and

distances to the subject, which result in lower image quality

[8].

The basic concept underlying this research is the strategy to

address the challenge of low resolution in the visual

representation of a face, to enable computational capabilities

to recognize people based on the features contained in such

images [9]. Various approaches have been tried in the context

of deep learning, including high-resolution development

methods, the application of convolutional methods through

Convolutional Neural Networks (CNN) [10, 11], and even the

newest and currently popular approach, Generative

Adversarial Networks (GANs), which can generate synthetic

images that resemble the originals [12].

A study has found that the main focus of face recognition is

still on the feature extraction and classification phases, while

the image pre-processing phase takes a back seat. However,

this phase plays an important role in improving face

recognition accuracy, especially in the context of low-

resolution facial images [13, 14].

One of the main limitations of today's technology,

particularly the problem of low-resolution face recognition, is

that face recognition algorithms tend to have difficulty

identifying faces that are blurry or have minimal detail, and

face recognition techniques are often faced with different pose

variants. Lighting conditions sometimes pose a significant

challenge for face recognition, so faces that are not visible due

to lack of light can affect the accuracy of face recognition. One

way to solve this problem is to combine image processing

techniques with deep learning techniques using GANs.

A study on GANs was applied to design a custom model

that can correct blurry QR code images to make them clearer.

GANs help generators generate more realistic and higher-

Ingénierie des Systèmes d’Information
Vol. 29, No. 6, December, 2024, pp. 2251-2263

Journal homepage: http://iieta.org/journals/isi

2251

https://orcid.org/0000-0002-1394-7290
https://orcid.org/0000-0003-0934-8479
https://orcid.org/0000-0003-2706-7603
https://orcid.org/0000-0002-1543-0324
https://orcid.org/0009-0009-0906-0230
https://orcid.org/0009-0005-4475-3383
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.290615&domain=pdf

quality QR code images through continuous training, thereby

improving the quality of QR code image recognition [15].

Other research on GANs has also explored the use of a dual

parallel convolution module for image restoration and the

implementation of pixel-level discriminators to identify small

errors in images. Its main contribution is the ability to better

capture multi-scale features in image restoration and overcome

distortions of local details in images [16]. In addition, GANs

are widely used in medicine, statistics, law, gaming and other

object recognition fields [17-21].

Therefore, based on the background context and

fundamental questions presented, we propose a research

initiative that adopts a methodology called Digital Image

Processing (DIP) and the application of generative adversarial

networks (GANs) for low-resolution facial recognition. This

initiative is abbreviated as "DIP+GAN."

The findings of this study make a significant contribution to

enriching the body of knowledge, particularly in the field of

digital image processing and artificial intelligence,

particularly in the paradigm of deep learning techniques.

2. RELATED WORK

2.1 Super resolution (SR)

Superresolution (SR) aims to reconstruct missing high-

frequency information from certain low-resolution images and

restore the corresponding high-resolution images [22]. The

summary of the related work shown in Table 1. Based on Table

1, previous work revealed that super-resolution techniques are

used for bicubic interpolation [23]. This produces higher

resolution images with minimal computational effort. Recent

developments in the use of super-resolution techniques are

being used to improve low-resolution face recognition in

combination with Generative Adversarial Networks (GANs)

techniques, with results shown in improving acupuncture in

image identification of SCface datasets [24]. In 2017, the

SRGAN technique was introduced, which uses a deep residual

network (ResNet) with skip connections to deviate from the

Mean Squared Error (MSE) approach [25]. SRGAN

significantly improves image quality.

The following year, Wang et al. introduced an extension for

SRGAN. They introduced Enhanced Super-Resolution

Generative Adversarial Networks (ESRGAN), which improve

image quality by integrating three crucial elements [26].

2.2 Face recognition (FR)

Facial recognition (FR) is widely studied by researchers.

Facial recognition studies have been applied to the areas of

information security, access management, biometrics, law

enforcement, personal security, and synthetic photos [27-29].

Recent developments in the Convolutional Neural Network

(CNN) method have solved the RF problem in the LFW

dataset with an accuracy rate of over 99%.

2.3 Low-resolution face recognition (LRFR)

The LRFR study was presented in 2018 on the topic of low-

resolution facial recognition using Deep Coupled Resnet

(DCR) and incorporates the CNN technique by producing 96.6%

accuracy for an image size of 16×16 pixels [6].

Another researcher proposed two architectures in 2019 that

combine deep convolutional neural networks with CNN super-

resolution [30], where this architecture is composed of 14

layers for transforming high-resolution images, and the other

branch is for low-resolution face imaging The transmission of

images into the common space includes a 5-layer super-

resolution network connected to a 14-layer network.

Table 1. The summary of related works

Author Problem Methods and Evaluation Result

[11]

This study focuses on low-resolution

face recognition and proposes a new

model.

The study's methods use a combination of GPEN Super Resolution and FaceNet for low-

resolution facial recognition. The proposed method achieved a training accuracy value of 82.8%,

a validation accuracy value of 66.6%, and a testing accuracy value of 69% with data augmentation

[21]
The performance degradation of facial

recognition systems.

Evaluates the performance of FaceNet on low-resolution face images compared to high-resolution

face images. The analysis was carried out using the Labeled Faces in the Wild (LFW) data set.

The performance evaluation results of FaceNet on the LFW dataset show an accuracy of 95.12%.

[22] The challenges of face recognition
The method uses super-resolution techniques to improve the quality of low-resolution images and

improve the recognition performance of a high-resolution facial recognition system.

[23]

The problem addressed in this study is

single-image super-resolution (SISR),

which aims to recover high-resolution

(HR) images from low-resolution

(LR) images)

The method proposed in this study is a framework called SRGAN, which consists of a generator

network and a discriminator network. The results of this study show that SRGAN far outperforms

all reference methods and sets a new state-of-the-art for photorealistic image super-resolution.

The evaluation was carried out using both quantitative measures such as PSNR and SSIM.

[25]

The challenges and recent

developments in automated facial

recognition that impact forensic facial

recognition

The studies highlight various techniques and challenges in matching probe images to gallery

images, including the use of facial landmarks, facial aging, and near-infrared imaging. The studies

also provide clues to future research directions on facial recognition in forensics.

[28]
The problem of detecting low-

resolution probe face images

The approach leverages Deep Convolutional Neural Networks (DCNNs) and demonstrates

superior detection accuracy compared to existing state-of-the-art methods, especially on very

low-resolution probe images. In addition, the authors evaluate the effectiveness of this method on

extremely low-resolution probe images.

[29]

Several research gaps and

improvement areas for GANs. One of

the gaps is the limited work on

applying GANs in other areas such as

audio, music, etc

Offer insights into the current status of GANs research, their applications as well as research gaps

and potential for improvement. It also highlights the importance of model variation and how

GANs can generate synthetic realistic data through unsupervised learning

2252

3. METHODS

3.1 Datasets

This study uses unstructured datasets in the form of images,

particularly facial images. Datasets from public data, namely

the Georgia Tech Face Database with the URL address

http://www.anefian.com/research/face_reco.htm.The capacity

is 128 MB and contains images of 50 subjects taken in two or

three sessions between 06/01/99 and 11/15/99 at the Center for

Signal and Image Processing at the Georgia Institute of

Technology.

All individuals in the database are represented by 15 color

JPEG images with cluttered backgrounds captured at a

resolution of 640 × 480 pixels. Up to 50 people could be seen

in the pictures taken. Each one has 15 different face poses. The

number of image data is therefore 750 images. This means that

the population of this data is 750 data images.

3.2 Proposed methods

The techniques proposed in this study can be performed in

the phases of facial image input, image preprocessing, feature

extraction, GANs techniques and result classification, as

shown in Figure 1.

Based on Figure 1, some of the main reasons for proposing

the technique are to consider the adaptability of the lr, the use

of lost features, and the training effectiveness of the GANs

themselves. The ability of the RMSprop optimization

algorithm to adaptively modify the lr for every parameter to

facilitate faster convergence led to its selection. The difference

between the actual class label and the model's predictions is

measured using the binary cross-entropy loss function. The

training algorithm used allows the generator and discriminator

to be updated simultaneously via their respective loss

gradients. This technique allows the generator to produce

images that are harder for discriminators to distinguish, which

helps the two models correct each other during training.

3.3 Image processing techniques

Preprocessing data images using cropping, resizing,

normalization, and filtering techniques. First, cropping is a

technique for reducing the size of an image by cropping the

image at predetermined coordinates in an image area. The

cropping process creates a cropping object from an image or

part of an image of a specific size. Second, resizing is a process

of changing the size of an object larger or smaller. For images,

however, resizing means increasing or decreasing the height

or width of an image. There are two resizing methods, namely

scaling and cropping. To resize an image, the scaling method

uses the interpolation function.

The third, normalization technique in this experiment uses

the Histogram Equalization technique. The histogram

represents the statistical likelihood of the distribution of each

gray level within a digital image. The basic concept of

histogram equalization is to menstruate the histogram,

resulting in a larger pixel difference, or in other words the

image information becomes stronger so that the eye can

capture the image information conveyed. The formula that can

be used to calculate the histogram equalization is:

𝐾𝑜 = 𝑟𝑜𝑢𝑛𝑑 (
𝐶𝑖.(2

𝑘−1)

𝑤.ℎ
) (1)

where, Ci is the cumulative distribution of the grayscale value

to -i of the original image, round is the rounding function to

the nearest number, Ko is the greyness value of the

equalization histogram, w is the width of the image and h is

the height of the image. Fourth, filtering is a fundamental

technique used in image processing to enhance or modify

images by removing noise or unwanted features from the

image.

Figure 1. The Techniques of proposed methods

2253

The filtering techniques in this research use medium

methods. The process involves applying a mathematical

operation to each pixel of the image to produce a new image

with improved visual quality or better suitability for further

processing.

In addition to the above techniques, there are various more

advanced image enhancement techniques that can improve

image quality and prepare training data for deep learning

models. These techniques include Super-Resolution GANs

(SR-GANs), noise reduction, histogram equalization, Contrast

Limited Adaptive Histogram Equalization (CLAHE), Canny,

Smoothing, Sharpening, and so on.

3.4 Working of Generative Adversarial Networks (GANs)

The first step is to first sample batches of random vectors

from a Gaussian distribution and then generate synthetic

images using a generator model. Since the generator is not yet

trained at this point, the generated images have no similarity

to the actual input data distribution. Stacks of real images from

the input data distribution are then fed into a discriminator

model along with the synthetic images produced by the

generator. This is intended to train the discriminator to

distinguish between authentic and synthetic images.

The batch of images generated by the generator then goes

through the discriminator again after the discriminator training

is complete. In this case, no authentic images are included in

the input. The discriminator provides probability values as

output. These output probabilities are then compared to the

expected probability of one for the generator's output. An error

is then calculated and propagated back via the generator. This

error is instrumental in updating the generator model weights.

This iterative process mentioned above continues until the

synthetic images produced by the generator are very similar to

those obtained from the actual input data distribution. Shown

in Figure 2.

Figure 2. The Working of Generative Adversarial Networks

(GANs) [31]

4. EXPERIMENT, RESULT AND DISCUSSION

4.1 Experiment of Image Processing with Cropping

The image cropping formula in image processing is a

relatively simple process that removes or crops certain parts of

an image to create a new, smaller image. This technique is

often used to remove unwanted parts of an image and focus on

a specific object or area. The mathematical formula for image

cropping can be expressed as follows:

cropped_image = original_image[y1:y2, x1:x2] (2)

In this formula, “original_image” represents the image to be

cropped, while “cropped_image” represents the resulting

image that has undergone the cropping operation. The

coordinates “x1” and “y1” indicate the position of the upper

left corner of the area to be cropped, while the coordinates “x2”

and “y2” indicate the position of the lower right corner of the

area to be cropped.

Table 2. The algorithm of cropping in image processing

Algorithm of Cropping in Image Processing

1. Load the image.

2. Define the top-left and bottom-right corners of the crop region.

3. Determine the pixel coordinates of the corners.

4. Determine the size of the crop region, either in pixels or as a

percentage of the original image size.

5. Calculate the dimensions of the cropped image.

6. Create a new image with the cropped dimensions.

7. Loop through the rows and columns of the cropped image.

8. Calculate the corresponding pixel coordinates in the original

image.

9. Copy the pixel values from the original image to the cropped

image.

10. Display the cropped image.

Based on Table 2, it is implemented into the python

programming language so that the results can be obtained as

shown in Figure 3. The image is read from the drive and

contains the following information: image size 640 px × 480

px, Joint Photographic Experts Group (JPEG) file format, and

RGB image mode. Next, determine the coordinate points of

the parts to be trimmed at the top left and bottom right. The

result of the cropping can be seen in Figure 4. The information

obtained from the image is an image of size 241×281 pixels,

an image without format and an image in RGB mode.

Figure 3. Original image (size 640 px × 480 px)

Figure 4. Image cropping result (size 241 px × 281 px)

4.2 Experiment of image processing with resizing

The resizing algorithm, a well-known method in image

processing, allows changing the dimensions of an image while

maintaining its aspect ratio. This algorithm is often used to

2254

either reduce or increase the size of an image in Table 3.

Based on pseudocode in Table 3, it is translatable to the

Python programming language by reducing 10% of the

original face image, which originally had dimensions of

241×181 pixels in RGB mode. Figure 4 into dimensions

measuring dimensions of 28 pixels × 21 pixels with RGB

models Figure 5. Therefore, referring to the previous literature,

it is stated that the image of the face is of low resolution as it

has dimensions below 32 pixels.

Table 3. The image processing resizing algorithm using

downscaling methods

Algorithm of Resizing in Image Processing Using Downscale

Methods

1. Define a function called downscale_image that takes in the

following arguments:

image: the original image

scale_factor: the factor by which the image needs to be

downscaled

2. Get the dimensions of the original image and calculate the

new dimensions based on the scale_factor:

new_width = original_width / scale_factor

new_height = original_height / scale_factor

3. Create a new image with the new dimensions:

Create an empty image with dimensions (new_width, new_height)

4. Loop over each pixel in the new image:

Calculate the corresponding position in the original image based

on the scale_factor:

orig_x = pixel_x * scale_factor

orig_y = pixel_y * scale_factor

Get the color of the corresponding pixel in the original image:

color = image[orig_x, orig_y]

Set the color of the pixel in the new image to the color obtained in

the previous step:

new_image[pixel_x, pixel_y] = color

5. Return the new image.

Figure 5. Resizing image downscale methods (28 px×21 px)

4.3 Experiment of image processing with normalization

The next stage of image processing is normalization.

Normalization in image processing involves adjusting the

intensity values of an image to a desired scale or range. This

process is often used to improve the contrast, brightness and

visibility of an image. The normalization process involves

rescaling pixel values so that they fall within a certain range,

typically between 0 and 255 for 8-bit images. This can be done

using various techniques including linear scaling, histogram

equalization, and contrast stretching. Histogram equalization

is a technique that redistributes the pixel values in an image to

improve its contrast. The intensity histogram of the image is

transformed to have a flat distribution. This makes the dark

pixels darker and the light pixels brighter, resulting in an

image with improved contrast and visibility, as shown in Table

4:

Table 4. The algorithm of normalization in image processing

using histogram equalization

Algorithm of Normalization in Image Processing Using

Histogram Equalization

1. Input an image

2. Calculate the histogram of the image (i.e., the frequency

distribution of the intensity values of the pixels in the image)

3. Calculate the cumulative distribution function (CDF) of the

histogram

4. Normalize the CDF so that it has the same range as the

intensity values in the image

5. Apply the normalized CDF to each pixel in the image to get

the new intensity value for that pixel

6. Output the new image with the equalized histogram

Figure 6. Result of normalization image

Figure 7. Result of histogram normalization image

Based on Figure 6 and Figure 7 the results of applying the

histogram equalization technique are shown, which aims to

increase the contrast of the image by flattening the pixel

intensity distribution. Visually, the increase in contrast is

particularly noticeable in areas of low intensity (low contrast)

that were previously less noticeable. This technique has made

it possible to highlight facial features such as the contours of

the nose, eyes and mouth more clearly. However, on low-

resolution images, this normalization process also introduces

side effects in the form of noise and visual artifacts that make

facial texture appear rougher. The resulting pixel intensity

distribution results in greater sharpness, but can eliminate fine

details that are essential for natural image quality.

The Histogram in Figure 7 shows a more even distribution

of pixel intensity, with intensity values now ranging from 0 to

255. This indicates that the overall contrast of the image has

been improved and the available dynamic range has been

maximized. However, sharp peaks in the histogram indicate a

significant increase in intensity in certain areas, which may

result in excessive amplification.

2255

4.4 Experiment of Generative Adversarial Networks

(GANs)

4.4.1 Import the libraries

Some libraries imported and required in this experiment are

Tensorflow, Keras, Numpy, Matplotlib, OpenCV, TQDM and

other libraries deemed necessary. The coding begins with the

integration of TensorFlow, a comprehensive and flexible deep

learning framework, along with Keras, a resource that

provides a more intuitive platform for building and training

neural networks. Matplotlib was used to create educational

visualizations, OpenCV was utilized for sophisticated image

processing, and the NumPy library was also imported for its

effective numerical processing capabilities. To further

enhance the flexibility of data processing, standard Python

modules like "os" for operating system interaction and "re" for

regular expressions were added. Additions like “tqdm” for

interactive progress bars and Keras utilities like “img_to_array”

for image conversion and “plot_model” for model architecture

visualization make it easier to explore and evaluate machine

learning models.

4.4.2 Load the datasets

The algorithm that is used to process a group of images

stored in a directory is listed in Table 5.

Table 5. The algorithm of load the datasets

Algorithm Load the Datasets

Input: directory_path (default = '../input/low-resolution')

Output: Sorted list of files based on alphanumeric order

1. DEFINE convert_text AS a lambda function:

1.1. IF text IS numeric:

RETURN the integer value of text

1.2. ELSE:

RETURN the lowercase version of text

2. DEFINE key_extractor AS a lambda function:

2.1. SPLIT each key (string) into segments, separating numbers

from text

2.2. CONVERT each segment using the convert_text function

2.3. RETURN the list of converted segments as the sorting key

3. LIST image_files = list of files in directory_path

4. SORT image_files using key_extractor AS sorting key

5. FOR each image_name IN image_files:

5.1. DISPLAY progress using tqdm

5.2. IF image_name IS 's45_15.jpg':

 EXIT the loop

5.3. ELSE:

 CONTINUE processing (specific action not defined)

6. RETURN image_files

Based on Table 5, the sorted_alphanumeric function is

defined to sort data alphanumeric. This function uses a lambda

conversion expression that converts text to an integer if it is a

digit, or to lowercase if it is not. This ensures that the sorting

is done taking into account the numeric value of the numbers

contained in the string. Directories containing low-resolution

images are specified as paths. A list of filenames is retrieved

from the directory using os.listdir and then sorted using the

defined sorted_alphanumeric function. The iteration is

performed on the sorted file list using tqdm, which is normally

used to display a progress bar in the loop. If the file name in

the loop matches “s45_15.jpg”, the loop stops. This indicates

that the process only goes up to that specific file, perhaps as

part of a validation or test. If the file name does not match, the

image is read using cv2.imread, which is then converted from

BGR to RGB color space, since OpenCV reads images in BGR

format by default. The image is then resized to the size

specified by the SIZE constant. The image is normalized by

subtracting each pixel with a value of 127.5 and then dividing

by the same value. This normalization step changes the range

of pixel values from [0, 255] to [-1, 1], which is a common

practice in image processing before feeding into a neural

network. The image is then converted to a float data type. It is

then appended to a list or array, preparing it for further

processing, perhaps as part of a data batch used by the machine

learning model.

The result of load the datasets in the Figure 8:

Figure 8. The result of load the datasets

4.4.3 Visualization current images

This algorithm defines a function plot_images for

visualizing images. This function accepts a parameter sqr that

specifies the number of images to display in a square grid, as

shown Table 6.

Table 6. The algorithm of visualization current images

Algorithm of Visualization Current Images

Input: grid_size (default = 5)

Output: Grid of sample images displayed

1. Setting figure size to (15, 15)

2. Setting title of the figure to "Sample of Real Images"

with font size 35

3. For each index idx from 0 to (grid_size * grid_size - 1)

do:

3.1. Setting up a subplot at position (grid_size, grid_size, idx

+ 1)

3.2. Show the image at index idx scaled by 0.5 and shifted

by 0.5

3.3. Remove x-axis ticks

3.4. Remove y-axis ticks

4. End For

5. Call Show_Images with grid_size = 15

Based on Table 6, it is known that this function begins by

specifying the size of the visualization figure using plt.figure

with size (15,15), which will create a plot area with the

specified size. The title of the figure is set via plt.title with the

title "Real Images" and a font size of 35.

Figure 9. The sample result of visualization current images

2256

Based on Figure 9 the function is iterated with a for loop

that executes sqr by sqr, effectively creating a square grid for

placing the image captions. The position of the subplot to be

displayed in the grid is determined by plt. Subplot in every

iteration. The ith image from the img array is then displayed

by calling plt. imshow. This is done by adding 0.5 to the pixel

values that have already been normalized to the value range [-

1.1]. [0.1] was normalized. Reach. The plt.xticks and plt.yticks

functions with empty list arguments are used to remove the

label ticks from the x and y axes on each subplot to display an

image without labels on these axes. After the function

definition, the plot_images function is called with the

argument 15, which indicates that this function plots the

images in the 15 × 15 grid, thus displaying a total of 225

images if available in the img array.

4.4.4 Define batch size

The algorithm in Table 7 illustrates the dataset creation

process in TensorFlow, a popular machine learning framework.

Table 7. The algorithm of define of batch size

Algorithm Define of Batch Size

Input: _image (list of images), bsize (def= 32)

Output: Dataset divided into batches

1. SET bsize TO 32

2. CONVERT _image list to a NumPy array and store in

variable `image_array`

3. CREATE a TensorFlow Dataset using `image_array`

with from_tensor_slices method and store in variable `dataset`

4. DIVIDE `dataset` into batches of size bsize using the

batch method

5. RETURN `dataset`

Base on Table 7, the variable batch_size is initialized with

a value of 32, which defines the number of samples per batch

to be processed in one iteration during model training. The

dataset was created from an array of img that was converted to

a tensor using NumPy, through the function call np.array(img).

NumPy is a widely used library in scientific computing that

provides support for large and efficient multidimensional

arrays. The tf.data.Dataset.from_tensor_slices function is

called with the image tensor as an argument. This function is

tasked with creating a Dataset object in TensorFlow that

allows iteration through the image tensor in smaller chunks or

"slices". The.batch(batch_size) method is applied to the

created Dataset object. This method groups batch_size

consecutive elements of the dataset into a single batch,

facilitating more efficient parallel processing during model

training.

4.4.5 Build generator network

This generator model is often used in the context of

Generative Adversarial Networks (GANs), where it plays a

role in generating new data that is similar to the original data

distribution. The algorithm reflects the best practices of

generative modeling in Table 8 and integrates modern

techniques into the network architecture for effective and

robust learning.

The output of the generator network can be characterized as

a multi-layer artificial neural network designed to perform

complex machine learning tasks. According to Table 8, the

model consists of the following layers: convolutional layer

(Cnv2D), activation function (LeakyReLU), batch

normalization (BatchNormalization), dense layer (Dns) and

convolutional transposition layer (Cnv2DTrans).

Table 8. Model summary of generator network architecture

Layer (Type)
Output

Shape
Parameter #

g_dns (Dns) (None, 49152) 4915200

g_rshp (Dns) (None, 128, 128, 3) 0

g_cnv2d (Cnv2D) (None, 128, 128, 128) 6144

g_cnv2d_1 (Cnv2D) (None, 64, 64, 128) 262144

g_bnorm (BatchNormalization) (None, 64, 64, 128) 512

g_lky_re_lu (LeakyReLu) (None, 64,64,128) 0

g_cnv2d_2 (Cnv2D) (None, 64, 64, 256) 524288

g_cnv2d_3 (Cnv2D) (None, 32, 32, 256) 1848576

g_bnorm_1 (BatchNormalization) (None, 32, 32, 256) 1824

g_lky_re_lu_1 (LeakyRelu) (None, 32, 32, 256) 0

g_cnv2d_trans (Cnv2Dtrans) (None, 32, 32, 512) 2807152

g_cnv2d_4 (Cnv2D) (None, 16, 16, 512) 4194384

g_lky_re_lu_2 (LeakyReLu) (None, 16, 16, 512) 0

g_cnv2d_trans_1 (Cnv2Dtrans) (None, 16, 16, 512) 4194384

g_cnv2d_trans_2 (Cnv2Dtranspose) (None, 32, 32, 512) 4194384

G_bnorm_2 (BatchNormalization) (None, 32, 32, 512) 2848

g_lky_re_lu_3 (LeakyReLu) (None, 16, 16, 512) 0

g_cnv2d_trans_3 (Cnv2Dtrans) (None, 32, 32, 256) 2897152

g_cnv2d_trans_4 (Cnv2Dtrans) (None, 64, 64, 256) 1848570

g_bnorm_3 (BatchNormalization) (None, 64, 64, 256) 2848

g_cnv2d_trans_5 (Cnv2Dtrans) (None, 128, 128, 128) 524288

g_cnv2d_trans_6 (Cnv2Dtrans) (None, 128, 128, 128) 262144

g_bnorm_4 (BatchNormalization) (None, 128, 128, 128) 512

g_cnv2d_trans_7 (Cnv2Dtrans) (None, 128, 128, 3) 6147

G_Total Parameters 25,379,843

G_Trainable G_Parameters 25,377,283

G_Non-trainable G_Parameters 2,568

2257

Base on of Figure 8, it can be described that in the first layer

there is a dense layer with a very large number of parameters,

which means that a significant number of neurons are required

to capture high-level features. The layer is then reshaped to

ensure that the input data conforms to the dimensions required

for the next convolutional layer. After applying filters to

extract spatial features from the data, the convolution layer

(Cnv2D) is followed by a batch normalization layer, which

aims to increase training stability and convergence speed. The

network can learn more complex relationships between input

and output data by introducing nonlinearity into the model

using the LeakyReLU activation function. The convolutional

transposition layer (Cnv2DTranspose) is used to increase the

dimensionality of the learned representation. It is often used in

architectures such as autoencoders to decompress data to the

original dimensions after the compression process.

The overall architecture suggests that this model could be

designed for tasks related to image processing such as image

segmentation or image generation, where the convolutional

transposition layer is usually instrumental in forming an output

that has the same dimension as the original input.

The model consists of millions of trainable parameters,

indicating that it is very deep and may require large data sets

and significant computing power for training. The presence of

untrainable layers indicates the use of fixed parameters during

the training process, which may be related to layers such as

BatchNormalization, which require parameters for

normalization that are not updated during backpropagation.

This architectural structure reflects a complex and well-

structured design that has the ability to learn feature

representations at different levels and produce detailed outputs

from the given inputs.

4.4.6 Build discriminator network

Base on Table 9, the discriminator architecture is defined in

the GAN context, which is designed to identify and distinguish

between the original data and the data generated by the

generator. This architecture is typical for two-class

classification tasks and incorporates good design principles

such as batch normalization and appropriate weight

initialization to support an efficient training process.

Specifically, this architecture features sequentially arranged

convolution layers (Conv2D), followed by batch

normalization and an intercalated nonlinear activation

function (LeakyReLU). The structure is shown in Table 9.

Base on Table 9, it can be described that in the

convolutional layer, it can be seen that the feature size (feature

map) gradually decreases, from 64x64 to 4x4, indicating that

the network compresses spatial information into a more

abstract and dense representation. This reduction in spatial

dimension is accompanied by an increase in the number of

filters from 128 to 512. This is usually done to compensate for

the reduction in spatial resolution by increasing the depth of

features that can encode more complex information at a higher

level. Batch normalization, applied after each convolution

layer, aims to stabilize and accelerate the learning process by

eliminating the internal covariate shift problem, i.e. h. the shift

in the input distribution of the layers during the training phase

is reduced.

LeakyReLU is a variation of the ReLU activation function

that allows small gradients when units are inactive (negative

input values) to overcome the dead neuron problem that can

occur with traditional ReLU. After a sequence of convolution,

batch normalization and LeakyReLU layers, the architecture

ends with a flattening layer that converts two-dimensional

features into one-dimensional vectors, preparing them for

integration into a dense or fully connected layer. The final

dense layer shows only one entity, meaning the architecture is

designed for binary regression or classification tasks.

4.4.7 Defining plot image generated by generator before

training

The generator model in Table 10 is intended to learn from

the distribution of the training data and generate new data that

is similar to the original data. This approach is common in

GAN networks. This algorithm is specifically used to visualize

the results of a single image generation instance and provides

visual insights into the performance and capabilities of the

generator model.

Table 9. Model summary of discriminator architecture

Layer (Type)
Output

Shape
Parameter #

d_cnv2_d5 (Cnv2D) (None, 64,64,128) 6144

d_bnorm_5 (BatchNormalization) (None, 64,64,128) 512

d_Lky_re_lu_4 (LeakyReLu) (None, 64,64,128) 0

D_cnv2_d6 (cnv2D) (None, 32,32,128) 262144

d_bnorm_6 (BatchNormalization) (None, 32,32,128) 512

d_Lky_re_lu_5 (LeakyReLu) (None, 32,32,128) 0

d_cnv2_d7 (Cnv2D) (None, 16,16,256) 524288

d_bnrom_7 (BatchNormalization) (None, 16,16,256) 1024

d_Lky_re_lu_6 (LeakyReLu) (None, 16,16,256) 0

d_cnv2_d8 (Cnv2D) (None, 8,8,256) 0

d_bnorm_8 (BatchNormalization) (None, 16,16,256) 1024

d_Lky_re_lu_7 (LeakyReLu) (None, 8,8,256) 0

d_cnv2_d9 (Cnv2D) (None, 4,4,512) 2097152

d_Lky_re_lu_8 (LeakyReLu) None, 4,4,512) 0

d_flatten (Flatten) (None 8192) 0

d_dense_1 (Dense) (None, 1) 0

D_Total Parameters 3,494,569

D- Trainable Parameters 3,948,033

D_Non-trainable Parameters 1,536

2258

Table 10. Defining plot image generated

Algorithm of Defining the Plot Image Generated

Input: generator_model

Output: Display the generated image

1. GENERATE random_noise:

 1.1 DEFINE mean AS -1

 1.2 DEFINE standard_deviation AS 1

 1.3 DEFINE shape AS (1, 100)

 1.4 CREATE random_noise FROM normal distribution with

mean and standard deviation, and with the specified shape

2. GENERATE generated_image BY passing random_noise TO

generator_model

3. DISPLAY the first generated image:

 3.1 EXTRACT the first image FROM generated_image array

 3.2 USE Imshow TO display the image

 3.3 CALL plt.show() TO display the image

Figure 10. Plot image generated by generator

Based on Figure 10, a generative process is performed to

generate images using the deep learning model. First, the noise

vector is initialized using a normal distribution. This vector

has a dimension of 1×100 and the values are drawn from a

normal distribution with mean -1 and standard deviation 1.

The noise vector is then fed as input to the generator function.

Since this function is a pre-trained model, it can generate

image data from the noise vector. To retrieve the first image

from the generation stack, the image tensor, the output of the

generator function is indexed. Then the image is visualized

using the Matplotlib library (symbolized as plt) using the

imshow function. This function displays the image generated

by the model generator. Finally, plt.show() is called to display

the generated chart to the user, as shown in Figure 10.

4.4.8 Defining loss function and optimizer

A decay rate of 1e-8, a clip value of 1.0, and an lr of 0.0001

are all set for the RMSprop optimization algorithm. Because

RMSprop can adaptively change the lr for each parameter, it

is a popular optimization technique in neural networks that

helps accelerate convergence. The binary cross-entropy loss

function is configured to work with logits, meaning it does not

go through sigmoid activation first. It measures the

discrepancy between the actual class label and the prediction

generated by the model. The generator loss function is

calculated assuming that all outputs generated by the generator

(fake_output) are positive class samples (1). The binary cross-

entropy function is then used to calculate the loss by

comparing these fake outputs with the label output.

The discriminator loss function is calculated with two

components: fake_loss and real_loss. The fake loss is

calculated by comparing the generator's fake output with a

label of zero, indicating that the sample is fake. The actual loss

is calculated by comparing the actual output with the label one,

which indicates that the sample is real. The total loss for the

discriminator is the sum of the false loss and the actual loss.

4.4.9 Defining the training model

The algorithm is a standard training iteration in GAN, where

the generator and discriminator are simultaneously updated via

the calculated gradients of their respective loss functions. This

algorithm allows both models to correct each other in the

training process, with the aim of the generator producing

images that are increasingly difficult for the discriminator to

distinguish. This method underlies effective GAN training and

is the basis for adversarial learning.

4.4.10 Training and model performance

The algorithm in Table 11 consists of a set of two functions

used to train and visualize the performance results of the

Generative Adversarial Network (GAN) model.

Based on Table 11, it can be interpreted that the model

achieved a final generative loss of 1.4768 and a final

discriminative loss of 0.7807 in the first experiment with 50

epochs and a learning rate (lr) of 0.0001. The training time was

7:00 p.m. (time unit not specified) with a final accuracy of

70.62%.

In the second experiment, the number of epochs was

increased to 60 at the same lr, which resulted in a slightly

higher final generator loss (1.7887) and a lower final

discriminator loss (0.6954) compared to the first experiment.

The accuracy increased to 72.12%, showing improved

performance despite the increased generator loss. In the third

experiment, the number of epochs was reset to 50, but with a

lower lr (0.00001), resulting in a lower loss of the final

generator (0.6797) but a much higher loss of the final

discriminator (1.6408) compared to the two previous

experiments. The accuracy drops drastically to 50.92%,

indicating that a reduction in the lr is unfavorable to the

performance of this model.

The conclusion that can be drawn from this table is that

adjusting the lr and number of epochs has a significant impact

on the training results. A higher lr with more epochs (in the

second experiment) seems to improve the accuracy of the

model more effectively. Meanwhile, reducing the lr (in the

third experiment) negatively affected the accuracy of the

model, although the generator loss decreased, which may

indicate that the model did not evolve enough during training

to generalize well to unseen data. This highlights the

importance of balancing the lr and number of epochs to

achieve optimal performance in machine learning models.

Table 11. The result of model training

No. of Datasets No. of Sample Epoch
Parameter Optimization Training Process

lr Clip Value Decay Last GenerativLoass Last Discriminative Loss Time Accuracy

750 674 50 0.0001 1.00 1,00E-08 1.4768 0.7807 19.00 70.62%

750 674 60 0.0001 1.00 1,00E-08 1.7887 0.6954 19.00 72.12%

750 674 50 0.00001 1.0 1,00E-08 0.6797 1.6408 19.00 50.92%

2259

4.4.11 Model visualization

To evaluate and understand the dynamics between

components in a Generative Adversarial Network (GAN), a

series of experiments were conducted to observe the changes

in metrics related to generator and discriminator losses as well

as discriminator accuracy during the training phase. The

following three graphs (Figures 11-13) show the measured

results of the experiments conducted over different epochs.

Through these visualizations, it is possible to interpret how the

adjustment and adjustment of the model parameters affects the

efficiency and effectiveness of the training process, as well as

the balance between the generator's ability to generate

convincing data and the discriminator's ability to distinguish

between them, to judge original samples and samples

generated by the generator. These metrics serve as a basis for

improving and refining the GAN architecture and training

strategy to improve the model's performance in generating

samples that not only outsmart the discriminator but also

maintain high quality and consistent variability.

Figure 11. Comparison of Generator loss, discriminator loss, and discriminator accuracy and result of visualization model

during GAN training with 50 epoch and LR 0.0001

Figure 12. Comparison of generator loss, discriminator loss, and discriminator accuracy and result of visualization model

During GAN training with 60 Epoch and LR 0.0001

Figure 13. Comparison of generator loss, discriminator loss, and discriminator accuracy and result of visualization model

during GAN training with 50 Epoch and LR 0.00001

2260

The Figure 11 shows the progression of the metrics for the

two components within the Generative Adversarial Networks

(GANs) over the course of 50 training epochs. The two

components are the generator and the discriminator, each of

which performs different tasks and is characterized by two

metrics: loss and accuracy. On the vertical axis, the chart

displays the metric values, while the horzontal axis indicates

the number of epochs. The training timeline shows that the

generator loss tends to increase from the beginning to the end

of training, while the discriminator loss gradually decreases.

Accordingly, the discriminator accuracy appears relatively

stable and high throughout the training process.

An increase in generator loss indicates that over time the

generator is finding it increasingly difficult to fool the

discriminator with its output, which could indicate that the

discriminator is getting better at distinguishing between the

real data and the fake ones generated by the generator

distinguish data.

Reducing the discriminator's loss means increasing its

ability to identify the data generated by the generator.

However, if the discriminator loss drops too much, there is a

risk that the discriminator will become too powerful compared

to the generator, which could hinder the co-learning process.

High and stable discriminator accuracy indicates that the

discriminator is consistently good at classifying real and fake

data. However, if the accuracy is too high, an overfitting

phenomenon may occur, where the discriminator is overfitted

to the training data set and may not perform well on data that

has not yet been seen.

Figure 12 shows the dynamics of the interaction between

generators and discriminators in the Generative Adversarial

Network (GAN) over 60 training epochs. Metrics evaluated

include generator loss, discriminator loss, and discriminator

accuracy. From the graphical observations, it can be seen that

the generator loss value varies, but generally increases

gradually as the number of epochs increases. This indicates

that it is becoming increasingly difficult for the generator to

produce samples good enough to defeat the discriminator. In

contrast, the discriminator loss decreases very little over time,

indicating that the discriminator is becoming more and more

effective in distinguishing between the original data and the

data generated by the generator. This can be interpreted as an

improvement in the performance of the discriminator. The

accuracy of the discriminator, however, remained relatively

constant and showed no significant increasing or decreasing

trend. This stable and high accuracy may reflect that the

discriminator can maintain its performance in classifying real

and fake samples with a constant success rate.

The Figure 13, presented shows the performance of the two

key components in a Generative Adversarial Network (GAN),

namely the generator and the discriminator, as measured by

loss and accuracy metrics, over 50 training epochs.

On the vertical axis, the chart measures the metrics

associated with the performance of both components, while

the horizontal axis reflects the number of training epochs.

Based on the graph, the generator loss has a high variability

with relatively stable values, but tends to increase slightly as

the training process progresses. This high variability may

indicate that the generator continues to have difficulty

generating data compelling enough to defeat the discriminator.

Regarding the discriminator loss, the graph shows a gradual

decrease, indicating an increase in the efficiency of the

discriminator in identifying the samples generated by the

generator as incorrect. This is reinforced by the accuracy graph,

which shows a gradual and steady increase during training,

suggesting that the discriminator is getting better and better at

performing correct classification between the original data and

the data generated by the generator.

The pattern emerging from this graph may indicate that the

discriminator is in a favorable position compared to the

generator, as the discriminator shows a consistent

improvement in performance while the generator does not

show a significant improvement in performance. However, in

ideal practice, both components should simultaneously

improve performance, indicating the presence of a healthy

adversarial dynamic where the generator becomes better at

producing convincing samples and the discriminator becomes

better at detecting the authenticity of the samples.

4.5 Discussion

According to the study's results, face recognition accuracy

in low-resolution images can be improved by up to 72-12%

when combining Digital Image Processing (DIP) and

Generative Adversarial Networks (GANs). Although these

results are very promising, some aspects require further

discussion to understand model generation and its

performance on larger, more complex real-world datasets.

Model generalization shows good performance for the

dataset used, but there are several factors associated with

generalization, namely data variability and overfitting. The

dataset used in this study may have limited variations in poses,

lighting, facial expressions, and backgrounds. To evaluate the

generalization capabilities of the model, tests must be

performed on data sets that have higher variability and reflect

more diverse real-world conditions. The model may be at risk

of overfitting if it performs well on training data but poorly on

test data. Testing a larger, more diverse additional data set can

help find and resolve overfitting issues.

5. CONCLUSION

Based on the results and discussions conducted, as well as

the stages of the research method, it can be concluded that

there is an improvement in face recognition accuracy in low

resolution images using Digital Image Processing (DIP)

techniques and Generative Adversarial Networks (GANs).

The proposed DIP+GAN method successfully shows an

accuracy improvement of face detection on low resolution

images of 72.12% with a number of epochs of 60 from a

sample dataset of 674 face image data. It makes an important

contribution to the development of digital image processing

and artificial intelligence in the context of facial recognition.

The innovative aspects of this research include combining

Digital Image Processing (DIP) and Generative Adversarial

Networks (GANs) techniques to improve the accuracy of face

recognition on low-resolution images, demonstrating that

combining traditional methods and deep learning Methods

successful is achieving better results. This study also

highlights the importance of setting parameters such as lr and

number of epochs to achieve optimal model training results.

The results of this study may have implications for future

studies, so we hope that the research on GAN architecture will

become more diverse and sophisticated to improve the quality

of low-resolution image processing. Larger and more diverse

aspects of testing datasets need to be an important focus to

evaluate the effectiveness of the technique in different

2261

conditions and environments. Integration with other image

processing methods can improve accuracy under more

complex conditions such as low light conditions or variations

in facial pose.

The results of this study may have implications for future

studies, so we hope that the research on GAN architecture will

become more diverse and sophisticated to improve the quality

of low-resolution image processing. Larger and more diverse

aspects of testing datasets need to be an important focus to

evaluate the effectiveness of the technique in different

conditions and environments. Integration with other image

processing methods can improve accuracy under more

complex conditions such as low light conditions or variations

in facial pose.

Some recommendations that may be relevant for future

research, based on research on low-resolution facial

recognition using DIPs and GANs, include exploring more

diverse and sophisticated GAN architectures to improve the

quality of low-resolution image processing. Conducting tests

on larger and more diverse data sets to evaluate the

effectiveness of the technique in different conditions and

environments. Integrating facial recognition techniques with

other image processing methods to improve accuracy under

more complex conditions such as low lighting or different

facial poses.

ACKNOWLEDGMENT

I would like to thank STMIK IKMI Cirebon and FTMK

UTeM Malaysia for the moral and material support to enable

this article to be published.

REFERENCES

[1] Wen, G., Chen, H., Cai, D., He, X. (2018). Improving

face recognition with domain adaptation.

Neurocomputing, 287: 45-51.

https://doi.org/10.1016/j.neucom.2018.01.079

[2] Zhang, N., Deng, W. (2016). Labeled Faces in the Wild:

A database for studying face recognition in

unconstrained environments. In 2016 International

Conference on Biometrics (ICB), Halmstad, Sweden, pp.

1-11. https://doi.org/10.1109/ICB.2016.7550057

[3] Robert, B., Brown, E.B. (2017). Face recognition in real-

world surveillance videos with deep learning method. In

2017 2nd International Conference on Image, Vision and

Computing (ICIVC), Chengdu, China, pp. 239-243.

https://doi.org/10.1109/ICIVC.2017.7984553

[4] Guo, G., Zhang, N. (2019). A survey on deep learning

based face recognition. Computer Vision and Image

Understanding, 189: 102805.

https://doi.org/10.1016/j.cviu.2019.102805

[5] Li, S., Liu, Z., Wu, D., Huo, H., Wang, H., Zhang, K.

(2022). Low-resolution face recognition based on

feature-mapping face hallucination. Computers and

Electrical Engineering, 101: 108136.

https://doi.org/10.1016/j.compeleceng.2022.108136

[6] Lu, Z., Jiang, X., Kot, A. (2018). Deep coupled ResNet

for low-resolution face recognition. IEEE Signal

Processing Letters, 25(4): 526-530.

https://doi.org/10.1109/LSP.2018.2810121

[7] Cheng, Z., Zhu, X., Gong, S. (2020). Face re-

identification challenge: Are face recognition models

good enough? Pattern Recognition, 107: 107422.

https://doi.org/10.1016/j.patcog.2020.107422

[8] Li, P., Prieto, L., Mery, D., Flynn, P. (2018). Face

recognition in low quality images: A survey. arXiv

preprint arXiv:1805.11519.

http://arxiv.org/abs/1805.11519

[9] Herrmann, C., Willersinn, D., Beyerer, J. (2016). Low-

resolution convolutional neural networks for video face

recognition. In 2016 13th IEEE International Conference

on Advanced Video and Signal Based Surveillance

(AVSS), Colorado Springs, CO, USA, pp. 221-227.

https://doi.org/10.1109/AVSS.2016.7738017

[10] Shi, J., Liu, T., Chen, N., Liu, J., Dou, Y., Zhao, Y.

(2021). Low resolution and multi-pose face recognition

based on residual network. In IEEE Advanced

Information Technology, Electronic and Automation

Control Conference (IAEAC), Chongqing, China, pp.

1587-1593.

https://doi.org/10.1109/IAEAC50856.2021.9390821

[11] Kurnia, D. A., Setiawan, A., Amalia, D. R., Arifin, R.

W., Setiyadi, D., (2021). Image processing identifacation

for indonesian cake cuisine using CNN classification

technique. Journal of Physics: Conference Series, 1783:

012047. https://doi.org/10.1088/1742-

6596/1783/1/012047

[12] Zebua, K.S., Kartowisastro, I.H., Kusuma, G.P. (2023).

Low resolution face recognition using combination of

gpen super resolution and facenet. Journal of Theoretical

and Applied Information Technology, 101(12): 4991-

5000.

[13] Oloyede, M.O., Hancke, G.P., Myburgh, H.C. (2020). A

review on face recognition systems: Recent approaches

and challenges. Multimedia Tools and Applications,

79(37-38): 27891-27922.

https://doi.org/10.1007/s11042-020-09261-2

[14] Kurnia, D.A., Mohd, O., Abdollah, F., Sudrajat, D.,

Wijaya, Y.A. (2021). Face recognition techniques : A

systematic literature review (research trends, datasets,

and methods). Journal of Theoretical and Applied

Information Technology, 99(21): 5217-5231.

[15] Dong, H., Liu, H., Li, M., Ren, F., Xie, F. (2024). An

algorithm for the recognition of motion-blurred QR

codes based on generative adversarial networks and

attention mechanisms. International Journal of

Computational Intelligence Systems, 17(1): 83.

https://doi.org/10.1007/s44196-024-00450-7

[16] Ren, H., Sun, K., Zhao, F., Zhu, X. (2024). Dunhuang

murals image restoration method based on generative

adversarial network. Heritage Science, 12(1): 1-20.

https://doi.org/10.1186/s40494-024-01159-8

[17] Usman Akbar, M., Larsson, M., Blystad, I., Eklund, A.

(2024). Brain tumor segmentation using synthetic MR

images - A comparison of GANs and diffusion models.

Scientific Data, 11(1): 1–17.

https://doi.org/10.1038/s41597-024-03073-x

[18] Kim, J., Lim, M.H., Kim, K., Yoon, H.J. (2024).

Continual learning framework for a multicenter study

with an application to electrocardiogram. BMC Medical

Informatics and Decision Making, 24(1): 1-13.

https://doi.org/10.1186/s12911-024-02464-9

[19] Murgas, B., Stickel, J., Ghosh, S. (2024). Generative

adversarial network (GAN) enabled statistically

equivalent virtual microstructures (SEVM) for modeling

2262

cold spray formed bimodal polycrystals. npj

Computational Materials, 10(1): 1-14.

https://doi.org/10.1038/s41524-024-01219-4

[20] Yin, Y., Yuan, Z., Tanvir, I. M., Bao, X. (2024).

Electronic medical records imputation by temporal

generative adversarial network. BioData Mining, 17(1):

1-22. https://doi.org/10.1186/s13040-024-00372-2

[21] Yamada, F.M., Batagelo, H.C., Gois, J.P., Takahashi, H.

(2024). Generative approaches for solving tangram

puzzles. Discover Artificial Intelligence, 4(1): 12.

https://doi.org/10.1007/s44163-024-00107-6

[22] Hao, X., Hongfeng, L., Jun, L., Nian, C. (2021). Survey

on deep learning based image super-resolution.

Computer Engineering and Application, 57(24): 51-60.

https://doi.org/10.3778/j.issn.1002-8331.2105-0418

[23] Golla, M.R., Sharma, P. (2019). Performance evaluation

of FaceNet on low resolution face images. In

Communication, Networks and Computing: First

International Conference, CNC 2018, Gwalior, India, pp.

317-325. https://doi.org/10.1007/978-981-13-2372-0_28

[24] Ullah, M., Hamza, A., Taj, I.A., Tahir, M. (2021). Low

resolution face recognition using enhanced SRGAN

generated images. In 2021 16th International Conference

on Emerging Technologies (ICET), Islamabad, Pakistan,

pp. 1-6.

https://doi.org/10.1109/ICET54505.2021.9689885

[25] Ledig, C., Theis, L., Huszár, F., Caballero, J.,

Cunningham, A., Acosta, A. (2017). Photo-realistic

single image super-resolution using a generative

adversarial network. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

Honolulu, HI, USA, pp. 105-114.

https://doi.org/10.1109/CVPR.2017.19

[26] Wang, X.T., Yu, K., Wu, S.X., Gu, J.J., Liu, Y.H., Dong,

C., Qiao, Y., Loy, C.C. (2018). Esrgan: Enhanced super-

resolution generative adversarial networks. In

Proceedings of the European conference on computer

vision (ECCV) workshops, pp. 63-79.

https://doi.org/10.1007/978-3-030-11021-5_5

[27] Jain, A. K., Klare, B., Park, U. (2011). Face recognition:

Some challenges in forensics. In 2011 IEEE International

Conference on Automatic Face and Gesture Recognition

Workshops (FG 2011), Santa Barbara, CA, USA, pp.

726-733. https://doi.org/10.1109/FG.2011.5771338

[28] Lohiya, R., Shah, P. (2015). Face recognition techniques:

A survey for forensic applications. International Journal

of Advanced Research in Computer Engineering &

Technology (IJARCET), 4(4): 1-8.

[29] Bah, S.M., Ming, F. (2020). An improved face

recognition algorithm and its application in attendance

management system. Array, 5: 100014.

https://doi.org/10.1016/j.array.2019.100014

[30] Zangeneh, E., Rahmati, M., Mohsenzadeh, Y. (2020).

Low resolution face recognition using a two-branch deep

convolutional neural network architecture. Expert

Systems with Applications, 139: 112854.

https://doi.org/10.1016/j.eswa.2019.112854

[31] Luo, G., He, G., Jiang, Z., Luo, C. (2023). Attention-

based mechanism and adversarial autoencoder for

underwater image enhancement. Applied Sciences,

13(17): 9956. https://doi.org/10.3390/app13179956

2263

