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ABSTRACT 

 

There are significant differences in surface morphology and physical characteristics between 

the various 3D printed objects that are being produced, which compromises the preciseness 

of the finished product. This study examines how several key parameters of the Selective 

Laser Sintering (SLS) 3D printer impact the material strength of Polyamide -12 (PA-12) 

using the Taguchi optimization method. The primary factorial parameter chosen is the 

material PA-12, which is a mixture of virgin, heated, and recycled materials. Additional 

parameters being studied include laser beam strength and layer thickness. Test specimens 

were fabricated using an SLS 3D printer following normal procedures to evaluate the 

physical qualities including tensile strength, roughness, impact resistance, and Rockwell 

hardness, as well as surface morphology and dimensional accuracy. Next, the surface 

morphology and dimension accuracy of the samples were assessed using a scanning electron 

microscope (SEM) and coordinate measuring machine (CMM). The optimal results were 

obtained with 100% virgin PA-12 material with a machine parameter of 60 watts of laser 

power and a layer thickness of 0.06 mm. This set of parameters achieved the best 

performance in terms of the mechanical qualities, dimensional accuracy, and part quality. 

Composition 1, produced completely of virgin material scored the highest in all tests, 

including tensile, impact, roughness, torsion, compression, and hardness tests. The two most 

important contributing factors for evaluating the mechanical qualities of PA-12 at a high-

grade level are the laser's 60-watt output and the layer's 0.06 mm thickness. In addition, with 

a layer thickness of 0.06 mm and a laser power of 60 watts, the dimensional accuracy test 

revealed 100% pure material for the X, and Y, demonstrating high accuracy in this study. 

Dimensional accuracy of this research 0.14 mm on the X-axis and 0.11 mm on the Y-axis 

were all result within the acceptable ±0.1% tolerance limits, indicating that the selected 

material composition and process parameters significantly enhanced dimensional accuracy 

beyond the manufacturer's standards.  The Hence, this study has proven that recognising 

how process parameters affect accuracy is essential to achieving high accuracy in the 

production of 3D printed objects.   
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PENGARUH KOMPOSISI POLYAMIDE-12 TERHADAP SIFAT-SIFAT MEKANIKAL 

DAN KETEPATAN DIMENSI DALAM PERSINTERAN LASER TERPILIH 

ABSTRAK 

 

Terdapat perbezaan signifikan ke atas sifat mekanikal dan morfologi permukaan setiap 

objek dicetak menggunakan 3D yang akan menjejaskan ketepatan produk. Kajian ini 

dijalankan bagi beberapa parameter utama pencetak 3D Pensintaran Laser Selektif(SLS) 

yang memberi kesan kepada kekuatan bahan Polyamide-12  menggunakan kaedah 

pengoptimuman Taguchi. Parameter faktorial utama yang dipilih ialah bahan PA-12, yang 

merupakan campuran bahan dara, dipanaskan, dan kitar semula. Parameter tambahan 

yang sedang dikaji termasuk kekuatan pancaran laser dan ketebalan lapisan. Spesimen 

ujian telah direka menggunakan pencetak SLS 3D mengikut prosedur biasa untuk menilai 

kualiti fizikal termasuk kekuatan tegangan, kekasaran, rintangan hentaman dan kekerasan 

rockwell, serta morfologi permukaan dan ketepatan dimensi. Seterusnya, morfologi 

permukaan dan ketepatan dimensi sampel dinilai menggunakan mikroskop elektron 

pengimbasan (SEM) dan mesin pengukur koordinat (CMM). Keputusan optimum diperolehi 

adalah bahan PA-12 dara 100% dengan parameter mesin 60 watt kuasa laser dan ketebalan 

lapisan 0.06 mm. Parameter ini mencapai prestasi terbaik dari segi kualiti mekanikal, 

ketepatan dimensi dan kualiti bahagian. Komposisi 1, dihasilkan sepenuhnya daripada 

bahan dara mendapat markah tertinggi dalam semua ujian, termasuk ujian tegangan, 

hentaman, kekasaran, kilasan, mampatan dan kekerasan. Dua faktor penyumbang 

terpenting untuk menilai kualiti mekanikal PA-12 pada tahap gred tinggi ialah output 60 

watt laser dan ketebalan 0.06 mm lapisan. Di samping itu, dengan ketebalan lapisan 0.06 

mm dan kuasa laser 60 watt, ujian ketepatan dimensi mendedahkan 100% bahan tulen untuk 

paksi X dan Y, menunjukkan ketepatan yang tinggi dalam kajian ini dengan pencapaian 

ketepatan dimensi adalah 0.14 mm bagi paksi-X and 0.11 mm, dan paksi-Y, kedua-dua 

berada dalam had toleransi ±0.1% yang boleh diterima, menunjukkan bahawa komposisi 

bahan dan parameter proses meningkat dengan baik. ketepatan dimensi ini lebih baik 

daripada piawaian pengilang. Oleh itu, kajian ini telah membuktikan bahawa mengenali 

bagaimana parameter proses mempengaruhi ketepatan adalah penting untuk mencapai 

ketepatan yang tinggi dalam penghasilan objek bercetak 3D.   
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CHAPTER 1   

 

INTRODUCTION 

 

1.1     Introduction 

Many industries have recognized 3D printing as the production approach of the future. 

3D printing is able to create a three-dimensional object of practically every shape from a digital 

model (Jamadi et al., 2023). Nowadays, 3D printing is becoming increasingly popular among 

manufacturers. The demand growth is due to the revolutionary benefits 3D printing is able to 

offer. 3D printing permits the conception and production of more unique details than 

conventional manufacturing techniques. In addition, the traditional methods impose design 

limitations that are no longer compatible to 3D printing. Furthermore, 3D printing manages to 

speed up the prototyping process by producing parts in hours, enabling quicker completion of 

each phase (Abdallah et al., 2023). One of the most prominent additive manufacturing 

techniques is selective laser sintering, which allows the fabrication of complex shapes from a 

variety of materials such as polymers, ceramics, and metals (Ngo et al., 2018). 

 

 



2 

 

 

 

 

 

 

 

 

Figure 1.1 above demonstrates how 3D printing, particularly through Selective Laser 

Sintering (SLS) has revolutionized the production of biomechanical hands and prosthetic legs. 

This technology has replaced conventional methods by offering cost-effective, ultra-

lightweight, and robust designs, making prosthetic devices more accessible, durable, and 

tailored to individual needs. One of the famous 3D printing approaches is SLS, an additive 

manufacturing process that allows the fabrication of three-dimensional structures by melting 

powdered material layer by layer using a laser according to the product's geometry. Selective 

laser sintering is a widely adopted additive manufacturing technique that utilizes laser energy 

to selectively fuse polymer powders layer-by-layer to create complex three-dimensional parts. 

The popularity of polyamide 12 as a material choice for SLS can be attributed to its desirable 

thermal characteristics, including a relatively low melting point, high thermal stability, and 

good mechanical properties (Yang et al., 2020). However, a key challenge associated with the 

repeated exposure of polyamide 12 powders to high temperatures during the SLS process is 

material degradation, which can negatively impact the mechanical performance of the final 

printed components. Recent studies have focused on investigating the influence of various SLS 

process parameters on the mechanical properties of polyamide 12 parts and dimensional 

accuracy (Schneider and Kumar, 2020). 

 

Figure 1.1: 3D Printing Biomechanical Hands and Prosthetic Legs 
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The microstructure and mechanical properties of 3D-printed objects have been 

influenced by virgin and recycled PA-12 powders (Rosso et al., 2020). PA-12 commonly used 

in SLS, features particle sizes ranging between 40 and 70 micrometers in diameter (Su et al., 

2022). Results from Brydson, (2021) showed that the powder forms well and conforms to the 

forming parameters of an SLS machine. PA-12 offers a unique balance of mechanical strength, 

flexibility, and chemical resistance, making it an ideal candidate for creating durable and 

functional parts in industries such as automotive, aerospace, and medical devices. PA-12  lower 

melting point compared to other polyamides like PA-6 and PA-66 allows for easier processing 

and better fusion of powder particles during the SLS process, resulting in parts with superior 

surface finish and dimensional accuracy (Sanders et al., 2024). Additionally, PA-12 also lowers 

moisture absorption rate is critical in maintaining the mechanical integrity of the final printed 

parts, preventing warping or dimensional changes over time. In comparison to other polyamide 

grades, PA-12 stands out for its specific advantages in 3D printing applications. Unlike PA-6 

and PA-66, which have higher melting points and are more prone to brittleness, PA-12 lower 

melting point facilitates a more controlled sintering process, producing parts that are both 

flexible and strong. Its reduced moisture absorption also ensures better performance in humid 

environments, making it more reliable for use in various conditions. Furthermore, PA-12 

superior chemical resistance compared to other polyamides makes it suitable for applications 

where exposure to corrosive substances is a concern, further highlighting its versatility in 

industrial applications. 

Optimize the SLS process using PA-12, the Taguchi L9 orthogonal array was selected 

for this study. This statistical approach is particularly advantageous because it allows for the 

efficient exploration of multiple factors such as layer thickness and laser power while 

minimizing the number of experiments needed (Narayana and Venkatesh, 2019). The Taguchi 

method aims to identify the optimal combination of parameters that will yield the highest 
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accuracy in the calibration blocks, while also minimizing variability. This approach not only 

saves time and resources but also ensures that the findings are robust and applicable to real 

world manufacturing scenarios. 

This study focuses on the optimization of dimensional accuracy in calibration blocks 

produced via Selective Laser Sintering (SLS) using PA-12 material. It systematically examines 

the effects of varying layer thicknesses, laser power, and PA-12 composition on the accuracy 

of the fabricated components. The Taguchi L9 method systematically examines nine different 

combinations of these critical parameters, enabling a comprehensive understanding of their 

individual and combined impact on accuracy. Through detailed statistical analysis, including 

signal-to-noise ratio and analysis of variance ANOVA, the study aims to identify the optimal 

settings that maximize accuracy while minimizing variability. 

 

1.2     Problem Statements  

Additive manufacturing (AM) techniques, such as SLS have revolutionized the 

production of complex 3D structures by offering precise material deposition, faster production 

times, and cost-efficiency, while enabling the creation of intricate, high-quality parts (Ngo et 

al., 2018; Sinha et al., 2021; Yao et al., 2020). Despite these advancements, the use of recycled 

PA-12 materials in SLS presents challenges, particularly in high-performance applications 

where mechanical strength is important. Recycled PA-12 often shows lower tensile strength 

compared to virgin materials due to the breakdown of polymer chains during the recycling and 

reheating processes, which undermines the materials structural integrity (Frölich et al., 2024). 

This degradation highlights the need to investigate the impact of different PA-12 material 

compositions virgin, recycled, and reheated on mechanical properties to determine their 

suitability for various applications. 
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Moreover, while SLS is a versatile AM method capable of producing complex, support-

free structures, it is also prone to challenges such as material shrinkage, dimensional 

inaccuracies, and poor surface finishes, which often necessitate post-processing to achieve 

higher quality (Yao et al., 2020). The use of recycled or reheated PA-12 materials exacerbates 

these issues due to the degradation caused by repeated thermal cycles, leading to reduced 

mechanical properties and dimensional accuracy (Vendittoli et al., 2023). Therefore, balancing 

cost-efficiency and performance requirements through material optimization is critical. This 

research will systematically explore these concerns by analyzing the effects of material 

composition on the SLS process. 

This study aims to investigate the effect of PA-12 material composition on the 

dimensional accuracy of products fabricated through the SLS process. Using the Taguchi L9 

Design of Experiment (DOE) approach, key processing parameters such as laser beam power 

and layer thickness will be optimized to improve both mechanical properties and dimensional 

accuracy (Frölich et al., 2024). By evaluating the use of virgin, recycled, and reheated PA-12 

powders, the study will further explore the relationship between material composition and 

dimensional accuracy, while also conducting a cost analysis to assess the economic viability of 

different material compositions (Hofland et al., 2017). The goal is to enhance overall 

production efficiency, minimize material waste, and improve cost-effectiveness in the SLS 

process.  
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1.3     Research Objectives  

i. To investigate the effects of PA-12 material composition by comparing virgin, 

recycled, and reheated material on the mechanical properties using the Selective 

Laser Sintering method. 

ii. To optimize the mechanical properties of PA-12 materials by applying the Taguchi 

L9 Design of Experiment (DOE) approach. 

iii. To investigate the effect of PA-12 material composition on the dimensional 

accuracy of products fabricated through the SLS process. 

 

1.4     Research Scopes  

The scope of this study is limited to the following: 

i. Investigate the effects of PA-12 material composition comparing virgin, recycled, 

and reheated states on the mechanical properties using the Selective Laser Sintering 

(SLS) method, including analyzing ultimate tensile strength, torsion test, 

compression test, impact test, rockwell harness, roughness and surface morphology. 

ii. Optimize the mechanical properties and dimensional accuracy of PA-12 materials 

by applying the Taguchi L9 Design of Experiment (DOE) approach, considering 

parameters such as laser beam power, material composition, and layer thickness. 

iii. Examine effect of PA-12 material composition on the dimensional accuracy of 

products fabricated through the SLS process, focusing on variations in material 

composition. 
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1.5     Hypothesis 

The Hypothesis of this study is limited to the following: 

i. PA-12 materials in virgin, recycled, and reheated states will exhibit significant 

differences in mechanical properties, such as tensile strength and yield strength, when 

processed using the SLS method. Specifically, recycled and reheated PA-12 may show 

altered mechanical performance compared to virgin PA-12. 

ii. The application of the Taguchi L9 Design of Experiment (DOE) approach will enable 

the optimization of both mechanical properties and dimensional accuracy of PA-12 

materials. Key parameters such as laser beam power, material composition, and layer 

thickness will interact to influence the performance and accuracy of the SLS process, 

with optimal settings yielding improved results. 

iii. The dimensional accuracy of products fabricated through the SLS process will vary 

depending on the PA-12 material composition virgin, recycled, and reheated. 

Differences in composition will affect the precision of the final dimensions of the 

products. 
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