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ABSTRACT 

 

Network analysis or graph analytics is crucial in identifying impactful nodes in complex 
networks, which are prevalent across diverse domains and display intricate structures and 
interactions. Understanding the significance of nodes within these networks is essential for 
uncovering their dynamics and functionalities. However, conventional centrality measures 
often struggle to capture the complexities of real-world networks, necessitating innovative 
solutions. While combining multiple centrality measures shows promise, optimizing these 
combinations remains challenging. Existing methods, such as the Global Structure Model 
(GSM), may require revision to fully assess individual nodes' unique influence. To address 
these gaps, this research introduces a novel hybrid centrality method called Global Structure 
Model-Degree-Kshell (GDK), integrating both local and global centrality measures. The aim 
of this research is to provide a more accurate and detailed evaluation of node influence within 
complex networks. GDK combines various centrality measures to offer comprehensive 
insights into node importance. Two variants of GDK are presented: GDK-A (addition) and 
GDK-M (multiplication). The methodology involves a standardized evaluation analysis to 
compare the performance of GDK-A and GDK-M against conventional centrality methods. 
Results indicate that GDK-M outperforms both traditional methods and GDK-A, 
demonstrating superior accuracy and effectiveness. Specifically, GDK-M shows improved 
performance percentages, highlighting its capability to better identify impactful nodes. This 
research significantly contributes to both academia and industry by enhancing network 
analysis techniques, enabling more informed decision-making across various domains. The 
introduction of the hybrid centrality method opens new possibilities for advancing the 
understanding of complex network analysis and its real-world applications. By exploring the 
hidden intricacies of complex networks, this study sheds light on their potential to shape the 
interconnected world.  
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MODEL STRUKTUR GLOBAL HIBRID UNTUK MENGENAL PASTI NOD  
BERPENGARUH BERIMPAK DALAM ANALISIS RANGKAIAN 

 

ABSTRAK 

 

Analisis rangkaian atau analitik graf adalah penting dalam mengenal pasti nod yang 
berpengaruh dalam rangkaian kompleks, yang terdapat di pelbagai domain dan 
mempamerkan struktur serta interaksi yang rumit. Memahami kepentingan nod dalam 
rangkaian ini adalah penting untuk mendedahkan dinamik dan fungsinya. Walau 
bagaimanapun, ukuran sentraliti konvensional sering menghadapi kesukaran untuk 
menangkap kerumitan rangkaian dunia sebenar, yang memerlukan penyelesaian inovatif. 
Walaupun gabungan pelbagai ukuran sentraliti menunjukkan potensi, mengoptimumkan 
gabungan ini tetap mencabar. Kaedah sedia ada, seperti Model Struktur Global (GSM), 
mungkin memerlukan semakan untuk menilai sepenuhnya pengaruh unik nod individu. 
Untuk mengatasi kekurangan ini, kajian ini memperkenalkan kaedah sentraliti hibrid baru 
yang dipanggil Model Struktur Global-Degree-Kshell (GDK), yang menggabungkan ukuran 
sentraliti tempatan dan global. Matlamat kajian ini adalah untuk menyediakan penilaian 
yang lebih tepat dan terperinci mengenai pengaruh nod dalam rangkaian kompleks. GDK 
menggabungkan pelbagai indeks sentraliti untuk menawarkan pandangan menyeluruh 
tentang kepentingan nod. Dua varian GDK diperkenalkan: GDK-A (penambahan) dan 
GDK-M (pendaraban). Metodologi melibatkan analisis penilaian piawai untuk 
membandingkan prestasi GDK-A dan GDK-M dengan kaedah sentraliti konvensional. 
Keputusan menunjukkan bahawa GDK-M mengatasi kedua-dua kaedah tradisional dan 
GDK-A, menunjukkan ketepatan dan keberkesanan yang lebih baik. Secara khusus, GDK-
M menunjukkan peningkatan peratusan prestasi, menonjolkan keupayaannya untuk 
mengenal pasti nod yang berpengaruh dengan lebih baik. Kajian ini menyumbang secara 
signifikan kepada kedua-dua akademia dan industri dengan meningkatkan teknik analisis 
rangkaian, membolehkan pembuatan keputusan yang lebih berinformasi merentasi pelbagai 
domain. Pengenalan kaedah sentraliti hibrid membuka kemungkinan baru untuk memajukan 
pemahaman analisis rangkaian kompleks dan aplikasinya dalam dunia sebenar. Dengan 
meneroka kerumitan tersembunyi rangkaian kompleks, kajian ini mendedahkan potensinya 
untuk membentuk dunia yang saling berhubung. 
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CHAPTER 1  

INTRODUCTION 

1.1 Research Background 

Complex networks are a crucial concept across various scientific disciplines, such as 

computer science, mathematics, and physics. These networks have a unique architecture that 

differs from a simple network. Complex networks have been extensively studied because of 

their importance in comprehending the structure and dynamics of complex systems 

(Dorogovtsev et al., 2005). Examining these networks is a crucial undertaking that can reveal 

valuable insights and patterns within the interconnected data structures. The investigation of 

complex networks has resulted in the creation of conceptual and mathematical toolsets, such 

as graph analytics, which facilitate the examination of the connectivity, structure, and dynamics 

of these systems (Bian and Deng, 2017; Wang et al., 2022). 

Graph analytics plays an important role in this process as it allows for the extraction of 

valuable insights from complex networks  (Wu et al., 2022). Graph analytics can provide a 

deeper understanding and management of complicated networks, tackling the difficulties 

linked to complexity of the computational process and memory demands when examining 

large-scale networks (Xu, 2021).  

In order to extract useful insights and information from the interconnected elements, 

graph analytics comprises a wide range of tools and strategies for analyzing graph data 

structures. Community detection (Fernandes et al., 2019; Agrawal et al, 2020), path analytics 

(Pan and Saramäki, 2011; Zhang et al., 2017), connectivity analysis (Welton et al., 2020), and 

centrality (Kosch et al., 2005) are some of the techniques used in graph analytics. These 

techniques are useful in many fields, including computational biology, transportation systems, 
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and social network research. These techniques make it possible to draw important conclusions 

and patterns from complex structures and give useful knowledge on the system. 

Centralities are fundamental methods in graph analytics for finding the most important 

nodes in a network. Centrality measures offer valuable insights into the importance and impact 

of nodes, assisting in a range of analytical tasks like identifying key players in social networks, 

understanding critical infrastructure in transportation networks, and pinpointing essential 

proteins in biological networks (Mishra et al., 2021). Some examples are degree centrality, 

betweenness centrality, and eigenvector centrality. These metrics provide valuable insights into 

the significance of nodes in complex networks, revealing impactful nodes and hubs that play 

crucial roles in the dynamics of the network. 

It is important to note that various centrality measures have specific focuses, and their 

effectiveness can vary based on the network's characteristics and analysis objectives (Borgatti, 

2005; Zhuge and Zhang, 2009). Therefore, it is crucial to examine and contrast various 

centrality measures to gain a thorough grasp of the significance of nodes within complex 

networks. 

Recent research has indicated the importance of incorporating various centrality 

measures in graph analytics. Through the integration or hybridization of multiple centrality 

measures, analysts can obtain a comprehensive perspective on the significance and impact of 

nodes within a network (Salavaty et al., 2020). Understanding the importance of a node's 

influence in a network is essential for grasping its overall impact. This understanding enables 

individuals to understand the significance of the node not only in its immediate surroundings, 

but also in terms of its broader impact on the entire network. 

This study aims to build upon established foundations by proposing a novel method 

that combines multiple centrality measures to assess node influence in complex networks. The 

proposed hybrid method is designed to enhance the accuracy, robustness, and 
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comprehensiveness of evaluating node importance within such networks. The primary 

objective of this research is to deepen the comprehension of node significance, identify key 

influencers, and ultimately enhance the performance and efficiency of complex networks 

across diverse domains. 

1.2 Problem Statement 

Identifying the most impactful nodes in complex networks is a challenging task due to 

the inherent limitations of existing methods. Current centrality measures, while providing 

valuable insights, often offer only a partial perspective as they fail to account for the unique 

attributes and influences of individual nodes (Du et al., 2014; Qiao et al., 2017; Rajeh et al., 

2023). This partial perspective results from the separate consideration of local and global 

network properties, each with distinct characteristics and limitations. Neglecting unique node 

attributes and influences can have several detrimental effects on network analysis. First, it can 

lead to an incomplete understanding of the network's structure and dynamics. For instance, 

nodes with similar topological positions might play vastly different roles if their attributes are 

considered. Second, by not accounting for unique attributes, centrality measures may fail to 

identify truly impactful or critical nodes. Nodes with high centrality but low relevance in terms 

of their attributes might be overemphasized, while those with lower centrality but high attribute 

significance could be overlooked. Third, models that do not incorporate node-specific 

information may produce less accurate predictions of network behavior, such as the spread of 

information, disease, or influence. This can lead to ineffective strategies in areas like marketing, 

epidemiology, or network security. Finally, policies or interventions based solely on traditional 

centrality measures may be misguided if they do not consider node attributes. For example, 

targeting nodes based only on their degree might not be effective if those nodes lack the 

capacity or influence suggested by their connections alone. 
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Local measures capture node-specific details and immediate connections but often 

overlook the broader network context. Conversely, global measures provide an overarching 

view of the network structure but can miss nuanced local influences. Combining these 

perspectives could leverage the strengths of both approaches, addressing their respective 

weaknesses. However, the integration of local and global characteristics in a standardized 

manner remains an unresolved challenge (Ibnoulouafi et al., 2018; Salavaty et al., 2020; Shetty 

et al., 2022). The absence of standardized evaluation methods for hybrid centrality measures 

complicates the thorough assessment and comparison of nodes across different studies and 

domains (Dai et al., 2019; Wu et al., 2019). This lack of standardization can lead to biased 

conclusions and hinder the development of reliable strategies for network analysis. 

1.3 Research Question 

The research questions embark from the problem statement are as follows: 

i) How different centrality measures and their combinations contribute to the 

effectiveness of identifying the most important nodes in complex networks? 

ii) How to develop a method that effectively incorporates local and global centrality 

measures by hybridizing them with a global structure model, considering network 

information, to enhance the identification of key nodes in complex networks? 

iii) How can the proposed method be validated through comprehensive evaluation with 

real-world datasets in identifying important nodes in complex networks? 

1.4 Research Objective 

The research aims to achieve the following objectives: 

i) To analyze different centrality measures and their combinations in terms of the 

identifications of the most impactful nodes in complex networks. 
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