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ABSTRACT 

 

The Artificial Bee Colony (ABC) algorithm is a powerful metaheuristic optimization 

technique inspired by the honeybee foraging behaviour. However, ABC algorithm can 

struggle to explore new regions effectively, leading to slow convergence and premature 

convergence on suboptimal solutions. This research addresses these limitations by 

developing modified ABC algorithms specifically for tackling engineering optimization 

problems. Recognizing limitations in the employed bee phase, the research applies the 

modification rate (𝑀𝑅) in the employed bee phase to increase the permutation chances for 

each dimension within the solution space. The impacts of these modification rates in 

optimizing the engineering problems are analyzed. Additionally, two new hybrid algorithms 

called Artificial Bee Rabbit Optimization (ABRO) and Bee Eel Forage Algorithm (BEFA) 

are proposed by combining ABC with Artificial Rabbits Optimization (ARO) or Electric Eel 

Foraging Optimization (EEFO). The performances of these hybrid algorithms are evaluated 

using 25 benchmark functions and applied to the IEEE 26-bus system for power system 

economic dispatch, emission dispatch, and weighted sum optimization. Results demonstrate 

that the proposed hybrid algorithms (ABRO and BEFA) improve convergence speed and 

solution quality compared to predecessor algorithms on most benchmark functions. 

According to the Friedman test, ABRO outperforms ABC and ARO on 16 out of 25 

benchmarks, while BEFA achieves the best performance on all 25 benchmark functions than 

EEFO and ABC. Moreover, they are also able to minimize generated costs and emissions 

for the IEEE 26-bus system where they achieve the least average and least standard 

deviation. Furthermore, a novel multiobjective variant is proposed where it incorporates 

Pareto concepts with non-dominated sorting, crowding distance, and adaptive grid 

mechanisms. Its effectiveness is showcased through evaluation using 5 benchmark ZDT 

functions and application to the IEEE 26-bus system for multiobjective optimization 

challenges such as economic and emission dispatch. The MOBEFA obtains higher average 

hypervolume and maximum spread which shows better solution quality and diversity when 

comparing to Non-Dominated Sorting Genetic Algorithm II (NSGA-II) in all five ZDT 

functions . This research significantly contributes to the advancement of ABC variants and 

their hybridizations. The developed algorithms demonstrate promising potential for 

enhancing optimization performance across both single-objective and multiobjective 

domains within the field of engineering. 
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FORMULASI ALGORITMA METAHEURISTIK BERDASARKAN KOLONI LEBAH 

TIRUAN BAGI MASALAH KEJURUTERAAN 

 

ABSTRAK 

 

Koloni Lebah Tiruan (ABC) adalah teknik pengoptimuman metaheuristik yang berkuasa dan 

diinspirasikan oleh tingkah laku mencari makan oleh lebah madu. Namun, ia tetap 

menghadapi masalah seperti penumpuan yang perlahan atau penumpuan awal pada 

penyelesaian yang tidak optimum. Kajian ini menangani kekangan ini dengan 

membangunkan algoritma ABC yang diubah suai khusus untuk menangani masalah 

pengoptimuman kejuruteraan. Kajian ini menggunakan kadar pengubahsuaian (𝑀𝑅) dalam 

fasa lebah pekerja untuk meningkatkan peluang permutasi bagi setiap dimensi. Impak kadar 

pengubahsuaian ini dalam mengoptimumkan masalah kejuruteraan dianalisis. Selain itu, 

dua algoritma hibrid baharu yang dipanggil Pengoptimuman Arnab Lebah Tiruan (ABRO) 

dan Algoritma Pencarian Makanan Belut Lebah (BEFA) dicadangkan dengan 

menggabungkan ABC dengan Pengoptimuman Arnab Tiruan (ARO) atau Pengoptimuman 

Pencarian Makanan Belut Elektrik (EEFO). Prestasi algoritma hibrid ini dinilai 

menggunakan 25 fungsi penanda aras dan digunakan pada sistem bas 26 IEEE untuk 

penghantaran ekonomi sistem kuasa, penghantaran emisi, dan pengoptimuman jumlah 

berwajaran. Hasil kajian menunjukkan bahawa algoritma hibrid yang dicadangkan (ABRO 

dan BEFA) meningkatkan kelajuan penumpuan dan kualiti penyelesaian berbanding 

algoritma pendahulunya pada kebanyakan fungsi penanda aras. Menurut ujian Friedman, 

ABRO mengatasi ABC dan ARO pada 16 daripada 25 penanda aras, manakala BEFA 

mencapai prestasi terbaik pada semua 25 fungsi penanda aras berbanding EEFO dan ABC. 

Selain itu, ia juga dapat mengurangkan kos dan pelepasan yang dihasilkan untuk sistem 26-

bas IEEE di mana ia mencapai purata paling rendah dan sisihan piawai paling rendah. 

Selain itu, algoritma varian multiobjektif baharu yang menggunakan konsep Pareto juga 

dicadangkan dengan menggunakan pengkelasan bukan dominan, jarak kesesakan, dan 

mekanisme grid adaptif. Keberkesanannya dipamerkan melalui penilaian menggunakan 5 

fungsi ZDT penanda aras dan aplikasi pada sistem bas 26 IEEE untuk cabaran 

pengoptimuman multiobjektif, terutamanya dengan mempertimbangkan kedua-dua ekonomi 

dan pelepasan. MOBEFA memperoleh hipervolume purata dan penyebaran maksimum yang 

lebih tinggi yang menunjukkan kualiti dan kepelbagaian penyelesaian yang lebih baik 

apabila dibandingkan dengan Algoritma Genetik Pengisihan Tidak Didominasi II (NSGA-

II) dalam semua lima fungsi ZDT. Kajian ini memberi sumbangan yang signifikan ke arah 

kemajuan varian ABC dan hibridisasinya. Algoritma yang dicadangkan menunjukkan 

potensi yang menjanjikan untuk meningkatkan prestasi pengoptimuman merentas kedua-dua 

domain objektif tunggal dan multiobjektif dalam bidang kejuruteraan. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Optimization is the process of finding the best possible solution to a problem (Rao, 

2019). In engineering, engineers are responsible for making decisions during design, build 

and maintain processes that minimize undesired factors and maximize desired ones. A 

typical engineering design process involves engineers specifying the problem through 

parameters, objectives, and constraints, followed by evaluating potential designs. However, 

issues can arise during these stages, such as misspecified problems, suboptimal baseline 

designs, or improper implementation, leading to less-than-ideal outcomes (Peel and Moon, 

2020). This is where optimization algorithms become crucial. An optimization algorithm 

iteratively searches for the optimal solution to a problem. It starts with a candidate solution 

and refines it in each step, aiming to generate a superior solution that adheres to any imposed 

constraints (Peel and Moon, 2020). 

Metaheuristic algorithms have gained significant attention from researchers due to 

their wide applicability (G. Li et al., 2024). The term “metaheuristic” is the combination of 

two terms where meta means high level while heuristic appears as “to find” or “to discover” 

(Nassef et al., 2023). These algorithms can be applied to a wide range of optimization 

problems and involve elements of randomness. Popular examples include the Genetic 

Algorithm (GA) (Man et al., 1996), Particle Swarm Optimization (PSO) (Kaveh and Kaveh, 

2017), Ant Colony Optimization (ACO) (Dorigo et al., 2006), and the Artificial Bee Colony 

(ABC) algorithm (Karaboga, 2005), which this research focuses on. 
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The ABC algorithm's simplicity, ease of implementation, and minimal control 

parameters have contributed to its popularity (Soufyane Benyoucef et al., 2015). The ABC 

algorithm draws inspiration from the foraging behaviour of honey bees. It categorizes bees 

into three groups: employed bees, onlooker bees, and scout bees. Initially, scout bees 

randomly search for potential food sources. Employed bees then take over, exploiting 

specific food sources they have discovered. Onlooker bees, using information shared by 

employed bees through a waggle dance, join in on exploiting these sources. When a food 

source is depleted, the employed bee transitions into a scout bee and resumes searching for 

new ones. In the context of the ABC algorithm, food sources represent potential solutions to 

the given problem, while the nectar quantity signifies the quality or fitness of that solution.  

The "No Free Lunch Theorem" states that no single optimization algorithm is 

universally superior to others (Wolpert and Macready, 1997). Similarly, the ABC algorithm 

has limitations, such as limitations in being easily stuck in local optima and converging 

slowly (P. Li et al., 2024). To address these drawbacks, researchers are actively exploring 

modifications to the ABC algorithm, including parameter tuning, hybridization with other 

algorithms, and adaptation strategies. These modification and hybridization techniques will 

be discussed in detail in Chapter 2.  

The economic dispatch problem is a crucial aspect of electrical power system 

management (Tabassum et al., 2021), aiming to optimize power generation distribution 

among different units while considering operational constraints and minimizing production 

costs. The electricity demand has been observed to have increased significantly over the past 

few decades.  An increase in electricity demand can have a cascading effect on gas emissions 

and generation costs in a power system. This effect is primarily due to the complex interplay 

between power generation, fuel consumption, and operational constraints within the system. 
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Besides, emission dispatch is also an important aspect of the power system that aims to 

reduce the generated pollutant emissions. Hence, there is a growing concept called the 

combined economic and emission dispatch (Dey et al., 2019). The world is transiting 

towards a more sustainable and efficient energy landscape, hence the need for advanced 

optimization techniques becomes crucial. 

The focus of this research is to investigate and develop modified versions of Artificial 

Bee Colony (ABC) algorithms for solving the economic dispatch problem, the emission 

dispatch problem, and the combined economic and emission problem, which are 

optimization problems in power system planning. Additionally, several engineering 

problems are included to evaluate the broader applicability of the proposed ABC variant 

algorithm. 

This study aligns with several Sustainable Development Goals (SDGs) established 

by the United Nations (Nations, 2023) as shown in Figure 1.1, including Affordable and 

Clean Energy (SDG 7), Industry, Innovation and Infrastructure (SDG 9), Responsible 

Consumption and Production (SDG 12), and Climate Action (SDG 13). For example, 

optimization algorithms help by optimizing economic and emission dispatch which ensures 

efficient use of existing resources and promotes cleaner energy sources (SDG 7 and SDG 

13). Besides, optimization contributes to SDG 9 by optimizing logistics networks, resource 

allocation in manufacturing, and sustainable infrastructure design. Specific examples 

include the Traveling Salesman Problem (TSP), which can optimize logistics networks and 

waste collection routes (SDG 9), and the Machine Scheduling Problem, which improves 

production efficiency and minimizes resource waste (SDG 9 and SDG 12). Furthermore, 

optimization techniques can minimize material usage and extend equipment lifespan, as seen 

in spring design and rolling element bearing design (SDG 12). 
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Figure 1.1 Sustainable Development Goals (United Nations, 2023) 

 

1.2 Problem Statements 

The ABC algorithm is well known for its simplicity, requiring minimal control 

parameters and simple implementation (Karaboga and Akay, 2009). However, ABC suffers 

from certain limitations, such as slow convergence, premature convergence, and a tendency 

to get stuck in local optima, particularly when applied to complex optimization problems (A. 

Sharma et al., 2020).  For example, studies have shown that ABC takes a longer time to 

converge compared to other algorithms on benchmark problems (Chaudhary, 2023). These 

limitations highlight the need for enhancing the ABC algorithm. 

To address these limitations, this research proposes four new ABC variants, which 

will be evaluated on various benchmark functions. Benchmark functions offer a standardized 

framework for comparing the performance of different optimization algorithms across 

various problem landscapes (Hussain et al., 2017). For example, researchers such as Wang 

et al. (2022) and W. Zhao et al. (2024)  have used benchmark problems like the Sphere and 

Ackley functions when proposing new algorithms. Testing an algorithm on a diverse set of 
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benchmark functions allows researchers to gain insights into its strengths and weaknesses 

and facilitates performance comparisons with other algorithms (P. Sharma and Raju, 2024). 

In addition, it is crucial to apply proposed algorithms to real-world problems to assess 

their applicability and effectiveness (Alorf, 2023). This research applies the proposed 

algorithms to ten types of engineering problems such as pressure vessel design, rolling 

bearing design, tension/compression spring design, cantilever beam design, gear train 

design, travelling salesman problem, single machine scheduling problem, economic 

dispatch, emission dispatch, and combined economic and emission dispatch.  

A pressure vessel is a container designed to hold gases or liquids at varying pressures. 

The objective in pressure vessel design is to minimize fabrication costs while ensuring safety 

and functionality (Khatab et al., 2025). Rolling element bearings are critical components in 

machinery, from household appliances to spacecraft. The aim of rolling bearing design is to 

maximize the dynamic load-carrying capacity of the bearing (Zhang and Wang, 2023). 

Tension/Compression Springs store and release energy, and their design aims to minimize 

the spring's weight while maintaining its mechanical properties. This is essential for devices 

such as machinery and automobiles (Khatab et al., 2025). Next, a cantilever beam is a 

structural element that is fixed at one end and free at the other. The objective in cantilever 

beam design is to reduce the weight by optimizing its hollow square shape while maintaining 

structural integrity (Kutlu Onay and Aydemı̇r, 2022). The gear train design problem is a 

discrete optimization problem that aims to minimize the cost of a complex gear train. The 

objective is to find the optimal number of teeth for four gears in the train to achieve a desired 

gear ratio while minimizing errors (Dinkar and Deep, 2017). 

The traveling salesman problem is a combinatorial optimization problem where the 

objective is to find the shortest route that visits each city exactly once and returns to the 
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starting point (Toaza and Esztergár-Kiss, 2023). The single machine scheduling problem is 

also a classic combinatorial optimization problem that involves scheduling jobs on a single 

machine to minimize total tardiness while considering factors like job release dates and 

sequence-dependent setup times (Costa et al., 2025). 

In power systems, the Economic Dispatch problem is a crucial optimization 

challenge. Its goal is to minimize power generation costs while meeting the demand across 

a power grid (Visutarrom and Chiang, 2024). Alongside economic dispatch, the growing 

environmental concerns have made Emission Dispatch increasingly important. Emission 

dispatch aims to minimize pollutants from power generation while still meeting energy 

demands (Xu and Yu, 2023). Finally, the combined Economic and Emission Dispatch, also 

known as Environmental Economic Dispatch, has gained popularity. This multi-objective 

optimization problem seeks to simultaneously minimize operating costs and emissions, 

balancing economic efficiency with environmental sustainability (Xu and Yu, 2023). 

1.3 Research Questions 

Research questions serve as the foundation for the research, providing a clear focus, 

guiding method selection, and shaping the literature review. The studies presented in this 

thesis are conducted based on the following research questions: 

 What are the limitations of the ABC algorithm? 

 What is the importance of enhancing the ABC algorithm? 

 Are the proposed ABC variants suitable for practical implementation? 

 How to measure the performance of the ABC algorithm and its variants? 

 How to develop single and multi-objective variants of the ABC algorithm? 

 What methods did the previous researcher use to enhance the ABC algorithm? 


