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ABSTRACT 

 

In power system operation, a deviation of the rotor angle of a synchronous generator perturbs 

the oscillation, deteriorates system performance, and damages protection schemes. In the 

case of an interconnected power system, any disturbances that occur cause a discrepancy in 

the rotor angle. Previous studies on rotor angle stability enhancement only focus on the 

simplified model that adopts a linearized swing equation where the damping power has been 

neglected, making the accuracy of the model disputed. As such, the need to develop a control 

algorithm for a synchronous generator of power system is crucial. In order to obtain 

stabilization upon rotor angle deviation, a regulator based on the Lypapunov algorithm for a 

synchronous generator is proposed in this research. The dynamic model of a synchronous 

generator is developed through the swing equation. Nonlinear parameters are included in the 

modeling, and hence the synchronous generator is portrayed as a nonlinear swing equation. 

From the nonlinear swing equation, the crucial parameters that affect the stability and 

transient performance of the synchronous generator are the synchronizing coefficient, 𝑃𝑠 and 

the inertia constant, H. The proposed algorithm, named rotor angle deviation regulator 

(RADR), is formulated via the combination of backstepping and the Lyapunov redesign 

technique to regulate the rotor angle deviation in order to maintain the optimum angle of the 

power angle curve, hence maintaining the stabilization of the synchronous generator. The 

performance and efficacy of the proposed algorithm are validated via simulation in 

MATLAB with Simulink toolbox. The simulation result shows that regardless of the faults 

that occur in the power system, the RADR regulates the rotor angle deviation to always be 

approaching 0°. The comparison of the transient response between the tested system with 

and without RADR shows that the system with RADR results in a slower response in terms 

of rise time and settling time but an improved transient performance in terms of peak 

undershoot and peak time, except for the tested system with 1.8 p.u. fault occurences, which 

recorded an improved transient performance in terms of rise time, settling time, peak 

undershoot, and peak time. In all cases, the implementation of RADR in the systems results 

in an optimum percentage improvement of the peak value in the range of 99.9989% to 

99.9999%. The significant decrease in integral of absolute error (IAE), integral of squared 

error (ISE), and sum of squared error (SSE) for the systems with implentation of RADR 

verified the asymptotic stability and robustness of the RADR towards the rotor angle 

stability. 

  



 

ii 

PENILAIAN PENGATUR BAHARU SISIHAN SUDUT ROTOR UNTUK PENJANA 

SEGERAK MENGGUNAKAN PERSAMAAN AYUNAN TAK LINEAR 

 

ABSTRAK 

 

Dalam operasi sistem kuasa, lencongan sudut rotor penjana segerak mengganggu ayunan, 

menurunkan prestasi sistem, dan merosakkan skim perlindungan. Dalam kes sistem kuasa 

tersaling hubung, sebarang gangguan yang berlaku menyebabkan kelainan dalam sudut 

rotor. Kajian terdahulu mengenai peningkatan kestabilan sudut rotor hanya tertumpu pada 

model dipermudah yang menggunakan persamaan ayunan linear di mana kuasa redaman 

telah terabai, menjadikan kejituan model dipertikaikan. Oleh itu, keperluan untuk 

membangunkan algoritma kawalan untuk penjana segerak sistem kuasa adalah penting. 

Untuk mendapatkan penstabilan pada lencongan sudut rotor, pengatur berdasarkan 

algortima Lyapunov untuk penjana segerak diusulkan dalam kajian ini. Model dinamik 

penjana segerak dibangunkan melalui persamaan ayunan. Parameter tak linear dimasukkan 

kedalam pemodelan, dan oleh itu penjana segerak digambarkan sebagai persamaan ayunan 

tak linear. Dari persamaan ayunan tak linear, parameter penting yang mempengaruhi 

kestabilan dan prestasi fana penjana segerak ialah pekali menyegerak, 𝑃𝑠 , dan pemalar 

inersia, H. Algoritma yang diusulkan, yang dipanggil pengatur lencongan sudut rotor 

(RADR), telah diformulasikan melalui gabungan melangkah balik (backstepping) dan teknik 

rekabentuk semula Lyapunov untuk mengatur lencongan sudut rotor supaya mengekalkan 

sudut yang optimum dari lengkung sudut kuasa, dengan itu mempertahankan kestabilan 

penjana segerak. Prestasi dan keberkesanan algoritma yang dicadangkan disahkan melalui 

simulasi dalam MATLAB dengan Simulink toolbox. Hasil simulasi menunjukkan bahawa 

tanpa mengira gelinciran yang berlaku dalam sistem kuasa, RADR mengatur lencongan 

sudut rotor supaya sentiasa mendekati 0°. Perbandingan tindak balas fana antara sistem 

yang diuji dengan RADR dan tanpa RADR menunjukkan bahawa sistem dengan RADR 

menghasilkan tindak balas yang lebih lambat dari segi masa kenaikan dan masa penetapan 

tetapi prestasi fana yang lebih baik dari segi lajakan-turun puncak dan masa puncak, 

kecuali untuk sistem yang dikaji dengan kejadian gelinciran 1.8 p.u., yang mencatatkan 

prestasi fana yang lebih tinggi dari segi masa kenaikan, masa penetapan, lajakan-turun 

puncak, dan masa puncak. Dalam semua kes, pelaksanaan RADR dalam sistem 

menghasilkan peningkatan peratusan optimum nilai puncak dalam julat dari 99.9989% 

hingga 99.9999%. Penurunan yang ketara dalam nilai tara ralat-mutlak (IAE), nilai tara 

ralat-persegi (ISE), dan jumlah ralat-persegi (SSE) untuk sistem dengan pelaksanaan RADR 

mengesahkan kestabilan berasimptot dan ketahanan RADR kearah keseimbangan sudut 

rotor. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

  One of the most important roles of the power system is transmitting electrical energy 

from the generation system to consumers (Zamee et al., 2016). Despite transmission and 

distribution systems, the generation system is considered the most important component of 

the power system due to the fact that the stability of power system operation will be assured 

by the generator even with the occurrence of failures (Shu and Tang, 2017). In generation 

systems, synchronous generators are the most commonly utilized generators.  

The stability of the power system has become more crucial due to the rapid growth 

of the human population and the increasing demand for sustainability. Ensuring power 

system stability is crucial to avoid transmission failures and blackouts, which in turn 

improves the overall stability and reliability of the power system.  The power system stability 

is commonly categorized into rotor angle stability, frequency stability, and voltage stability 

(Safavizadeh et al., 2022). Referring to synchronous generator in power system, the rotor 

angle stability is considered one of the most important types of power system stability. It is 

focused on generators' ability to maintain the rotor angle in the presence of disturbances. It 

can be categorized into two categories: small signal stability and large signal stability. Small 

signal stability considers the small disturbance condition, which refers to the slowly and 

randomly occurring occurrence of disturbance (Luo et al., 2020). Large signal stability, also 



 

2 

known as transient stability, refers to the ability of the system to regain its synchronism when 

subjected to a large disturbance (Luo et al., 2020; Safavizadeh et al., 2022). 

 Numerous studies have been conducted by previous researchers in order to analyze 

and enhance rotor angle stability. Various control systems have been implemented in the 

studies, but there is still room for improvement in rotor angle stability.  

1.2 Problem Statement 

In a power system, one of the most crucial problems is maintaining the system’s 

stability. Power system behavior depends on the mechanical and electrical processes of a 

synchronous generator. Consequently, the behavior of the synchronous generator after 

disturbances affect the stability of the power system (Yurika et al., 2019). This is because 

the disturbances perturb the oscillation of the rotor angle of the synchronous generator, 

which leads to instability (Hasan et al., 2020; Jiang and Wang, 2020; Sankar et al., 2022).  

Power angle, also called rotor angle, is the angle between the relative position of the 

rotor axis and the resultant magnetic field axis, and this angle is fixed under normal operating 

conditions. However, during the occurrence of disturbances, the rotor will either accelerate 

or decelerate with regard to the synchronously rotating air gap magnetomotive force (MMF), 

hence the relative motion begins (Sarkar et al., 2021). This relative motion is described via 

nonlinear differential equation known as swing equation (Pandya et al., 2020; 

Munkhchuluun et al., 2019). 

The stability of the synchronous generator is preserved if the rotor locks back into 

synchronous speed. The rotor returns to its normal operating condition if the disturbances do 

not result in any net change in power; otherwise, the rotor operates at a new power angle 

corresponding to the synchronously rotating field (Rahim, 2022). The performance of the 
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synchronous generator will be degraded if the rotor angle changes due to the occurrence of 

disturbances (Sarkar et al., 2021). Thus, it is crucial to develop a control algorithm to 

improve transient performance, guarantee robustness against rotor angle deviation due to 

disturbances, and assure fast rotor angle regulation. As such, the problem addressed in this 

research is to formulate a Lyapunov-based algorithm in order to guarantee the asymptotic 

stability of the rotor angle for the optimum power angle. Preserving the optimal power angle 

guarantees the synchronous generator’s stable output power and, hence, the stability of the 

power system. 

1.3 Research Motivation 

In this research, there are four hypotheses to create breakthroughs in knowledge, as 

follows:  

 There exist parameters that have a significant effect on the stability and transient 

performance of synchronous generators. 

 A nonlinear swing equation has some additional parameters that require complex 

mathematics to solve as compared to a linearized swing equation. 

 Regulating the rotor angle of a synchronous generator to zero deviation will 

bestow power system stability. 

 The sufficiency and necessity of Lyapunov stability criteria must be met to ensure 

the asymptotic stability of any unstable system. 

 

 

 

 




