

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

NUMERICAL ANALYSIS OF ONE-DIMENSIONAL PEROVSKITE SOLAR CELL USING DRIFT DIFFUSION EQUATIONS

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

Faculty of Electrical Technology and Engineering

NUMERICAL ANALYSIS OF ONE-DIMENSIONAL PEROVSKITE SOLAR USING DRIFT DIFFUSION EQUATIONS

Master of Science in Electrical Engineering

2024

NUMERICAL ANALYSIS OF ONE-DIMENSIONAL PEROVSKITE SOLAR CELL USING DRIFT DIFFUSION EQUATIONS

SAIDATUL NUR AISYAHTUN SAKINAH BINTI AHMAD JAMAL

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2024

DEDICATION

To my beloved son and my parents,

Thank you for giving all your love and support even though there are a lot of things we have been through with a lot of roller-coaster emotions along this master journey. Their prayer of them is a strength for me.

To my respective supervisors,

Thank you for the support, teaching, and knowledge that is being shared, only God can repay your kindness of yours.

ABSTRACT

Solar energy, one of the renewable energies with infinite sources all over the world apart from wind, biomass, water, and geothermal, is gaining much attention from researchers since the invention of wafer-based technology (using silicon), thin film technologies using Cadmium Telluride (CdTe) and Copper Indium Gallium Selenide (CIGS), and emerging film technologies, including perovskites solar cells. The perovskites solar cell (PSC) has been proven to possess a high-efficiency achievement. However, the instability issue in its moisture, light and temperature leads to current-voltage hysteresis, which always becomes a major concern for the perovskite solar cell under operational conditions. The situation is caused by the diffusion of mechanisms of charge transport and charge release at the interface between layers by the migration mechanism, which dominates the global electrical field. Another challenge in modelling the solar cell is to account for the dynamic physics behaviour, which requires a comprehensive model to relate all the dynamic mechanisms that can give information and insight into the perovskite solar cell. Hence, this study is carried out to identify the one-dimensional drift-diffusion equation of the n-i-p perovskite solar cell that accounts for the dynamic process of the solar cell mechanism, to solve the equation of the perovskite solar cell numerically and develop the current density against voltage (J-V) curve using the folding method, as well as to analyse the performance of perovskite solar cells. The numerical scheme used the Method of Line (MOL) procedure and Chebfun. An analysis of the efficiency of perovskite solar cell's factors based on the effect of varying thickness, doping density, diffusion coefficient, temperature, photo-generated current density, recombination current density and resistivity in steady-state conditions was studied. Findings revealed that the optimisation of thickness, diffusion coefficient, doping density level, resistivity, and recombination current density of the perovskite solar cell increased the efficiency of perovskite solar cells from 10.69% to 28.53%. The main contribution of this work is providing a reliable and flexible numerical scheme to the dynamic perovskite solar cell model that requires high and complex numerical literacy skills. The MOL is an efficient numerical technique for the conversion of partial differential equations (PDE) into ordinary differential equations (ODE) in drift-diffusion equations of the perovskite solar cell in unsteady-state conditions. The folding method can reduce the complexity of the numerical scheme by transforming the drift-diffusions equations in three types of transport layers into a set of transformed equations in one transport layer for steady-state conditions. The results of the analysis of parameter variation provide information on the idea of improving perovskite solar cell efficiency in the future.

ANALISIS BERANGKA SATU-DIMENSI SEL SURIA PEROVSKIT MENGGUNAKAN PERSAMAAN RESAPAN HANYUT

ABSTRAK

Tenaga suria ialah sejenis tenaga boleh baharu yang mudah diperoleh secara global selain daripada tenaga angin, tenaga biojisim, tenaga air, dan tenaga geoterma serta mendapat perhatian daripada para penyelidik sejak penciptaan teknologi berasakan wafer (menggunakan silicon), teknologi filem nipis yang mengunakan Kadmium Telluride (CdTE) dan Kupurum Indium Gallenium Seleneid (CIGS), tekonologi pencantuman filem nipis termasuklah sel suria perovskit. Sel suria perovskit telah terbukti mampu menyumnbang ke arah kecekapan tinggi. Walau bagaimanapun, isu ketidakstabilannya dari aspek kelembapan, pencahayaan dan suhu semasa sel suria perovskit beroperasi telah menyebabkan masalah histerisis arus-voltan yang menjadi perkara yang perlu dititikberatkan. Situasi berpunca daripada mekanisme penyerapan iaitu hasil daripada proses pengangkutan dan pembebasan cas pada permukaan lapisan semasa mekanisme migrasi berlaku, dan mendominasi gelombang eletrik global. Selain itu, masalah fizikal sel suria perovskit yang dinamik memerlukan model yang komprehensif yang boleh mengaitkan mekanisme dinamik untuk menyampaikan maklumat secara jelas mengenai sel suria perovskit. Sehubungan itu, objektif projek ini adalah untuk mengenal pasti persamaan resapan-hanyut untuk sel suria perovskit jenis n-i-p satu dimensi yang merangkumi proses yang dinamik berdasarkan mekanisme sel suria, untuk menyelesaikan persamaan model sel suria perovskit mengggunakan kaedah berangka dan menghasilkan graf ketumpatan arus dan voltan dengan menggunakan kaedah lipatan dan juga menganalisis prestasi sel suria perovskit. Skema berangka menggunakan teknik garisan dan Chebfun. Analisis terhadap faktor yang mempengaruhi kecekapan sel suria perovskit dari segi kesan perubahan ketebalan lapisan pengangkutan sel solar, ketumpatan doping, pekali resapan, suhu, ketumpatan arus yang dijana oleh cahaya, ketumpatan arus hasil daripada cantuman hole dan elektron serta rintangan telah dilakukan dalam keadaan pegun. Kajian ini mendapati bahawa dengan pengoptimuman ketebalan lapisan pengangkutan, pekali resapan, tahap ketumpatan doping, kerintangan, dan ketumpatan arus hasil daripada cantuman hole dan elektron oleh sel suria perovskit telah meningkatkan prestasi sel suria perovskit dari 10.69% kepada 28.53%. Sumbangan utama penyelidikan ini adalah menyediakan penyelesaian yang boleh dipercayai serta fleksibel menggunakan kaedah berangka terhadap model sel suria perovskit yang dinamik yang memerlukan kemahiran kaedah berangka yang tinggi dan kompleks. Teknik garisan ialah kaedah berangaka yang cekap dalam menukar persamaan pembezaan separa kepada persamaan perbezaan biasa yang terkandung dalam persamaan resapan hanyut sel suria perovskit untuk keadaan tidak pegun. Manakala kaedah kaedah lipatan mampu mengurangkan kesukaran skema numerikal yang kompleks dengan menukar persamaan resapan hanyut pada tiga jenis lapisan pengangkutan berbeza kepada satu persamaan dalam satu lapisan pengankutan dalam keadaan pegun. Hasil analalisis terhadap parameter yang bervarisi dapat memberikan informasi tentang idea untuk menambah baik kecekapan sel suria perovskit pada masa akan datang.

ACKNOWLEDGEMENT

In the Name of Allah, the Most Gracious, the Most Merciful. First and foremost, I would like to take this opportunity to express my sincere acknowledgment to Universiti Teknikal Malaysia Melaka with the fund by the Ministry of Higher Education Malaysia under the Fundamental Research Grant Scheme (FRGS), FRGS/1/2020/STG06/UTEM/02/2.

I also want to acknowledge my supervisor Dr. Rahifa Ranom, and my co-supervisor, Professor Madya Dr. Hidayat Zainuddin for guiding and teaching me while conducting the research.

In addition, I want to give acknowledgment to Professor Madya Mohd Adib Ibrahim and Associate Professor Dr. Mohd Asri Mat Teridi from Solar Energy Research Institute, Universiti Kebangsaan Malaysia (UKM) for collaboration in sharing the outcomes and suggestions regarding the perovskite solar cell.

Furthermore, I want to acknowledge Ts. Dr. Muhammad Idzdihar Idris from the Faculty of Technology Electronics Engineering and Computer Science at Universiti Teknikal Malaysia Melaka (UTeM) for sharing the information regarding the perovskite solar cell during the workshop of fabrication of solar cells.

TABLE OF CONTENTS

DECLARATION	
APPROVAL	
DEDICATION	
ABSTRACT	i
ABSTRAK	ii
ACKNOWLEDGEMENT	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vii
LIST OF FIGURES	ix
LIST OF ABBREVIATIONS	xii
LIST OF SYMBOLS	xiii
LIST OF APPENDICES	xiv
LIST OF PUBLICATIONS	XV

CHAPTER

CIIP			
		ALATSIA A	4
1.	INI	RODUCTION	1
	1.1	Introduction	1
	1.2	Motivation	1
	1.3	The Problem of Instability of Perovskite Solar Cell	4
	1.4	Objective	5
	1.5	Scope	6
	1.6	Research Contribution	6
	1.7	Chapter Layout	8
		اوية مرسية بتكنيك مليسيا ملاك	
2.	LIT	ERATURE REVIEW	10
	2.1	Introduction	10
	2.2	Mechanism of Solar Cell KAL MALAYSIA MELAKA	10
		2.2.1 Generation	13
		2.2.2 Transportation	14
		2.2.3 Collection	15
	2.3	The Efficiency of the Perovskites Solar Cell	18
	2.4	The Relation of the Efficiency with the J-V Curve	24
	2.5	The Mathematical Modeling of Perovskite Solar Cell	25
	2.6	The Numerical Simulation to the Mathematical Modeling of Perovskite	
		Solar Cell	30
	2.7	Summary	32
3.	ME	THODOLOGY	34
	3.1	Introduction	34
	3.2	Modeling of Perovskite Solar Cell	36
		3.2.1 The Charge Transport Equation	37
		3.2.2 Boundary Condition	40
		3.2.3 Modeling of the Perovskite Laver (Single Laver) for Unsteady	.0
		-State Condition	42
		Suno contrition	. –

	3.2.4 The Parameters of the Perovskite Solar Cell	43
3.3	The Dimensionless Model	44
	3.3.1 The Dimensionless Model for the Transport Equation	45
	3.3.2 The Dimensionless Model for Boundary Condition	48
	3.3.3 The Dimensionless Model for the Perovskite Layer (Single-layer	
	Model)	49
3.4	Method of Line Technique	50
	3.4.1 Development of Sparse Matrix for the Perovskite Solar Cell	
	System	52
	3.4.2 The Procedure of Simulation Using the MOL on Unsteady State	-
	Conditions	60
	3.4.3 The Procedure of Thickness Variation Simulation for the	
	Perovskites Laver	61
	3.4.4 The Procedure of the Bimolecular Recombination Coefficient	
	Variation	62
3.5	Solution to the Steady-State Model: Folding Method	63
0.0	3.5.1 The Simulation of the Multi-laver Perovskite Solar Cell	65
3.6	J-V Curve AYSIA	67
	3.6.1 The Procedure for Variation of Blend Phase, HTL, and ETL	
	Thicknesses	69
	3.6.2 The Procedure for Variation of Doping Density Simulations	72
	3.6.3 The Procedure for Diffusion Coefficient Variation Simulation	73
	3.6.4 The Procedure for Temperature Variation Simulation	74
	3.6.5 The Procedure for Photo-generated Current Density in	
	Perovskite Layer Variation Simulation	75
	3.6.6 The Procedure for Recombination Current Density Loss	
	2. Variation Simulation	76
	3.6.7 The Procedure for Resistivity Variation Simulation	77
3.7	Summary	78
	UNIVERSITI TEKNIKAL MALAYSIA MELAKA	
RES	SULT AND DISCUSSION	79
4.1	Introduction	79
4.2	The Analysis of the Unsteady-State Model at Blend Phase Layer.	79
	4.2.1 The Impact of Varying Thickness in the Blend Phase Layer	81
	4.2.2 The Impact of Different Recombination Coefficients in the	
	Blend Phase Layer.	85
4.3	The Simulation Result for the Multi-layer Steady-state Condition of a	
	Perovskite Solar Cell	88
4.4	The Simulation Results of the J-V Curve	92
	4.4.1 The Simulation Result of the Effect of the Thickness Variation	
	on the Efficiency of Perovskite Solar Cells	93
	4.4.2 The Effect of the Doping Density Variation	99
	4.4.3 The Effect of Diffusion Coefficient Variation	101
	4.4.4 The Outcome of the Temperature Variation Simulation on the	
	Perovskite Solar Cell Performance	103

4.

	4.4.5	The Reaction of Photo-generated Current Density Variation in	
		Perovskite Solar Cell Performance	105
	4.4.6	The Simulation Result of the Recombination Current Density	
		Loss Variation Simulation on the Performance of the Perovskite	
		Solar Cell	106
	4.4.7	The Effect of Different Resistivity on the Performance of the	
		Perovskite Solar Cell	108
4.5	The Si	mulation Result of Optimized Perovskite Solar Cell	110

5. CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH

		114
5.1	Conclusion	114
5.2	Future Works	118
REFERENCES		120
APPENDICES		138

LIST OF TABLES

TABLE	TITLE	PAGE
Table 3.1	The parameters list is related to the list of equations	43
Table 3.2	The parameter of the perovskites solar cell	60
Table 3.3	The calculation of the λ and γ for different thicknesses in the blend phase layer	61
Table 3.4	The value of parameters for J-V curve simulation of different recombination coefficients	63
Table 3.5	The parameter's value for the simulation purpose	65
Table 3.6	The parameter of the perovskites solar cell	68
Table 3.7	The varied thicknesses for the blend phase layer	70
Table 3.8	The value of varied HTL	70
Table 3.9	The value of varied ETL	71
Table 3.10	The value of doping density	73
Table 3.11	The parameter of diffusion coefficient for holes and electrons using the reference	74
Table 3.12	The temperature of the perovskites solar cell varied from 298K to 360K	74
Table 3.13	The value of the varied photogenerated saturated current density	75
Table 3.14	The value of the varied recombination current density loss	76
Table 3.15	The value of resistivity in the perovskite solar cell	77
Table 4.1	The efficiency of the perovskite solar cell with the varied thickness for the blend phase (perovskite) layer	84
Table 4.2	The efficiency of the perovskite solar cell with the effect of different recombination coefficients	87
Table 4.3	The result of the simulation for different current densities on the charge densities and potential difference	92

Table 4.4	The result from the simulation is recorded at the blend phase layer	95
Table 4.5	The result from the simulation is recorded in the HTL	96
Table 4.6	The result from the simulation is recorded in the ETL	98
Table 4.7	The efficiency of different levels of doping for both the acceptor and donor	100
Table 4.8	The table shows the result from Figure 4.14 on the effect of varied diffusion coefficients on the efficiency of perovskite solar cells	102
Table 4.9	The result from the simulation of the J-V curve when the temperatures varied	103
Table 4.10	The value of the efficiency of the perovskite solar cell using the different photogenerated current densities	105
Table 4.11	The result extracted from the simulation of the J-V curve from Figure 4.18	107
Table 4.12	The parameters of the simulation result from Figure 4.19	109
Table 4.13	The optimized value of perovskites solar cell	111
Table 4.14	The value of the parameters from the simulation result of the J-V curve with optimized efficiency of the perovskites solar cell	112

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 1.1	The example of solar cell application at the university	2
Figure 1.2	The efficiency of perovskite solar cell status from 2018 until 2023 (Cell Efficiency Data Table 2024, 2024)	3
Figure 2.1	The mechanism of the solar cell via the circuit configuration (Lu et al., 2019)	11
Figure 2.2	The schematic diagram of the perovskites solar cell. The dashed line represents the highest occupied molecular orbital (HOMO) (solid line) while the least unoccupied molecular orbital (LUMO) (dashed line). The p-type donor layer $-l1 - L2 < x < -L2$, the blend phase layer $-L2 < x < L2$ and the n-type acceptor layer $L2 < x < l2 + L2$. The p is holes and n is electrons, where x represents thickness and L is diffusion length	12
Figure 2.3	The types of recombination in perovskites solar cells	16
Figure 2.4	The summary of the factor that affects the efficiency of the perovskite solar cell	18
Figure 2.5	The ideal perovskite structure in the schematic sketch (Wu et al., 2018)	19
Figure 2.6	(a) The structure of the inverted p-i-n planar structure of a perovskite solar cell and (b) the structure of the n-i-p planar structure of a perovskite solar cell	19
Figure 2.7	(a) The example of ETL free structure, (b) the example of HTL free structure	20
Figure 3.1	The flowchart of the research	35
Figure 3.2	The perovskite solar cell is connected with gold (Au) as an anode and fluorine-doped tin oxide (FTO) as a cathode, x represents the thickness of the perovskite solar cell. HTL is a p-type layer made up of spiro-OMETAD) consisted of hole charge while the blend phase layer (perovskites) consisted of holes and electron charge, and ETL is a n-type layer made up of titanium oxide (TiO2) which is filled by electrons charge	36
Figure 3.3	The equations are written in Chebgui via Chebfun packages	66

Figure 4.1	The comparison of the simulation result of charge densities against thickness with the experimental simulation result (Foster et al., 2014)			
Figure 4.2	(a) The charge density against thickness at $L1 = 100nm$. $L2 = 200nm$, $L3 = 300nm$, $L4 = 400nm$, and $L5 = 500nm$			
Figure 4.3	The result of the varied thickness on the J-V curve for the blend phase layer	83		
Figure 4.4	(a) The result of charge densities against thickness for $b1 = 1.1 \times 10 - 10m3s - 1$.(b) The result of charge densities against thickness for $b2 = 2.2 \times 10 - 14m3s - 1$. (c) The result of charge densities against thickness for $b3 = 1 \times 10 - 15m3s - 1$. (d) The result of charge densities against thickness for $b4 = 1.1 \times 10 - 16m3s - 1$	86		
Figure 4.5	The impact of different recombination coefficients on the performance of the perovskite solar cell	87		
Figure 4.6	The result of the simulation of charge densities compared with (Foster et al., 2014)	88		
Figure 4.7	The result of the simulation of the electric potential for all layers compared with reference via Chebfun using the folding method (Foster et al., 2014)	89		
Figure 4.8	The result of the simulation of charge densities compared with reference via Chebfun using the folding method	90		
Figure 4.9	The simulation results for the potential difference in multi-layers when the current densities varied	91		
Figure 4.10	The J-V curve of thickness variation from 200nm to 500nm on the blend phase layer (perovskite layer)	94		
Figure 4.11	The J-V curve of thickness variation from 100nm to 700nm on HTL	96		
Figure 4.12	The J-V curve of thickness variation from 50nm to 250nm on ETL	98		
Figure 4.13	The effect of level doping density on the J-V curve	100		
Figure 4.14	The J-V curve characteristics of varied diffusion coefficient	101		
Figure 4.15	The J-V curve characteristic of the changes in the temperature	103		

Figure 4.16	The relation of temperature and efficiency of the perovskite solar cell	104
Figure 4.17	The J-V curve characteristic with varied photogenerated current density	105
Figure 4.18	The effect of varied recombination current density loss on the performance of the perovskite solar cell	107
Figure 4.19	The simulation result of the J-V curve characteristics for the varied resistivity	109
Figure 4.20	The simulation result of the J-V curve characteristics using the optimized parameters	112

LIST OF ABBREVIATIONS

UTeM	- Universiti Teknikal Malaysia Melaka
BVP	- Boundary Value Problem
ETL	- Electrons Transport Layer
FDA	- Finite Difference Approximation
НОМО	- Highest Occupied Molecular Orbital
HTL	- Hole Transport Layer
J- V	- Current density-voltage
LUMO	Lowest Unoccupied Molecular Orbital
MOL	- Method of Line
ODE	- Ordinary Differential Equation
PDE	Partial Differential Equation
	اونيوم سيتي تيكنيكل مليسيا ملاك
	UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF SYMBOLS

φ	-	Potential Difference
q	-	Elementary Charge
k	-	Boltzmann Constant
Т	-	Temperature
$\epsilon_i, \varepsilon_i$	-	Permittivity
D _i	-	Diffusion Coefficient
b	- 14	Recombination coefficient
η	1 1 1 1 1	Efficiency
L _i , l _i	- TE	Thickness
t	Colora A.	Time
V	shi	Voltage
J		Current density
G	UNIVE	Generation Generation
N _i	-	Doping Density
R	-	Resistivity
Р	-	Power
FF	-	Fill Factor
p	-	Holes
n	-	Electrons

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix A	This appendix discussed the extension of the dimensionless model of the perovskites solar cell for the blend phase layer, ETL, and HTL.	138
Appendix B	This appendix discussed the extension of the dimensionless model of the perovskites solar cell using folding technique.	142
Appendix C	This section shows the coding for the blend phase layer using MOL technique	143
Appendix D	The coding for the simulation of J-V curve.	147
	اونيۈمرسيتي تيڪنيڪل مليسيا ملاك	
i	JNIVERSITI TEKNIKAL MALAYSIA MELAKA	

LIST OF PUBLICATIONS

The following is the list of publications related to the work of this thesis:

R. Ranom, R. S. Bacho, and S. N. A. S. A. Jamal, 2022 "The effect of electrolyte parameter variation upon the performance of lithium iron phosphate (LiFePO4)," *Indonesian Journal of Electrical Engineering and Computer Science (IJEECS).*, vol. 28, no. 1, pp. 58–66, 2022, (SCOPUS indexed).

B.Y. Seah, R. Ranom, S. N. A. S. A. Jamal, 2021. Numerical simulation of one-dimensional solar cell model, in *Proceedings of Malaysian Technical Universities Conference on Engineering and Technology (MUCET)* 2021, pp. 425-426.

S. N. Aisyahtun Sakinah Ahmad Jamal, Rahifa Ranom, 2024. Method of line technique to solve the drift-diffusion equation for perovskite solar cell in *AIP Conference Proceeding*. 7 March 2024; vol. 2895, no. 1, pp. 020013. https://doi.org/10.1063/5.0193418. (SCOPUS indexed).

Sakinah, S.N.A., Ranom, R., Basmin, S.H. and Yao, L.J., 2024. Numerical simulation of one-dimensional perovskite solar cell model. *Bulletin of Electrical Engineering and Informatics*, vol. 13, no. 4, pp.2221-2230. https://doi.org/10.11591/eei.v13i4.6463. (SCOPUS indexed).

CHAPTER 1

INTRODUCTION

1.1 Introduction

This chapter introduces solar cells, perovskites solar cells, the instability issue of perovskites solar cells, the importance of the studies, the objectives and hypothesis to encounter perovskites solar cell issue in terms of instability of Perovskites, mechanism of the solar cell, types of the solar cell, modelling of Perovskites and numerical procedure of PSC. God created the sun and the moon for balance in the world, which contributes to the benefits for living creatures. Solar energy is among the renewable energies highly demanded to generate electricity. Sunlight is the most preferable over other renewable energies such as wind, hydro, tidal and biomass owing to its sustainability, harmless radiation, cost-effective, pollution-free and continuous sources compared to the consumption of nuclear power, which gives rise to global warming, while fossil fuels and oil will be depleted and finish if keep being used (Kabir et al., 2018; Letcher, 2018; Overland, 2019; Rabaia et al., 2021).

1.2 Motivation

Since 1970, the issue of the oil crisis during the war has motivated scientists to use renewable energy as a source to generate electricity and transportation (Overland, 2019). The evolution of solar cells started with the first-generation, second-generation and thirdgeneration categories to improve their efficiencies and performance (Ahmadi, 2018). The first generation of solar cells uses wafer-based technologies such as Si-solar cells, the second generation utilises thin-film technologies such as CdTe and CIGS solar cells, whereas the third generation of solar cells uses emerging photovoltaic technologies such as Perovskites solar cell, DSSC, quantum dot and tandem solar cell (Dragulinescu and Dragulinescu, 2020; Kodati and Radhika, 2020; Kodati and Rao, 2020; Lin and Peng, 2021). The types of materials used in solar cells display different levels of efficiency, which rely on the process of fabrication technologies and climate changes to achieve maximum light absorption (Alarifi, 2021). Today, the application of solar photovoltaics covers indoor applications; for instance, wireless sensor nodes in automated buildings and calculators, as well as outdoor applications to generate electricity, such as traffic lights, universities, housing areas and outer space (Lee and Ebong, 2017; McMillon-Brown et al. 2021). Figure 1.1 presents an example of solar panels installed at the faculty of electrical engineering at the Universiti Teknikal Malaysia Melaka (UTeM), Melaka.

Figure 1.1 The example of solar cell application at the university

The Malaysian government has implemented a few incentive programs to encourage citizens to harness solar energy, such as Net Energy Metering (NEM), Net Energy Metering (NEM), Large Solar Scale (LSS), Supply Agreement with Renewable Energy (SARE), Self-Consumption Scheme (SELCO) and 'Peer-to-Peer' (P2P) for individual or commercial usage (Zainuddin et al., 2021) NEM is a program replacing the feed-in tariff mechanism that

offers the same tariff for selling and buying electricity and automatically gives smart meters for registered solar energy consumers under the NEM program (Abdullah et al., 2019). All the programs benefit both parties and contribute to the economic growth of Malaysia.

Related to the benefit given by the government, the perovskite solar cell could be one of the potential panels suggested to be used in Malaysia. The efficiency of perovskite solar cell data from 2018 to 2023, was obtained from the National Renewable Energy Laboratory, (NREL) and is summarized in Figure 1.2 (Cell Efficiency Data Table 2024, 2024).

Figure 1.2 The efficiency of perovskite solar cell status from 2018 until 2023 (Cell Efficiency Data Table 2024, 2024)

Figure 1.2 shows the efficiency of perovskite solar cell status from 2018 until 2023. The efficiency of PSC is soaring from 23.7% in 2018 to 26.1% in 2023. The perovskite solar cell has advantages in cost-effectiveness, high-power conversion efficiency, high ability of light absorption, solution processability, and low cost (Ijaz et al., 2020; K. Zhang et al., 2020; Zhao and Park, 2015) besides other intrinsic properties such as tuneable bandgap, high coefficient of absorption, high ability carrier transport and mobility (Suresh Kumar and Chandra Babu Naidu, 2021). Recent progress revealed that the flexible perovskites solar cell

could be used for specified applications such as smart integrated buildings, solar-powered outdoor flight, wearable PSCs as a power source to power a smartwatch, a solar-powered wearable sensor and solar-powered tents (Tang and Yan, 2021).

1.3 The Problem of Instability of Perovskite Solar Cell

Perovskite solar cells are one of the advanced technologies from dye-sensitised solar cells well known for their rapid efficiencies, low cost, and tunable bandgap. However, there is an issue related to perovskite solar cells that requires further attention. Despite the high toxicity level of the materials and short lifetime, the main problem with the perovskite solar cell is its instability issue (Q. Chen, 2020), which is affected by moisture, light, and thermal exposure in terms of intrinsic chemical and electronic properties (A. Mahapatra et al., 2020; Zhao and Park, 2015). The instability issue of the perovskite solar cell leads to hysteresis (Guo et al., 2020; A. Mahapatra et al., 2020; Miyashita et al., 2021) which is related to the structural distortion and unbalanced distribution of electrons and holes in the perovskite solar cell (W. Chen et al., 2018; Nemnes et al., 2017).

The behaviour of holes and electrons in perovskite solar cells is dynamic, resulting in the fluctuation of the current values upon the cycling of the voltage (Ravishankar et al., 2017). During the ion migration, the charge is trapped or de-trapping and accumulated at the interface of the perovskite solar cell due to diffusion mechanisms of charge transport and charge release at the interface between layers, further dominating the global electrical field depending on the carrier lifetime and concentration of mobile ions (Boldyreva et al., 2019; Chang et al., 2020; Khorramshahi and Takshi, 2019). Courtier et al. (2018) suggested tunable doping density or permittivity of each transport layer to reduce loss due to interfacial

recombination for the perovskite solar cell model. This suggestion is related to the issue of describing the dynamic mechanism related to the generation, transportation and collection process in PSC.

Another related problem is identifying the best and most comprehensive model to relate all the above dynamic mechanisms that can give information and insight into the perovskite solar cell. This problem requires an expensive and complex numerical procedure to solve the evolution of charge density across three different layers: donor phase, blend phase, and acceptor phase with different properties, which requires a set of solar cell parameters that are difficult to obtain such as diffusion coefficient where radiotracer is used to extract the diffusion coefficient of mobile ions in a controlled environment (Thomas and Thankappan Aparna, 2018). The costs required to provide such a controlled and safe environment are expensive. Thus, the numerical procedure must offer high accuracy and efficiency that can simulate the whole Perovskite solar cell system. Nevertheless, the model would still face difficulty in determining numerous values of parameters for validating the model with experimental data.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

1.4 Objective

The objectives of the research are:

- i) To identify the drift-diffusion model of a one-dimensional perovskite solar cell.
- ii) To numerically solve the equations of perovskite solar cells using the method of line technique and folding method.
- iii) To analyse the performance of perovskite solar cells (J-V curve) and the effect of the thickness variations, diffusion coefficient variation, temperature variation,