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ABSTRACT 

 

The Abrasive Waterjet (AWJ) process is a cutting-edge technique utilized in modern 

machining for working with challenging materials. Leveraging its erosive effect, this method 

enables the precise machining of hard and brittle engineering materials. The incorporation 

of hard abrasive particles into the water jet facilitates a robust cutting process. Notably, the 

absence of thermal effects during AWJ operations eliminates concerns related to distortion, 

microstructure changes, and mechanical softening issues. Currently, AWJ applications are 

predominantly limited to cylindrical materials, particularly in the machining of Inconel 718. 

This study aims to assess the process parameters involved in cutting Inconel 718 using 

Abrasive Waterjet Turning (AWJT). Employing a Design of Experiments (DOE) approach, 

specifically the Box-Behken Design (BBD) with five center-point designs, the study 

explores rotational speeds of 60 and 90 rpm, feeds of 1.0 and 3.0 mm/min, and cutting depths 

of 0.1 and 0.5 mm. Parametric study data is analyzed using ANOVA. Surface roughness 

evaluation involves assessing 10 machining paths based on conventional turning operations. 

Surface conditions are characterized through elemental analysis and surface morphology. 

From the experimental result, a predictive model for the surface roughness within the 

experimental ranges was develop, highlighting the depth of cut and feed rate as the most 

influential parameters. Notably, a minimum surface roughness range of 2.09–2.61 µm, 

falling within the N7 grade is observed. Lower feed rates result in reduced striation, and 

optimal surface roughness is achieved with high rotational speed, low feed, and low cutting 

depth. Comparisons with traditional machining reveal a surface finish comparable to the 

turning process. After multi-objective parameter optimization targeting surface roughness, 

dimensional accuracy, and roundness, a 0.14 - 0.27% improvement in surface roughness is 

achieved. Microstructure analysis confirms the absence of deformation, indicating no 

alterations at the subsurface level. One-factor effect plots illustrate that enhancing the barrel 

shape and implementing a clockwise cutting direction result in improved surface texture with 

nearly imperceptible striations. This research underscores the viability of AWJT as a credible 

alternative to turning processes, particularly for machining hard materials. 
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PENGOPTIMUMAN KEBOLEHMESINAN INCONEL 718 DALAM PROSES 

PEMOTONGAN JET AIR LELAS BERPUTAR 

 

ABSTRAK 

 

Proses Abrasive Waterjet (AWJ) adalah satu teknik pemotongan terkini yang digunakan 

dalam industri pembuatan moden untuk mengendalikan bahan-bahan yang sukar untuk 

proses pemesinan. Dengan memanfaatkan kesan abrasi, kaedah ini membolehkan 

pemesinan yang tepat khusus bagi bahan kejuruteraan yang keras dan rapuh. Penambahan 

zarah abrasif keras ke dalam jet air memudahkan proses pemotongan yang jitu. Di samping 

itu, ketiadaan kesan suhu semasa proses pemotongan pemesinan AWJ dapat menghindarkan 

kesan keburukan berkaitan dengan distorsi, perubahan mikrostruktur dan isu penyerapan 

mekanikal. Pada masa ini, aplikasi AWJ terhad kepada bahan silinder, terutama dalam 

pemesinan Inconel 718. Kajian ini bertujuan menilai parameter-proses yang terlibat dalam 

pemotongan Inconel 718 menggunakan teknik Abrasive Waterjet Turning (AWJT). Dengan 

menggunakan pendekatan Reka Bentuk Eksperimen (DOE), khususnya Reka Bentuk Box-

Behken (BBD) dengan lima reka bentuk titik pusat, kajian ini meneroka kesan parameter 

pemesinan merangkumi kelajuan putaran 60 dan 90 rpm, suapan 1.0 dan 3.0 mm/min, dan 

kedalaman pemotongan 0.1 dan 0.5 mm. Data kajian parametrik dianalisis menggunakan 

ANOVA. Penilaian kekasaran permukaan melibatkan penilaian 10 ujian eksperimental 

melalui proses pemesinan konvensional. Keadaan permukaan dicirikan melalui analisis 

elemen dan morfologi permukaan. Dari hasil kajian, model prediktif bagi kekasaran 

permukaan dalam julat eksperimen telah dibangunkan, hasilnya menunjukkan kedalaman 

pemotongan dan kadar suapan sebagai parameter yang paling berpengaruh. Julat 

kekasaran permukaan minimum yang diperolehi adalah 2.09–2.61 µm, yang termasuk 

dalam gred N7. Kadar suapan yang rendah menghasilkan kesan hakisan yang berkurang 

dan kekasaran permukaan optimum dicapai dengan kelajuan putaran tinggi, suapan rendah, 

dan kedalaman pemotongan rendah. Perbandingan dengan pemesinan tradisional 

mengungkapkan hasil permukaan yang sebanding dengan proses pemesinan larik. Selepas 

optimisasi parameter multi-objektif melibatkan pengurangan kekasaran permukaan, 

ketepatan dimensi dan kebulatan, hasilnya terdapat peningkatan sebanyak 0.14 - 0.27% 

dalam kekasaran permukaan. Analisis mikrostruktur mengesahkan ketiadaan deformasi, 

menunjukkan tiada perubahan pada tahap sub-permukaan. Plot kesan satu faktor 

mengilustrasikan bahawa penambahbaikan bentuk barel dan penggunaan arah pemotongan 

arah jam menghasilkan tekstur permukaan yang lebih baik dengan kesan hakisan yang 

hampir tidak kelihatan. Kajian ini menekankan AWJT sebagai proses pemesinan alternatif 

yang boleh dipercayai bagi proses larikan, terutama untuk pemesinan bahan keras. 
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CHAPTER 1  

 

INTRODUCTION 

 

1.1 Background 

Nickel alloy proves to be a versatile material characterized by outstanding resistance 

to rust and the ability to withstand elevated temperatures. (Mankins and Lamb, 1990). Due 

to these benefits, Nickel alloy is an excellent material for gas turbines, rocket engines, and 

nuclear reactors (Ezugwu, 2005). Nickel Alloy exhibits exceptional ductility, featuring a 

face-centered cubic lattice crystal structure (FCC) that allows easy molding of components 

with intricate geometries This alloy has many applications in the aerospace industry because 

to its high creep resistance (Rahman et al., 1997). This Nickel alloy is also utilised in the 

production of temperature-controlled tool points, glass processing (Devillez et al., 2007), 

paper processing, the oil and gas industry, and the health sciences sector (Mankins and Lamb, 

1990). 

There are numerous Nickel alloys available today, including Nimonic, Udimet, 

Waspaloy, Astroloy, Hasteloy, and Inconel. Of these alloys, Inconel combinations are the 

most commonly utilised, particularly Inconel 718 due to its ability to withstand temperatures 

as high as 700°C (Faheem, 2009). It is also more conspicuous than other Inconel alloys due 

to the significant amounts of γ', γ'' and δ and that it precipitates (Čapek et al., 2021). 

Nevertheless, Inconel 718 is a weak thermal conductor and has low thermal diffusion 

characteristics, which makes its machining extremely difficult. As a result, this alloy is still 

cut at a low rate of speed and is deemed less productive as the need for cuts increases.  

 During the Inconel 718 cutting process, practically all of the mechanical energy is 

converted to heat energy, leading to elevated temperatures at the cutting edge (Bhatt et al., 
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2010). The rate at which mechanical energy is converted to thermal energy is highly  

hinging on machining factors like cutting speed. Increased cutting speeds require more 

mechanical energy, which in turn generates additional thermal energy, elevating the 

temperature in the cutting area. This problem exacerbates when machining metals possessing 

low heat conduction properties, such as Inconel 718, because during machining with 

common tool points, the majority of the heat energy generated within the cutting process, it 

does not exit the cutting zone, and is instead concentrated in the contact area between the tip 

of the tool and the work material (Ezugwu et al., 1998). Thus, heat localisation occurs in 

close proximity to the cutting edge. It is anticipated that over 80% of the heat energy 

transformed from the mechanical energy concentrated on the tool point on the edge of the 

face of the bed tool points that accelerate tool point failure is lost to the surrounding 

environment (Sharman et al., 2006). 

 Besides its limited thermal conductivity, Inconel 718 has its own shortcomings that 

make the cutting process more complicated. The most major disadvantage of cutting Inconel 

718 is the alloy's tendency to harden at temperatures exceeding 900°C, when the formation 

of the hard phase occurs. Cutting such a hard metal necessitates a greater amount of 

mechanical energy, which will be converted to thermal energy, hence increasing the 

temperature of cutting and accelerating the rate of work material hardening and adhesive 

synthesis. Because of the elevated temperature in the primary cutting region, specifically in 

the flow-zone, which constitutes the interface between the tool and the workpiece, fringe 

build up frequently occurs and adheres to the tool's eye material. This results in the loss of 

surface integrity of the manufactured work material (Devillez et al., 2007). The utilization 

of this material under elevated temperatures increases the danger of failure due to its poor 

surface integrity. Hence, the cutting of Inconel 718 not only has a detrimental effect on the 

point of the tool due to the concentration of heat energy in the point of the tool, but also 
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causes the degradation of the surface integrity of the workpiece due to the increase in edge-

built. For these reasons, Inconel 718 falls into the category of challenging-to-machine 

materials (Konig, 1999). 

 The selection of machining settings and tool points is a complex and crucial operation. 

This is to ensure that the cost of metal cutting is reasonable enough to generate high-quality, 

functional work materials, particularly materials that are challenging to machine, like Inconel 

718, result in this outcome. Thus, Inconel 718 was still cut with a carbide-coated tool tip 

using the flood method at a low cutting speed (Obikawa et al., 2008). This procedure, 

however, is inefficient, and the HSM method is highlighted. 

 High speed machining (HSM) can achieve an equivalent or superior surface finish at 

significantly higher material removal rates with surface speeds of up to 250 m/min, and 

occasionally even faster. The procedure is carried out with minimal cut depths and feed rates, 

demanding extensive machining time. Therefore, the capabilities of the machine tool should 

include high stiffness, high surface speed, continuous surface speed for the to-be-finished 

profile, and high precision with the needed surface finish. In the majority of turning 

operations, coolant is not used. However, the absence of coolant shortens the life of the tools 

and makes the surface rougher. Although HSM is an amazing procedure because to its 

capacity to substitute grinding as a finishing operation, the process-induced white layer 

causes significant variances in the service performance of the component. Despite its 

limitations, an Abrasive Water Jet (AWJ) proves highly advantageous within the workshop 

setting. due to its superior for prolonged operations and higher quality to that of others. 

 A novel non-traditional machining method called abrasive waterjet turning (AWJT) 

enables the use of waterjet's benefits in the production of axisymmetric parts using a regular 

waterjet cutting equipment. The workpiece rotates throughout the AWJT process while the 

cutting head moves axially over the workpiece. To achieve the desired dimension, the depth 
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of cut (DOC) can be altered by manipulating the nozzle location perpendicular to the 

workpiece centre line. It's interesting how different DOC can result in complex profile 

geometries. The abrasive waterjet (AWJT) process offers several advantages over traditional 

turning. Unlike traditional turning, AWJT uses a flexible tool to remove material, making it 

less sensitive to the shape of the workpiece. It also allows for deep cuts in a single pass and 

produces greater material removal rates (MRRs), particularly for difficult-to-machine 

materials. Additionally, the low cutting forces used during the process make it unaffected by 

the length to diameter ratio of the workpiece, enabling it to turn lengthy pieces with small 

dimensions. AWJT is particularly effective on materials with a high degree of hardness and 

low machinability, such as glass, titanium, Inconel 718, and composites. 

 However, it is important to investigate the process reactions and side effects with 

regard to fluctuations in the process parameters and identify methods to regulate them to 

accurately predict AWJT and enhance its technological and economical capabilities. To 

achieve this, it is necessary to identify important variables and interactions that significantly 

affect the rate of material removal, the roughness, roundness, and geometrical errors of the 

workpiece. 

 Since there hasn't been a systematic experimental investigation on AWJT up to this 

point, it is worthwhile to explore abrasive waterjet offset-mode (the position of the jet nozzle 

tangential to the workpiece) turning of Inconel 718 alloy. A response surface methodology 

(RSM) experimental design was used, taking into account three machining factors feed rate, 

rotational speed, and depth of cut. Seventeen tests were conducted using a Box-Behken 

design (BBD). The analysis of variance (ANOVA) technique was used to examine the main 

effects and interactions of the machining parameters to determine the relationship between 

input and output. 


