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ABSTRACT 

The global prevalence of Autism Spectrum Disorder (ASD) has driven researchers to 

develop well-defined automated approaches for early detection, surpassing standard 

behavioral assessments. Behavioral assessment methods face challenges to detect ASD at 

early stage because pronounced symptoms of autism are often observed between the ages of 

two and three years old, leading to delayed or missed diagnoses in some individuals. The 

electroencephalogram (EEG) has emerged as a promising quantifiable tool for identifying 

ASD biomarkers earlier than standard behavioral assessments. Its integration with deep 

learning methodologies has advanced ASD diagnosis through computer-aided diagnosis 

(CAD) systems. This research intends to classify the time-series EEG data of ASD and 

typical development (TD) samples from the SFARI dataset, which comprises 53 subjects 

(14 TD and 39 ASD) ranging in age from 10 months to 21 years. Two deep learning methods 

are particularly suitable for handling time-series data, namely Convolutional Neural 

Networks (CNN) and Recurrent Neural Networks (RNN) family. While most researchers 

utilize CNN-based approaches that require conversion from the time domain to the time-

frequency domain, this study explores the potential of a Long Short-Term Memory (LSTM)-

based models from RNN family to classify EEG data directly in the time domain. 

Specifically, this research examines the efficacy of LSTM and Bidirectional Long Short-

Term Memory (BiLSTM) networks in distinguishing between ASD and TD individuals 

without relying on prior demographic knowledge or the requirement of data conversion. The 

optimized BiLSTM model achieved an accuracy of 99.68%, outperforming the LSTM in 

classifying ASD and TD using 117 multichannel EEG recordings. However, managing 

multichannel EEG data presents challenges, particularly with unpredictable ASD 

individuals. To address this, a hybrid model incorporating Autoregressive (AR) feature 

extraction, General Learning Equilibrium Optimizer (GLEO) feature selection, and 

optimized BiLSTM was developed to perform channel selection. This hybrid method 

achieved 99.89% accuracy using only 29 EEG channels, thereby reducing the complexity of 

the experimental setup by 75%.  The discriminative ability of each channel in distinguishing 

between ASD and TD EEG data was supported through a one-way Analysis of Variance 

(ANOVA) method. This analysis revealed that 27 channels produced significantly different 

outputs, while the remaining 2 channels yielded p-values slightly higher than 0.05. These 

findings underscore the reliability of the proposed AR-GLEO-BiLSTM method for 

diagnosing ASD and lay a foundation for detecting ASD biomarkers in individuals before 

behavioral diagnosis is typically possible, or when behavioral features are not apparent until 

two years of age or later. 
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PENGESANAN GANGGUAN SPEKTRUM AUTISME BERDASARKAN ISYARAT 

ELECTROENCEPHALOGRAM DOMAIN MASA MENGGUNAKAN MODEL BiLSTM 

DIPERTINGKATKAN  

ABSTRAK 

Kecelaruan Spektrum Autism (ASD) telah mendorong penyelidik untuk membangunkan 

pendekatan automatik yang terperinci untuk pengesanan awal, melebihi penilaian tingkah 

laku standard. Kaedah penilaian tingkah laku menghadapi cabaran untuk mengesan ASD 

pada peringkat awal kerana gejala autisme yang ketara sering diperhatikan antara umur 

dua dan tiga tahun, yang menyebabkan diagnosis tertangguh atau terlepas bagi sesetengah 

individu. Elektroensefalogram (EEG) telah muncul sebagai alat kuantitatif yang 

menjanjikan untuk mengenal pasti biomarker ASD lebih awal daripada penilaian tingkah 

laku standard. Integrasinya dengan metodologi pembelajaran mendalam telah memajukan 

diagnosis ASD melalui sistem diagnosis berbantu komputer (CAD). Penyelidikan ini adalah 

untuk mengklasifikasikan data EEG bersiri masa bagi sampel ASD dan perkembangan 

tipikal (TD) dari set data SFARI, yang terdiri daripada 53 subjek (14 TD dan 39 ASD) yang 

berumur antara 10 bulan hingga 21 tahun. Dua kaedah pembelajaran mendalam yang 

sesuai untuk menangani data bersiri masa adalah Rangkaian Neural Konvolusi (CNN) dan 

keluarga Rangkaian Neural Berulang (RNN). Walaupun kebanyakan penyelidik 

menggunakan pendekatan berasaskan CNN yang memerlukan penukaran dari domain masa 

ke domain masa-frekuensi, kajian ini meneroka potensi model berasaskan Memori Jangka 

Panjang Pendek (LSTM) untuk mengklasifikasikan data EEG secara langsung dalam 

domain masa. Secara khusus, penyelidikan ini meneliti keberkesanan rangkaian Memori 

Jangka Panjang Pendek (LSTM) dan Memori Jangka Panjang Pendek Dua Arah (BiLSTM) 

dalam membezakan antara individu ASD dan TD tanpa bergantung pada pengetahuan 

demografi sebelumnya atau penukaran data. Model BiLSTM yang dioptimumkan mencapai 

ketepatan 99.68%, mengatasi prestasi LSTM dalam mengklasifikasikan ASD dan TD 

menggunakan 117 rakaman EEG berbilang saluran. Walau bagaimanapun, pengurusan 

data EEG berbilang saluran menghadirkan cabaran, terutamanya dengan individu ASD 

yang tidak dapat diramal. Untuk menangani perkara ini, model hibrid yang menggabungkan 

pengekstrakan ciri Autoregresif (AR), pemilihan ciri Pengoptimum Keseimbangan 

Pembelajaran Umum (GLEO) dan BiLSTM yang dioptimumkan telah dibangunkan untuk 

melaksanakan pemilihan saluran. Kaedah hibrid ini mencapai ketepatan 99.89% 

menggunakan hanya 29 saluran EEG, sekaligus mengurangkan kerumitan susunan 

eksperimen sebanyak 75%. Keupayaan diskriminatif setiap saluran dalam membezakan 

antara data ASD dan TD EEG telah disahkan melalui kaedah Analisis Varians sehala 

(ANOVA). Analisis ini mendedahkan bahawa 27 saluran menghasilkan output yang berbeza 

dengan ketara, manakala baki 2 saluran menghasilkan nilai p lebih tinggi sedikit daripada 

0.05. Penemuan ini menggariskan kebolehpercayaan kaedah AR-GLEO-BiLSTM yang 

dicadangkan untuk mendiagnosis ASD dan meletakkan asas untuk mengesan biomarker 

ASD dalam individu sebelum diagnosis tingkah laku biasanya boleh dilakukan, atau apabila 

ciri-ciri tingkah laku tidak jelas sehingga umur dua tahun atau lebih. 



iii 

ACKNOWLEDGEMENT 

In the name of Allah, the Most Gracious and the Most Merciful 

Alhamdulillah, all praises and thanks to Allah SWT for His greatness and giving me the 

strength, knowledge, ability, opportunity and courage to complete this thesis. I would like to 

take this opportunity to extend my gratitude to number of individuals who have contributed 

either directly or indirectly to the successful completion of this thesis.  

First and foremost, I would like to express my sincere appreciation to my supervisor, 

Associate Prof. Dr. Syafeeza Ahmad Radzi, for her valuable critics, guidance and advice 

during my PhD journey. Also, Associate Prof. Dr. Norazlin, a consultant in developmental 

paediatric of Child Development Centre, HUKM for sharing lots of ideas, opinions and her 

encouragement in carrying out this research in autism research area. 

Most importantly, I would like to thank you my family, especially my loving parents, Haji 

Ali Abd Ghani and Hajjah Hamidah Omar, my dear husband, Ts. Dr. Abd Shukur and my 

precious children, Muhammad Eirfan, Aisyah Sofiyyah, Athiya Syahirah, and Amna 

Solehah. My deepest gratitude for their continuous ‘doa’, love, motivation, patience, 

boundless support and encouragement in all my endeavours.  

My greatest pleasure to my research colleagues and friends, Dr Haslinah, Siti Huzaimah, Dr. 

Zarina, Dr. Azdiana, Dr. Lizawati, Dr. Norhidayah, Dr. Afifah, Dr. Noor Asyikin, Dr. 

Norhashimah, Dr. Norihan Najmiah Radiah, Siti Aisah, and those who directly and indirectly 

involved for their kind help and supporting me in completing this research study. I am very 

fortunate to have these people during my ups and downs throughout this journey. 

Last but not least, I would like to thank and acknowledge Universiti Teknikal Malaysia 

Melaka (UTeM) and Ministry of Education (MOE) for providing research facilities, 

financial support, and the opportunity to pursue my studies up to this level. Their support is 

gratefully acknowledged. 



iv 

TABLE OF CONTENTS 

PAGES 

DECLARATION 

APPROVAL 

DEDICATION 

ABSTRACT i 
ABSTRAK ii 
ACKNOWLEDGEMENT iii 
TABLE OF CONTENTS iv 
LIST OF TABLES vii 
LIST OF FIGURES x 
LIST OF ABBREVIATIONS xiv 
LIST OF SYMBOLS xvi 
LIST OF APPENDICES xvii 
LIST OF PUBLICATIONS xviii 

CHAPTER 

1. INTRODUCTION 1 
1.1 Research Background 1 

1.1.1 Autism Spectrum Disorder (ASD) and Standard Diagnostic Tool 1 
1.1.2 Electroencephalography (EEG) as an Alternative Diagnostic Tool 3 
1.1.3 Advancement of ASD detection through Machine Learning 4 
1.1.4 Advancement of ASD detection through Deep Learning 6 
1.1.5 Advancement of LSTM-based Approach 8 
1.1.6 Advancement of Channel Selection Approaches 9 

1.2 Problem Statement 10 
1.3 Research Questions 12 
1.4 Research Objectives 12 
1.5 Scope of Research 13 
1.6 Thesis Outline 17 

2. LITERATURE REVIEW 19 
2.1 Developmental Disorder 19 

2.1.1 Autism Spectrum Disorder 20 
2.1.2 Behavioral diagnostic of screening and diagnosis 23 
2.1.3 ASD Quantifiable Biomarkers 25 
2.1.4 ASD Dataset 27 

2.2 Electroencephalogram (EEG) 31 
2.2.1 EEG signal analysis categories for ASD detection 32 



v 

2.2.2 EEG raw data analysis method 34 
2.2.3 EEG system channels 43 
2.2.5 EEG Resting State and Induced Stimuli 46 

2.3 Machine Learning versus Deep Learning 48 
2.4 The Family of Recurrent Neural Network 50 

2.3.3 Typical Deep Learning Workflow 55 
2.4 Other Related Works 65 

2.4.1 LSTM-based approach for other EEG studies 65 
2.4.2 Review on Autoregressive (AR) as EEG Feature Extraction 68 
2.4.3 Review on Channel Selection Method 71 

2.5 Summary 79 

3. METHODOLOGY 81 
3.1 General Research Flow 81 
3.2 LSTM-based Method using EEG Multichannel (117 channels) 82 

3.2.1 Simons Foundation Autism Research Initiative (SFARI) Dataset 82 
3.2.2 Data Segmentation and Labeling 88 
3.2.3 Data Splitting 90 
3.2.4 Data Balancing and Augmentation 91 
3.2.5 LSTM-based Models 94 
3.2.6 Parameters for Performance Evaluation 99 

3.3 EEG Channel Selection Method 103 
3.3.1 EEG Feature Extraction with Autoregressive (AR) 106 
3.3.2 Signal Channel Selection GLEO – Flow of Proposed Approach 108 
3.3.3 Channel Utilization 114 
3.3.4 Validation of Selected Channels through LSTM-based Model 116 
3.3.5 Validation of Selected Channels using Statistical Method 116 

3.4 Summary 117 

4. RESULT AND DISCUSSION 119 
4.1     Analysis of LSTM-based Method for EEG Time-series Data using

Multichannel 119 
4.1.1     Optimized LSTM Model 120 
4.1.2     Optimized BiLSTM 127 
4.1.3 Performance measures comparison between LSTM and BiLSTM 134 

4.2 Analysis of the Proposed EEG Channel Selection Method 139 
4.2.1 Channel Utilization of ≥ 90% (15 channels) 143 
4.2.2 Channel Utilization of ≥ 80% (29 channels) 144 
4.2.3 Channel Utilization of ≥ 70% (54 channels selected) 146 
4.2.4 Performance Comparison of BiLSTM Channel Configurations 147 
4.2.5 Performance Evaluation through Statistical Analysis 148 

4.3 Additional Findings from the Study 151 
4.4 Summary 154 



 

vi 

5.         CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH  
5.1 Introduction 157 
5.2 Summary of the Research Objectives 157 
5.3 Research Contributions 158 
5.4 Practical Implications and Beneficiaries 159 
5.5 Limitions of The Present Study 160 
5.6 Future Works 162 
5.7 Summary 164 

 

REFERENCES 165 

 

APPENDICES 186 
Appendix A SFARI dataset detail 186 
Appendix B Ethical Approval 189 
Appendix C EEG Electrodes Placement 190 
Appendix D EEG Channel Labelling 191 
 

 

  



vii 

LIST OF TABLES 

TABLE TITLE PAGE 

Table 1.1 Scope of work 16 

Table 2.1 The list of social interaction and communication problems and 

example of constrained interests and consistently repetition of 

behaviors 22 

Table 2.2 ASD data source (Al jawahiri and Milne, 2017) 28 

Table 2.3 ASD dataset using EEG 29 

Table 2.4 EEG-based ASD detection using ML classifiers 40 

Table 2.5 EEG-based ASD detection using CNN 42 

Table 2.6 Nomenclature and functions for the electrodes in the international 10–

20 system (Megha Parhi,2019) 45 

Table 2.7 Types of induced stimuli in ASD studies 47 

Table 2.8 Data augmentation for time series classification 64 

Table 2.9 EEG-based ASD research using LSTM-based methods 66 

Table 2.10 Other EEG-based research using LSTM-based methods 67 

Table 2.11 Advantage and disadvantage of AR models 70 

Table 2.12 EEG-based research using AR 71 

Table 2.13 Channel selection for ASD classification 73 

Table 2.14 Channel selection for other studies 75 

Table 2.15 Advantages and limitations of optimization algorithms 78 

Table 3.1 The detail task involved in SFARI dataset 84 

Table 3.2 Description of the EEG database 88 

Table 3.3 Hyperparameter testing values 96 

Table 3.4 Experimental setup to determine learning rate 97 



viii 

Table 3.5 Experimental setup to determine hidden layers 97 

Table 3.6 Experimental setup to determine minibatch size 98 

Table 3.7 Experimental setup to determine learning algorithm    100 

Table 3.8 Confusion matrix for ASD and TD class 100 

Table 4.1 Experimental setup to determine learning rate 123 

Table 4.2 Experimental setup to determine hidden layer 124 

Table 4.3 Experimental setup to determine minibatch 125 

Table 4.4 Experimental setup to determine learning algorithm 126 

Table 4.5 Final hyperparameters setting for LSTM model 126 

Table 4.6 Experimental setup to determine learning algorithm 130 

Table 4.7 Experimental setup to determine optimum hidden layer 131 

Table 4.8 Experimental setup to determine optimum minibatch size 132 

Table 4.9 Experimental setup to determine learning algorithm 133 

Table 4.10 Final hyperparamters setting for BiLSTM model 133 

Table 4.11 Performance measures achieved by the LSTM Model 135 

Table 4.12 Performance measures achieved by the BiLSTM Model 136 

Table 4.13 Table comparison LSTM and BiLSTM 138 

Table 4.14 Comparison with other research works 138 

Table 4.15 Channel utilization of ≥90% (15 channels selected) 141 

Table 4.16 Channel utilization of ≥80% (29 channels selected) 142 

Table 4.17 Channel utilization of ≥70% (54 channels selected) 142 

Table 4.18 Evaluation of data samples on 15 channels of BiLSTM model 144 

Table 4.19 Evaluation of data samples on 29 channels of BiLSTM model 146 

Table 4.20 Evaluation of data samples on 54 channels of BiLSTM model 147 



ix 

Table 4.21 Summary of accuracy produced by BiLSTM according to the channel 

configuration 148 

Table 4.22 Probability value for 29 selected channels 150 

Table 4.23 Mapped brain regions produced by the 29-channel selection 153 



x 

LIST OF FIGURES 

FIGURE TITLE PAGE 

Figure 1.1 Illustration of the research work 16 

Figure 2.1 Types of developmental disorders 20 

Figure 2.2 Types of Autism 21 

Figure 2.3 The quantifiable biomarker categories of ASD 27 

Figure 2.4 Categorization of the reported research (Hashemian and Pourghassem, 

2014) 34 

Figure 2.5 General structure of diagnostic algorithms based on pattern 

recognition techniques 37 

Figure 2.6 The 10-20 International system of EEG electrode placement (Alsaggaf 

et al., 2014) 45 

Figure 2.7 Machine Learning versus Deep Learning 49 

Figure 2.8 Performance of Machine Learning versus Deep Learning 49 

Figure 2.9 Architecture of LSTM single cell 52 

Figure 2.10 The LSTM blocks sequence 52 

Figure 2.11 Architecture of BiLSTM 55 

Figure 2.12 Typical Deep Learning workflow 56 

Figure 2.13 Three conditions for data generation 56 

Figure 2.14 Data splitting of hold-out method 57 

Figure 2.15 Leave one out cross validation (LOOCV) method 58 

Figure 2.16 k-fold method 59 

Figure 2.17 Stratified k-fold CV method 61 

Figure 3.1 The research general flow 82 



xi 

Figure 3.2 The HydroCel Geodesic Sensor Net-128 channel map (Leblanc and 

Nelson, 2016) 86 

Figure 3.3 The illustration of segmented sampling for TD (N) and ASD (A) class

 90 

Figure 3.4 Distribution data on TD and ASD of EEG segmented data 91 

Figure 3.5 Data splitting and augmentation of ASD/TD class 94 

Figure 3.6 Illustration of the LSTM classification 95 

Figure 3.7 Illustration of the BiLSTM-based classification 95 

Figure 3.8 An example of confusion matrix 100 

Figure 3.9 Block diagram of the proposed channel selection approach 104 

Figure 3.10 Proposed AR-GLEO-BiLSTM 105 

Figure 3.11 Proposed channel selection (AR-GLEO-BiLSTM) 111 

Figure 3.12     Example of channel utilization by (Aslam et al., 2022) 116 

Figure 4.1 Fine tuning of learning rates tested on different values of hidden layer 

(a) hidden layer 50, minibatch 50 (b) hidden layer 50, minibatch 100

(c) hidden layer 50, minibatch 150 (d) hidden layer 50, minibatch 200

121                                                                                                    122

Figure 4.2 Fine tuning of learning rates tested on different value of minibatch 

sizes (a) hidden layer 100, minibatch 50 (b) hidden layer 100, 

minibatch 100 (c) hidden layer 100, minibatch 150 (d) hidden layer 

100, minibatch 200 122 

Figure 4.3 Fine tuning of learning rates tested on different value of minibatch 

sizes (a) hidden layer 150, minibatch 50 (b) hidden layer 150, 

minibatch 100 (c) hidden layer 150, minibatch 150 122 

Figure 4.4 Fine tuning of learning rates tested on different value of minibatch (a) 

hidden layer 200, minibatch 50 (b) hidden layer 200, minibatch 100

 123                                                                                                    124 

Figure 4.5 Fine tuning of hidden layer tested on different value of minibatch size 

(a) minibatch 50, learning rates 0.001 (b) minibatch 100, learning

rates 0.001 (c) minibatch 150, learning rates 0.001 (d) minibatch 200,

learning rates 0.001 124 



xii 

Figure 4.6 Minibatch size tested with hidden layer set to 50 and learning rate of 

0.001 125 

Figure 4.7 Learning algorithm tested with both minibatch size and hidden layer 

set to 50 and learning rate of 0.001 126 

Figure 4.8 Fine tuning of learning rates tested on different values of minibatch 

sizes (a) hidden layer 50, minibatch 50 (b) hidden layer 50, minibatch 

100 128 129 

Figure 4.9 Fine tuning of learning rates tested on different values of minibatch 

sizes (a) hidden layer 100, minibatch 50 (b) hidden layer 100, 

minibatch 100 128 

Figure 4.10 Fine tuning of learning rates tested on different values of minibatch 

sizes (a) hidden layer 150, minibatch 50 (b) hidden layer 150, 

minibatch 100 129 

Figure 4.11 Fine tuning of learning rates tested on different values of minibatch 

sizes (a) hidden layer 200, minibatch 50 (b) hidden layer 200, 

minibatch 100 130 

Figure 4.12 Fine tuning of hidden layer tested on different value of minibatch size 

(a) minibatch 50, learning rates 0.001 (b) minibatch 100, learning

rates 0.001 (c) minibatch 150, learning rates 0.001 (d) minibatch 200,

learning rates 0.001 131 

Figure 4.13 Fine tuning of minibatch size tested on hidden layer 50 and learning 

rate 0.001 132 

Figure 4.14 Learning algorithm tested with both minibatch size and hidden layer 

set to 50 and learning rate of 0.001 133 

Figure 4.15 Confusion matrix LSTM for test set (a) class sampling  (b) class 

percentage 135 

Figure 4.16 Confusion matrix BiLSTM for test set (a) class sampling  (b) class 

percentage 136 

Figure 4.17 ROC curve of LSTM and BiLSTM comparison training 139 

Figure 4.18 Output from AR-GLEO-BiLSTM channel selection method 141 

Figure 4.19 Confusion matrix of BiLSTM on 15 channels selected 144 

Figure 4.20 Confusion matrix of BiLSTM on 29 channels selected 145 

Figure 4.21 Confusion matrix of 54 selected channels on BiLSTM 147 



xiii 

Figure 4.22 Boxplot of selected channel 11-Fz electrode in differentiating between 

ASD and TD 149 

Figure 4.23 Results of ANOVA test 149 

Figure 4.24 Mapped region of selected channels (electrode placement) 153 



xiv 

LIST OF ABBREVIATIONS 

1D - One - Dimensional

2D - Two - Dimensional

ADI-R         - Autism Diagnostic Interview- Revised

ADOS          - Autism Diagnosis Observation Schedule

ANN - Artificial Neural Network

ANOVA     - Analysis of Variance

ANN - Artificial Neural Network

ASD - Autism Spectrum Disorder

ADHD         - Attention Deficit Hyperactive Disorder

BCI - Brain Computer Interface

BiLSTM      - Bidirectional LSTM

CAD - Computer-Aided Design

CARS          - Childhood Autism Rating Scale

CNN - Convolutional Neural Network

CV - Cross Validation

CWT         - Continuous Wavelet Transform

DL - Deep Learning

DSM 5 - Diagnostic and Statistical Manual of Manual Mental Disorder 5

DWT          - Discrete Wavelet Transform

EEG - Electroencephalogram

EMG - Electromyogram



xv 

ERP - Event-Related Potential

FSA - Feature Selection Algorithm

fNIRS          - functional Near-Infrared Spectroscopy

FT - Fourier Transform

GPU - Graphical Processing Unit

GRU - Gated Recurrent Unit

KNN - K-Nearest Neighbour

LOOCV       - Leave-One-Out Cross Validation

LSTM         - Long Short Term Memory

MEG - Magnetoencephalography

ML - Machine Learning

MRI - Magnetic Resonance Imaging

ODU - Old Dominion University

PCA        - Principle Component Analysis

PET        - Positron Emission Tomography

ReLU         - Rectified Linear Unit

ReSNet - Residual Neural Network

RNN - Recurrent Neural Network

SNR         - Signal-to-Noise Ratio

STFT          - Short-Time Fourier Transform

SVM        - Support Vector Machine

TD    - Typical Development

VEP - Visual Evoked Potential



xvi 

LIST OF SYMBOLS 

s - seconds

σ - variance

Σ - summation

λ - lamda



xvii 

LIST OF APPENDICES 

APPENDIX  TITLE PAGE

Appendix A SFARI dataset detail 186 

Appendix B Ethical Approval 189 

Appendix C EEG Electrodes Placement 190 

Appendix D EEG Channel Labelling 191 



xviii 

LIST OF PUBLICATIONS 

The followings are the list of publications related to the work on this thesis: 

Journal Articles 

N. A Ali, A.R Syafeeza, A. S Jaafar, M.K Mohd Fitri Alif, 2020. Autism Spectrum

Disorder Classification on Electroencephalogram Signal using Deep Learning Algorithm. 

International Journal of Artificial Intelligence (IJ-AI) 9(1), pp. 91-99. ISSN: 2252-8938 

(Scopus). 

N. A. Ali, A. R Syafeeza, A. S. Jaafar, S. Shamsuddin, Norazlin Kamal Nor, 2021. LSTM-

Based Electroencephalogram Classification on Autism Spectrum Disorder.  International 

Journal of Integrated Engineering (IJIE), 13(6), pp. 321-329. ISSN: 2229-838X (Scopus). 

N. A. Ali, A. R Syafeeza, A. S. Jaafar, Norazlin Kamal Nor, 2022. The ConVnet BiLSTM 

for ASD Classification on EEG Brain Signal.  International Journal of Online and 

Biomedical Engineering (iJOE). 



 

1 

CHAPTER 1 

INTRODUCTION 

This chapter provides an introductory background of the neurodevelopmental 

disorder of Autism Spectrum Disorder (ASD), the quantifiable method using an 

electroencephalogram (EEG) data and the deep learning model for the classification. It also 

explains the research objectives, motivations of the presented research, and highlighting the 

research gap.  

 

1.1 Research Background 

The number of children diagnosed with Autism Spectrum Disorder (ASD) is 

prevalent worldwide. The studies conducted in Asia, Europe, and North America have 

identified individuals with ASD at an average prevalence rate changing between 1% and 2% 

(Talantseva et al., 2023). Recent statistics indicate that approximately 300,000 individuals 

with ASD reside in Malaysia, yet only 20,000 are registered with the ministry and issued the 

People with Disabilities (PWDS) card, as per 2018 data (Mohd Salleh et al.,  2018). 

However, the exact number of individuals with autism for the year 2024 is unknown. 

 

1.1.1 Autism Spectrum Disorder (ASD) and Standard Diagnostic Tool 

 Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder marked by 

difficulties in social communication, restricted patterns of interest, and repetitive behaviors, 

with a broad spectrum of symptoms and varying degrees of severity (Hodges, Fealko and 

Soares, 2020). The current standard screening and diagnostic approach for ASD are well-
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known as behavioral assessment methods. The widely utilized diagnostic tools include the 

Diagnostic and Statistical Manual of Mental Disorder-Fifth Edition (DSM-5), Autism 

Diagnostic Observation Schedule (ADOS), and Childhood Autism Rating Scale 

(CARS)(Randall et al., 2018a; Gulati et al., 2019). This type of assessment method imposes 

various limitations especially the long-winded process (Falkmer et al., 2013). It necessitates 

several, time-consuming patient visits and observations. The manual screening and diagnosis 

are susceptible to human errors, and they can be tedious and time-consuming due to changes 

in behavior during the assessment. According to (Catherine and Somer, 2015), the 

heterogeneity among ASD people and symptoms of ASD can change periodically. In fact, 

individuals with high-functioning ASD (mild severity) tend to exhibit symptoms at later 

developmental stages, which can impact the observations made by pediatricians and 

subsequently affect the accuracy of the diagnostic outcome (Ari et al., 2022). The challenges 

encountered for behavioral assessment method is due to pronounced symptoms of autism 

are often observed between the ages of two and three, while the average ASD diagnosis age 

is above 3 years as stated by (Van ’t Hof et al., 2021). In some cases, it is possible to detect 

signs of autism as early as 6–12 months (Filipek et al., 1999). Nevertheless, the majority of 

specialized professionals involved in diagnosing the disorder refrain from providing a 

definitive diagnosis until the child reaches the age of 2 or 3 years (Baird, Cass and Slonims, 

2003). The limitations also have caused some individuals go undiagnosed or the diagnosis 

is delayed (Pham et al., 2020).   

Researchers studying autism encountered significant challenges as they strive to 

identify children at risk for this disorder as early as possible (Levin et al., 2017; 

Ramachandram, 2019; Tran, 2019; Haputhanthri et al., 2020). Early detection is crucial, as 




