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ABSTRACT 
 

Direct Torque Control of Open-End Winding Induction Motor (DTC-OEWIM) is one of 
the techniques in motor drive applications that provides a robust and straightforward 
structure with excellent dynamic torque control. It controls the induction motor at both 
ends by using the dual-inverter circuit. Despite its outstanding performance, the DTC-
OEWIM technique has several drawbacks. When the dual-inverter circuit is supplied with 
mismatched DC voltages, the direction of the medium voltage vectors will deviate and 
no longer tangential to the circular flux locus. This will causes significant stator flux 
droop and distortion in the stator currents, leading to poor torque regulation. Even though 
the DTC-OEWIM technique is famous for reducing torque ripples by using short voltage 
vectors, it is still unable to minimize them, especially during low-speed operations 
entirely. A flexible sector detector proposes to overcome the problems by generating a 
new sector that ensures the deviated voltage vectors are tangential to the circular flux 
locus. The study explored the potential of the proposed technique under steady-state and 
transient-state operation. Another objective was to design the duty cycle control technique 
to limit the surge torque slope during low-speed operation. Integrating duty cycle ratios 
into the default inverter switching restricts the torque increment and torque decrement 
rate. The proposed techniques were compared with the default DTC-OEWIM system and 
verified through simulation and experimental work. For simulation, MATLAB/Simulink 
software was used to design the complete system, using the exact parameters as in the 
hardware experimental setup. For experimental works, the setup consists of a dSPACE 
DS1104 controller, two units of a two-level inverter connected in a dual-inverter 
configuration, and a 1.1kW induction motor with a 2kW DC generator as a load. The 
results show a significant improvement: 1) the minimization of stator flux droop and 
distortion in stator currents, which in turn improves the torque regulation and 2) the 
reduction of torque ripples by up to 50% and the improvement in switching frequency 
during low-speed operation. In conclusion, the proposed technique effectively improves 
DTC-OEWIM while maintaining the simple structure of the DTC system.  



 

iii 

PENINGKATAN KAWALAN DAYAKILAS LANSUNG DALAM DWI 
PENYONGSANG MENGGUNAKAN PENGESANAN SEKTOR BOLEH LENTUR 

DAN TEKNIK KITAR TUGAS 

 

ABSTRAK 
 

Kawalan Dayakilas Lansung daripada Motor Aruhan Belitan Tamatan Terbuka (DTC-
OEWIM) adalah salah satu teknik dalam aplikasi pemacu motor yang menyediakan 
struktur yang teguh dan ringkas dengan kawalan dayakilas dinamik yang sangat baik. Ia 
mengawal motor aruhan pada kedua-dua tamatan dengan menggunakan litar dwi-
penyongsang. Walaupun prestasinya yang cemerlang, teknik DTC-OEWIM mempunyai 
beberapa kelemahan. Apabila litar dwi-penyongsang dibekalkan dengan voltan DC yang 
tidak sepadan, arah vektor voltan sederhana akan terpesong dan tidak lagi bertangen 
dengan bulatan lokus fluks. Sistem ini mengalami lelaian fluks pemegun yang besar dan 
juga gangguan pada arus pemegun yang membawa kepada pengaturan kilas yang lemah. 
Walaupun teknik DTC-OEWIM terkenal kerana keupayaanya untuk mengurangkan riak 
dayakilas dengan menggunakan vektor voltan pendek, ia masih tidak dapat 
meminimumkan sepenuhnya terutamanya semasa operasi berkelajuan rendah. Oleh itu, 
sebuah pengesan sektor yang boleh lentur dicadangkan untuk mengatasi masalah 
tersebut dengan menghasilkan sektor baru yang memastikan vektor voltan yang tersisih 
bersentuhan dengan bulatan lokus fluks. Kajian ini meneroka potensi teknik yang 
dicadangkan dalam operasi keadaan mantap dan keadaan berubah. Satu objektif lain 
ialah untuk merekabentuk teknik kawalan kitar tugas bagi mengehadkan kemuncak cerun 
dayakilas ketika operasi kelajuan rendah. Ia dilakukan dengan mensepadukan nisbah 
kitar tugas ke dalam pensuisan penyongsang yang asal untuk mengehadkan kadar 
peningkatan dan penurunan dayakilas. Teknik-teknik yang dicadangkan telah 
dibandingkan dengan sistem DTC-OEWIM yang asal dan disahkan melalui kerja 
simulasi dan eksperimen. Bagi simulasi, perisian MATLAB/Simulink digunakan bagi 
merekabentuk sistem yang lengkap dengan menggunakan parameter yang sama seperti 
dalam penyediaan eksperimen. Bagi kerja eksperimen, penyediaan penuh terdiri 
daripada pengawal dSPACE 1104, dua unit penyongsang dua aras yang disambungkan 
dalam tertatarajah dwi-penyongsang dan motor aruhan 1.1kW dengan penjana DC 2kW 
sebagai beban. Hasil kajian menunjukkan peningkatan yang bererti; 1) pengurangan 
lelai fluks pemegun dan gangguan pada arus pemegun, yang seterusnya meningkatkan 
kawalan dayakilas; dan 2) pengurangan riak dayakilas sehingga 50% dan 
penambahbaikkan didalam frekuensi pengsuisan dan sekali lagi semasa operasi kelajuan 
rendah. Kesimpulannya, teknik yang dicadangkan berkesan dalam menambah baik 
struktur DTC-OEWIM sambil mengekalkan stuktur mudah sistem DTC. 
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