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ABSTRACT 

Acoustic Power Transfer (APT) is known as one of the techniques used in wireless power transmission 
technology. APT uses sound waves or vibration as a tool to transmit power. APT can be applicable in 
air, metal, and water mediums and also pass through living tissue in the human body. APT systems 
consist of a transmitter, propagation medium, and receiver, allowing for efficient and non-contact 
energy transfer, even under challenging environments, especially where the electromagnetic (EMT) is 
not permissible. Even though APT has received considerable attention from researchers in recent years, 
however, APT is still experiencing the low performance efficiency. Most findings concluded that the 
efficiency of APT systems relies on the ultrasonic air transducer excitation circuit and power 
amplification circuit. Hence, the major objective of this thesis is to design a Class E ZVS inverter for 
driving an APT transmitter circuit useful for exciting ultrasonic transducer properly. However, the 
nature of Class E ZVS inverter is inherently unstable to parameter variations, which can lead to 
instability and a decrease in efficiency. The design starts with a Class E ZVS inverter for 47 Ω purely 
resistive component, which is the optimum load operation, Rs to produce 2.0 W output power. The 
experimental results show that the design capable to produce 85.42% of DC-to-AC power conversion 
efficiency. Then, the design of an APT transmitter unit that incorporated a π1a impedance matching 
circuit is proposed to aim for less sensitive network to load variation. The experimental results show 
that the design achieved an input power of 2.05 W and the output power of 1.74 W and produced 
85.07% of DC-to-AC power conversion efficiency. The analysis regarding Zero Voltage Switching 
(ZVS) waveform, input power, 𝑃𝑖, output power, 𝑃𝑜, and efficiency, ƞ for optimum load condition, 
load variation condition and frequency variation condition were conducted in this thesis, which 
developed the second objective of the thesis. Overall performance shown the designed inverter 
achieved the targeted objective in which the application of π1a impedance matching network able to 
lessen the sensitivity of Class E ZVS to not only the load variation, also the frequency variation. Both 
load and frequency variation efficiency can be observed. To justify the designed inverter in actual 
environment, the 40 kHz ultrasonic air transducer, as a vital component to convert an electrical energy 
to the sound wave is applied as a load to the inverter. Based on the experimental setup, this integration 
managed to preserve the ZVS condition, the input power, 𝑃𝑖, of 2.05 W, the output power, 𝑃𝑜, of 1.58 
W and the DC-to-AC power conversion efficiency, ƞ of 80.97%. This achievement is considered good 
due to that no alteration made to the ultrasonic air transducer parameters. Furthermore, this efficiency 
still more than 80% as suggested by more previous research dealing with Class E ZVS inverter. The 
developed APT transmitter unit is linked to the APT receiver unit to evaluate the performance of output 
voltage versus distance in the system. The highest performance that contributed in this thesis related 
to analysis output voltage versus distance is the efficiency of 4% at the distance of 10 mm.  
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REKA BENTUK DAN PEMODELAN RANGKAIAN PADANAN GALANGAN UNTUK 

PEMANCAR KUASA AKUSTIK PENYONGSANG KELAS E ZVS 

 

ABSTRAK 

 

Pemindahan Kuasa Akustik (APT) adalah salah satu teknik yang digunakan dalam teknologi 
penghantaran kuasa tanpa wayar. APT menggunakan gelombang bunyi atau getaran sebagai alat 
untuk menghantar kuasa. APT boleh digunakan dalam medium udara, logam dan air dan juga melalui 
tisu hidup dalam tubuh manusia. Sistem APT terdiri daripada penghantar, medium perambatan dan 
penerima, membolehkan pemindahan tenaga yang cekap dan tidak bersentuhan, walaupun dalam 
persekitaran yang mencabar, terutamanya di mana elektromagnet (EMT) tidak dibenarkan. Walaupun 
APT telah mendapat perhatian yang besar daripada penyelidik dalam beberapa tahun kebelakangan 
ini, namun, APT masih mengalami kecekapan prestasi yang rendah. Kebanyakan penemuan membuat 
kesimpulan bahawa kecekapan sistem APT bergantung pada litar pengujaan transduser udara 
ultrasonik dan litar penguatan kuasa. Oleh itu, tesis ini bertujuan, sebagai objektif utamanya, untuk 
menyediakan reka bentuk yang cekap bagi penyongsang ZVS Kelas E untuk menjanakan litar 
pemancar APT supaya transduser ultrasonik dapat diuja dengan betul. Walau bagaimanapun, 
penyongsang Kelas E ZVS dalam keadaan semula jadi, sensitif kepada variasi parameter, yang boleh 
membawa kepada ketidakstabilan dan penurunan kecekapan. Reka bentuk bermula dengan 
penyongsang Kelas E ZVS untuk 47 Ω komponen rintangan tulen, yang merupakan operasi beban 
optimum, Rs untuk menghasilkan kuasa keluaran 2.0 W. Keputusan eksperimen menunjukkan bahawa 
reka bentuk mampu menghasilkan 85.42% kecekapan penukaran kuasa DC-ke-AC. Kemudian, reka 
bentuk unit pemancar APT yang menggabungkan litar pemadanan impedans π1a dicadangkan untuk 
menyasarkan rangkaian yang kurang sensitif terhadap variasi beban. Keputusan eksperimen 
menunjukkan bahawa reka bentuk mencapai kuasa input 2.05 W dan kuasa output 1.74 W dan 
menghasilkan 85.07% kecekapan penukaran kuasa DC-ke-AC. Analisis mengenai bentuk gelombang 
Pensuisan Voltan Sifar (ZVS), kuasa input, 𝑃௜, kuasa output, 𝑃௢, dan kecekapan, ƞ untuk keadaan 
beban optimum, keadaan variasi beban dan keadaan variasi frekuensi telah dijalankan dalam tesis 
ini. yang membangunkan objektif kedua tesis. Prestasi keseluruhan menunjukkan penyongsang yang 
direka telah mencapai objektif yang disasarkan di mana penggunaan rangkaian pemadanan impedans 
π1a dapat mengurangkan sensitiviti Kelas E ZVS kepada bukan sahaja variasi beban, juga variasi 
frekuensi. Kecekapan variasi beban dan frekuensi boleh diperhatikan. Untuk mewajarkan 
penyongsang yang direka dalam persekitaran sebenar, transduser udara ultrasonik 40 kHz, sebagai 
komponen penting untuk menukar tenaga elektrik kepada gelombang bunyi digunakan sebagai beban 
kepada penyongsang. Berdasarkan persediaan eksperimen, penyepaduan ini berjaya mengekalkan 
keadaan ZVS, kuasa input, 𝑃௜ , sebanyak 2.05 W, kuasa output, 𝑃௢, dan kecekapan penukaran kuasa 
DC-ke-AC, ƞ sebanyak 80.97%. Pencapaian ini dianggap baik kerana tiada perubahan dibuat pada 
parameter transduser udara ultrasonik. Tambahan pula, kecekapan ini masih lebih daripada 80% 
seperti yang dicadangkan oleh lebih banyak penyelidikan terdahulu yang berkaitan dengan 
penyongsang ZVS Kelas E. Unit pemancar APT yang dibangunkan dipautkan kepada unit penerima 
APT dalam konfigurasi SISO. Langkah ini adalah untuk menilai prestasi voltan keluaran berbanding 
jarak dalam sistem. Prestasi tertinggi yang disumbangkan dalam tesis ini berkaitan dengan analisis 
voltan keluaran berbanding jarak ialah kecekapan 4% pada jarak 10 mm.  
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INTRODUCTION 
 
 

1.1 Background 

In today's world of ever evolving technology, devices are continuously invented to the trend 

towards smaller, more mobile, and power-efficient devices highlights the importance of wireless 

power transfer (WPT) technologies. WPT is an evolving  technology that can transfer electric power 

wirelessly over certain distances without any physical contact. For this main reason, WPT can be used 

in less accessible locations which cannot be operated by traditional wired technologies.  

In general, WPT provides many advantages such as, (1) improves user-friendliness as the hassle 

from connecting cables is removed, (2) renders the design and fabrication of significantly  smaller 

devices without the attachment of batteries, (3) provides better product durability (example, waterproof 

and dustproof) for contact-free devices, (4) it enhances flexibility, especially for the devices for which 

battery-replacement or connecting cables for charging is costly, hazardous, or infeasible (example, 

bodyimplanted sensors), (5) charging devices is based on-demand fashion and thus is more flexible 

and energy-efficient. WPT also able to deliver power wirelessly to an equipment or sensor used in 

antimplantable devices thus, becoming a limiting factor for miniaturization that mostly required in 

designing any implantable devices. WPT also able to deliver power wirelessly to an equipment or 

sensor used in any applications with metal barriers such as gas pipes, vacuum chambers, nuclear waste 

containers, submarines and spacecraft hulls. By means of its characteristics of flexibility, free-

positioning capability as well as movability, the WPT  technology is an ideal technical solution for 

energizing electric-driven devices within some specific regions in the near future, especially for smart 

home applications as shown in Figure 1.1. 
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Figure 1.1     The smart home appliances  (FH, S.,2018) 

 

This thesis, however, only focus on the near field WPT technologies which power transferring 

is limited to few mm (Van Mulders et al., 2022). In this regard, there are three commont WPT types, 

1) Inductive power Transfer (IPT), 2) Capacitive Power Transfer (CPT) and 3) Acoustic Power 

Transfer (APT). Each of this type employing different unique field as energy transfer medium, such 

as a magnetic field in IPT, the electric field in CPT, and sound wave in APT technology. This thesis 

looked into the development of efficient contactless power transfer based on APT technology. APT 

offers a promising solution for power delivery in situations where traditional electromagnetic methods 

face limitations, such as in underwater ewenvironments or through metal barriers. Nevertheless, the 

APT system still experiences low performance efficiency, and it remains the main issue of the APT 

system. Therefore, this thesis focus on proposing an efficienct method of contactless power transfer 

based on APT technology to improve the overall efficiency of the system.  Specifically, the new power 

converter integration with impedance matching in power transmitter unit, thus enhancing the efficiency 

of the APT system.  
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1.2  Motivation 

The low power applications are mostly human-related devices such as the charging devices, for 

example, the handphone and the implantable devices. Since it is a human-related application, it is a 

become an issue to offer the technology that does not bring harm to human beings. The current and 

most applicable IPT which implies an electric field as their energy carrier transmission. The World 

Health Organization (WHO), 2006 and Abdel-sattar (2019) states that an electric field have an adverse 

effect, such as illness and death, to the human in long run exposure. Cables and wires have long posed 

as physical and electrical hazards. Many injuries and fatalities have been reported in relation to these 

hazards. Medical implantable devices and electronics appliances should not bring any harm to its 

users,rather it should be a symbiotic relationship. These reasons have become a strong motivation to 

carry out further research on WPT, and its alternatives, which brings to the APT. The increasing trend 

of APT technology especially in biomedical field, has made a major contribution to scientific and 

medical advances (Basaeri et al., 2016),(Siddiqui and Khan, 2019) and (Jin et al., 2021). 

 APT offers a great advantage over its major counterpart, IPT and another technique namely as 

CPT. The CPT uses an electric field to transfer power, while APT uses ultrasound wave between the 

ultrasonic transducers making it the safest wireless transmission technique so far. Thus, it does not 

require a special shield mechanism in the system to prevent the harmful waves to the user and require 

simpler circuitry. Since APT propagates using ultrasound waves, it can penetrate any metal 

surrounding (Awal et. al., 2016), (V. F. G. Tseng et al., 2016)  and (Freychet et al., 2020) which was 

a major limitatition encountered by the IPT and CPT technology.  Additionally, due to the nature of 

the ultrasound waves, the transmission process does not generate eddy current heating effect to the 

application (Sarker et al., 2019) and (Yan et al., 2019). Also, in terms of power transmission efficiency 

over a distance, APT able to performs better than its major competitor, IPT as reported in (Basaeri et 

al., 2016), (Shadid and Noghanian, 2018) and (Cheah et al., 2019) whereas the acoustic power delivery 

outperforms the IPT at larger distances and for smaller devices. 
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1.3 Problem Statement 

In the APT system, it is very important that the available energy from a source is transferred 

efficiently to the load through any possible medium such as solid, liquid and air. In other words, higher 

efficiency can be achieved by eliminating all the possibility of energy losses contributed by any 

elements during the transfer process. Based on the literature, the energy efficiency of the APT system 

is still considerably low, especially those involving energy propagation through air medium (Roes, 

2011), (V.F. Tseng et al., 2018), (Ming Yuan et al., 2019), (V.F. Tseng et al., 2020) and (Liu and 

Abdulla, 2023).  This air medium is considered the most difficult energy propagation substance among 

others (Md Rabiul Awal et al., 2016). The difficulty of air medium to propogate energy is due to its 

particles arrangement which is far apart from each others,  resulting in difficulty  to pass energy from 

one particle to the another thus, contributing to low energy transfer efficiency as mentioned by Patnaik, 

D. et al  (2021). From this arrangement, air is considered as a low density medium that lacks the rigidity 

and consistency as compared to solid materials. In consequences, this means that sound waves 

encounter less resistance to move and are easily absorbed, reflected, or diffracted as they travel through 

the air medium (A. D. Pierce, 1994), (Rekha et al., 2017) and (Van Mulders et al., 2022). Apart from 

that, the losses of transmitting and receiving ultrasonic air transducers in terms of electrical and 

mechanical properties were identified as the contributing factors affecting the efficiency of the APT 

system (Roes, 2011) and (Ho Fai Leung et al., 2014). 

A study claimed that the efficiency improvement of the APT system depends on the ultrasonic 

air transducer excitation circuit (DC-to-AC) which converts the energy to vibrational efficiently, 

reducing the transducer propagation loss (Shigeta et al., 2011) and (Bisschop and Serdijn, 2019). 

Furthermore, Yan et al., (2019) also has concluded that the transmitting unit generally utilises a power 

amplifying circuit (inverter) to supply energy to the transmitting air transducer. Hence, a high 

efficiency Class E ZVS inverter is utilized to generate the required power for the ultrasonic air 

transducer at the transmitter unit. However, the soft switching property of Class E ZVS inverter that is 
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particularly dependent on variations in circuit parameters e.g., system loading and resonant elements 

could result in an unstable regime leading to a decrease efficiency once emergence off ZVS condition 

as discovered by Zhang, L., and Ngo, K.D (2019) and Komanaka et al. (2022). Based on these 

highlighted issues and problems, a further and enhanced air medium APT system must be deployed, 

hence, optimizing its efficiency. The proposed design involved the implementation of the Class E ZVS 

inverter at the APT transmitting side together with the impedance matching circuit.  

1.4 Research Objective 

Specifically, the objectives are as follows: 

 To design and optimize the efficiency of Class E ZVS inverter using π1a impedance 

matching that less sensitive to the load variations in APT transmitter unit.  

 To analyse the performance of the developed APT air through system based on ZVS 

conditions, input power, output power, efficiency and distance analysis. 

1.5 Scope of Research 

The scope of this research are as follows: 

(i) The design of π1a impedance matching circuit at the acoustic power transmitter unit of 

APT system. The choice of π1a impedance matching circuit topology is due to its 

similarity of the ultrasonic air transducer equivalent circuit topology in its series mode 

resistance, which produced the highest mechanical vibration. Furthermore, through this 

circuit topology, the process of tuning for internal dynamic capacitor, 𝐶଴ of ultrasonic 

air transducer can be carried out. 

(ii) The 40 kHz MCUSR18A40B12RS off-the-shelf ultrasonic air transducer used as the 

transmitting and receiving transducer respectively. 
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(iii) In considering the 50% transmission losses of APT system and application to low power 

sensors and biomedical implantable devices, this thesis proposed   a 2.0 W air through 

APT system that used to demonstrate low power utilisation. 

(iv) Regarding the implementation of the system for future consumption such as for 

biomedical implantable devices, the low operating frequency of  40 kHz was chosen 

due to mild effects to the users. 

(v) The pulse width modulation (PWM) signal and tuning for Class E ZVS inverter circuit 

were generated by function generator.  

(vi) The Mosfet driver circuit is operated at 39.8 kHz switching frequency. The selection of 

operating frequency is based on the series resonant frequency of the dedicated 40 kHz 

ultrasonic air transducers. 

(vii) The propagation medium of this system is air at the room temperature between 20° to 

26° degree celcius. 

(viii) The verification of the design process was carried out through computer simulation 

using professional software programs. 

(ix) Each developed circuit is implemented practically and experimental measurements 

were used to validate both the design process and the analysis. 

1.6 Contribution of Research 

Contributions of this thesis are made in the following related areas: 

(i) Energy transfer capability using acoustic method for 2.0 W application through air as 

medium of propagation. 

(ii) The π1a impedance matching circuit, as a major contribution in this thesis, was 

proposed to further enhance the efficiency of power conversion at the APT transmitter 
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unit by providing the Class E ZVS inverter with capability of less sensitive to the load 

variations. 

(iii) The characterization of off-the-shelf 40 kHz MCUSR18A40B12RS ultrasonic air 

transducer based on Butterworth Van Dyke (BVD) model for simple design execution.  

(iv) The usage of high efficiency, the Class E ZVS inverter to excite an ultrasonic air 

transducer at the APT transmitter unit. In this thesis, the Class E ZVS inverter circuit 

was designed based on operation analysis at duty cycle, D = 0.5, with targeted 2.0 W 

as output power and more than 90% efficiency.  

(v) Development of modeling a time domain transmitter APT system that contributes to 

usage of state-space approach.  

 

1.7 Thesis Outline 

Based on the objectives previously presented and, on the approach, proposed before, this thesis 

is made up of five (5) chapters,  

Chapter 1 presents the background of this study, motivation, problem statement, objectives, 

scopes, contributions and significance of the research. 

Chapter 2 starts with a brief overview of existing wireless power transfer (WPT) technologies, 

followed by the near field WPT category, which are Inductive Power Transfer (IPT), Capacitive Power 

Transfer (CPT), and Acoustic Power Transfer (APT). The explanation regarding advantages and 

disadvantages of each technology was included so that a clear comparison can be made. Meanwhile, 

the challenges in APT was also discussed in this section. In summary, this chapter also explained the 

APT system’s current issues and how this thesis proposed a new solution to improve the current 

performance of the system. 
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Chapter 3 presents the methodology that has been used to design APT transmitter unit that 

integrating Class E ZVS inverter as a power converter to drive a 40 kHz ultrasonic air transducer. Also, 

the π1a impedance matching circuit that has been applied to further enhance the performance of the 

developed transmitter unit. In this chapter, besides an analytical approach in modeling the circuit, the 

state-space modeling approach is also discussed.  

Chapter 4 discusses the results that were obtained whether through theoretical calculation, 

professional simulation and experimental works. In the first section, the design of Class E ZVS inverter 

with purely resistive component in the APT transmitter unit with single air transducer as transmission 

device is presented. This section showed the study that was carried out to understand the behavior of 

Class E ZVS inverter along specific load, load variation and frequency variation. Next, the design of 

Class E ZVS inverter integrated with π1a impedance matching circuit is proposed to further enhance 

the APT transmitter unit performance’s efficiency with less sensitivity to load variations. The 

performance of developed Class E ZVS inverter with π1a impedance matching network in terms of 

ZVS, input power, output power were analyzed. The performance comparison of APT transmitter unit 

without and with π1a impedance matching is performed and the significant power conversion 

efficiency improvement is observed. At the end of this chapter, the performance analysis based on the 

voltage transfer efficiency versus distance is conducted between the developed APT transmitter unit 

with π1a impedance matching and APT receiver unit. 

Chapter 5 summarizes the main conclusion as well as key achievements of the work 

undertaken in this thesis and recommendation areas for future work. 


