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ABSTRACT 

 

The COVID-19 pandemic's unprecedented disruptions significantly impacted electricity 

demand patterns across the globe. In Peninsular Malaysia, strict lockdown measures 

(Movement Control Orders - MCOs) led to the closure of non-essential businesses and stay-

at-home orders. These sudden and dramatic shifts in consumption patterns posed a 

significant challenge for power system operations, which rely heavily on accurate short-term 

load forecasting (STLF) for efficient and cost-effective operation. Inaccurate forecasts can 

have substantial economic consequences, especially during peak load periods. Due to that 

reason, in this study, the hybrid forecasting model based on the Least Square Support Vector 

Machine (LSSVM) and Improved Bacterial Foraging Optimization Algorithm (IBFOA) is 

developed to perform an accurate STLF and applied to load in Peninsular Malaysia during 

the pandemic disrupted situation. The IBFOA is proposed by modifying the chemotaxis 

process in BFOA using a Sine Cosine Algorithm (SCA), which improves the convergence 

speed and accuracy of the algorithm. The LSSVM-IBFOA model demonstrates superior 

performance compared to standalone LSSVM and LSSVM-BFOA based on Mean Absolute 

Percentage Error (MAPE), Mean Absolute Error (MAE), Root Mean Squared Error 

(RMSE), Mean Squared Error (MSE), Normalized RMSE (NRMSE), and Determination 

Coefficient (R²). Using the proposed hybrid method, LSSVM-IBFOA consistently achieves 

the most significant error reductions for each errors value based on the average of five day-

types (Monday-Sunday), on the testing datasets for the years 2020 and 2021. Furthermore, 

the proposed method demonstrates superior generalizability, with a substantial decrease in 

testing error compared to validation error in both years. For instance, in 2020, MAPE, MAE, 

MSE, RMSE, and NRMSE all witnessed reductions of 33.02%, 32.15%, 59.39%, 33.11%, 

and 32.75%, respectively. Similar trends were observed in 2021.This suggests the model's 

ability to adapt to changing load patterns, making it a valuable tool for real-world forecasting 

applications. Improved forecasting accuracy empowers energy providers to optimise 

resource allocation, power generation scheduling, and grid management, leading to potential 

cost reductions and increased efficiency. 
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RAMALAN BEBAN JANGKA PENDEK OPTIMAL MENGGUNAKAN LSSVM DAN 

BFOA YANG DITAMBAHBAIK  MENGAMBIL KIRA SITUASI PANDEMIK DI 

MALAYSIA YANG TERUK 

 

ABSTRAK 

 

Gangguan wabak COVID-19 yang belum pernah berlaku sebelum ini memberi kesan ketara 

kepada corak permintaan elektrik di seluruh dunia. Di Semenanjung Malaysia, langkah 

penutupan yang ketat (Perintah Kawalan Pergerakan - PKP) menyebabkan penutupan 

perniagaan yang tidak penting dan perintah tinggal di rumah. Peralihan mendadak dan 

dramatik dalam corak penggunaan ini menimbulkan cabaran besar untuk operasi sistem 

kuasa, yang sangat bergantung pada ramalan beban jangka pendek (STLF) yang tepat untuk 

operasi yang cekap dan kos efektif. Ramalan yang tidak tepat, terutamanya semasa tempoh 

beban puncak, boleh membawa kesan ekonomi yang besar. Atas sebab itu, dalam kajian ini, 

model ramalan hibrid berdasarkan Mesin Vektor Sokongan Kuasa Dua Terkecil (LSSVM) 

dan Algoritma Pengoptimuman Makanan Bakteria (IBFOA) yang ditambahbaik 

dibangunkan untuk melaksanakan STLF yang tepat dan digunakan di Semenanjung 

Malaysia semasa keadaan terganggu pandemik. IBFOA dicadangkan dengan mengubah 

suai proses chemotaxis dalam BFOA menggunakan Algoritma Kosinus Sinus (SCA), yang 

meningkatkan kelajuan penumpuan dan ketepatan algoritma. Model LSSVM-IBFOA 

menunjukkan prestasi unggul berbanding LSSVM dan LSSVM-BFOA kendiri berdasarkan 

Ralat Peratusan Mutlak Min (MAPE), Ralat Purata Purata (MAE), Ralat Purata Kuasa 

Akar (RMSE), Ralat Purata Kuasa Purata (MSE), RMSE Ternormal (NRMSE), dan Pekali 

Penentuan (R²). Dengan menggunakan kaedah hibrid yang dicadangkan, LSSVM-IBFOA 

secara konsisten mencapai pengurangan ralat yang paling ketara berdasarkan purata lima 

jenis hari (Isnin-Ahad), pada set data ujian untuk tahun 2020 dan 2021. Selain itu, ia 

mempamerkan unggul boleh digeneralisasikan, dengan pengurangan ketara dalam ralat 

ujian berbanding ralat pengesahan untuk kedua-dua tahun. Contohnya, pada tahun 2020, 

MAPE, MAE, MSE, RMS dan NRMSE semua menyaksikan pengurangan masing-masing 

sebanyak 33.02%, 32.15%, 59.39%, 33.11%, dan 32.75%. Trend yang sama diperhatikan 

pada tahun 2021. Ini menunjukkan keupayaan model untuk menyesuaikan diri dengan 

mengubah corak beban, menjadikannya alat yang berharga untuk aplikasi ramalan dunia 

sebenar. Ketepatan ramalan yang lebih baik memperkasakan penyedia tenaga untuk 

mengoptimumkan peruntukan sumber, penjadualan penjanaan kuasa dan pengurusan grid, 

yang membawa kepada pengurangan kos yang berpotensi dan peningkatan kecekapan.  
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CHAPTER 1 

INTRODUCTION 

 Background 

Energy serves as a fundamental driver of economic expansion and development of 

the countries. The secondary source of energy which is electricity is an essential commodity 

delivered to end users through several stages such as production, transmission, and planning 

(Kök et al., 2022). Electricity demand is driven by many factors and changes according to 

the weather, local demographics and special events or seasons. The outbreak of coronavirus 

disease (COVID-19) has significant impact on energy demand and daily consumption 

patterns in Malaysia due to the enforcement of various phases of Movement Control Order 

(MCO). The energy demand in Malaysia has correlated with gross domestic product (GDP) 

growth as the economy depends on energy-intensive industries such as manufacturing and 

services. The lower GDP growth affected the demand due to the impact of the COVID-19 

pandemic.  

In 2020, the GDP dropped by 5.54%, consequently, the electricity generation 

decreased by 2.4% and the total final energy consumption experienced a downtrend trend at 

-0.5% especially in the industry sector compared to 2019. Figure 1.1 illustrates the final 

electricity consumption (ktoe) by major sectors in Malaysia over seven years. Notably, the 

industrial sector experienced a decline of 5.11% in 2020 compared to 2019, which was 

counterbalanced by a 13.09% increase in the residential sector. Overall, the final electricity 

consumption in 2020 decreased by 4.00% compared to 2019, reaching a total of 13,007 ktoe. 
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Figure 1.1 The final electricity consumption in Malaysia 

 

Therefore, the government has planned an economic recovery program to stimulate 

the economy, with an expected GDP growth of 3.44% per year from 2020 until 2030 

(Zulkifli, 2021). This program aligns with the National Energy Transition Roadmap 

(NETR), which aims to leverage energy transition as a tool for economic restructuring, 

fostering green growth, and enhancing   key metrics such as GDP, job creation, and 

citizen/business well-being. Successful implementation of the NETR is projected to generate 

significant economic benefits, including an 86.67% increase in GDP by 2023 and the 

creation of 310,000 jobs by 2050. This anticipated economic growth highlights the growing 

energy demand.  

To meet this demand while achieving its sustainability goals, Malaysia's energy 

landscape is projected for a significant transformation, balancing energy demand growth 

with a resolute transition towards renewable energy (RE) and energy efficiency (EE). The 

NETR identifies RE and EE as key levers within its six energy transition, aiming to promote 

economic opportunities, reduce emissions, ensure cost-effectiveness, and foster social 

inclusivity (Ministry of Economy, 2023). 

  

10000

10500

11000

11500

12000

12500

13000

13500

14000

0

1000

2000

3000

4000

5000

6000

7000

8000

2015 2016 2017 2018 2019 2020 2021 T
o

ta
l 

fi
n
al

 e
le

ct
ri

ci
ty

 c
o

n
su

m
p

ti
o

n
 

(k
to

e)
 

F
in

al
 e

le
ct

ri
ci

ty
 c

o
n
su

m
p

ti
o

n
 

(k
to

e)

Year
Commercial Industrial Residential Total



3 

 

The Planned Energy Scenario (PES) forecasts a 2.0% annual increase in overall 

energy demand; however, strategic integration of RE and EE measures is expected to curb 

final energy consumption by 15-22%. The electricity utility in Peninsular Malaysia has set 

an ambitious target of achieving 20% RE capacity and attaining net-zero emissions by 2050. 

This goal will be pursued through a sustainable pathway that aims to reduce emission 

intensity by 35% and halve coal generation capacity by 2035 (IRENA, 2023). The 

exponential growth and innovation in RE are actively shaping a more interconnected and 

environmentally sustainable global energy future.  

Accurate electricity forecasting serves a pivotal role in accelerating this transition, 

offering precise insights into future energy demand and facilitating optimized generation 

strategies that minimize environmental impact and maximize sustainability (Aswanuwath et 

al., 2023). Electricity load forecasting is the fundamental aspect of ensuring the stable 

operation of the power system (Shoujiang Li et al., 2023). Load forecasting assists electrical 

power utilities in making important decisions, minimizing the costs of power production and 

increasing the accuracy of electrical power facilities (Jahan et al., 2020). The electricity 

demand is forecasted in advance as very short-term, short-term, medium-term and long-term 

(Mir et al., 2020).  

Among the horizons, short-term load forecasting (STLF) is taking centre stage in the 

realm of electricity load forecasting, as evidenced by the surge in research efforts by 

researchers (Petropoulos et al., 2022). Moreover, STLF helps power system operators with 

various decision-making in the power system including supply planning, generation reserve 

and demand-side management (Fallah et al., 2019). By enabling proactive planning and 

adjustments based on forecasted short-term demand fluctuations, STLF ultimately 

safeguards grid stability and ensures the continuous, reliable delivery of electricity to 

consumers. 
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Tenaga Nasional Berhad (TNB), the largest electricity utility company in Malaysia, 

manages the core activities in power systems such as generation, transmission, and 

distribution. The transmission division manages all aspects of transmission, from planning 

and evaluating future needs to implementing and maintaining infrastructure. Load 

forecasting, a crucial element of power system planning, enables TNB to predict and meet 

electricity demand effectively (Abd. Razak et al., 2009).  

TNB performs three types of forecasting: short-term, medium-term and long-term for 

its power operation and development purposes. TNB's forecasting method demonstrated a 

significant shift in the early 1980s, transitioning from simple judgmental approaches to 

incorporating data-driven methods like time series and regression analysis. This evolution 

continued with the inclusion of income elasticity, sectoral trends, and end-use techniques, 

leading to a more multifaceted and robust forecasting approach (Hock-Eam and Chee-Yin, 

2016). 

Accurate STLF models have consistently contributed to improved revenue and 

efficiency for electricity distribution and generation companies. However, achieving high 

forecasting accuracy remains a crucial challenge due to the inherent complexities of load 

data. This data exhibits both static (long-term trends) and dynamic (short-term fluctuations) 

characteristics, posing difficulties for traditional approaches that rely on singular models or 

the integration of individual methods (Ahmad et al., 2022). Particularly, during the disrupted 

situations, the demand pattern has fluctuated significantly. The unprecedented shifts in 

human behaviour triggered by the COVID-19 pandemic, particularly related to power usage, 

presented significant challenges for STLF. 

 Existing forecasting methods, which were not designed to anticipate such dramatic 

and sudden changes in consumption patterns, struggled to maintain accuracy (Aswanuwath 

et al., 2023). Accurate STLF is essential for ensuring the cost-effectiveness and reliability 
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of power system operations (Chen et al., 2020). Inaccurate forecasts, particularly concerning 

peak load periods, can lead to significant economic consequences due to unexpected power 

generation requirements and surplus production (Lee and Cho, 2022). Over the years, 

researchers have developed numerous state-of-the-art methods specifically tailored to 

address STLF problems. These methods highlight the superiority of non-linear models in 

capturing the complex and dynamic behaviour of load time series data. Consequently, non-

linear machine learning (ML) methods, such as Artificial Neural Networks (ANN) and 

Support Vector Machines (SVM), have garnered significant attention in the literature due to 

their effectiveness in this domain (Morais et al., 2023).  

Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE) are 

widely employed error measures to evaluate the accuracy of forecasting models. Both 

metrics are expressed as percentages, with lower values indicating greater forecasting 

accuracy (Mansouri et al., 2023). Studies have shown that a 1% reduction in MAPE can 

translate to significant cost savings on the production side, ranging from 0.1% to 0.3% 

reduction in generation costs (Gao et al., 2019). Thus, the primary objective of load 

forecasting is to ensure a secure and reliable electricity supply while simultaneously 

minimizing operational costs and energy waste. 

Additionally, this study contributes to multiple Sustainable Development Goals 

(SDGs) by the United Nations including Affordable and Clean Energy (SDG 7), Industry, 

Innovation and Infrastructure (SDG 9), Responsible Consumption and Production (SDG 12) 

and Climate Action (SDG 13) by providing electricity forecasting insights and valuable 

guidance in various situations to decision makers. This approach facilitates accurate 

forecasting thus, optimized resource allocation (SDG 7), minimises energy waste (SDG 12), 

mitigates environmental impact (SDG 13), reduces financial losses, promotes sustainable 

infrastructure and clean technologies (SDG 9), and ultimately fosters sustainable economic 


