

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

EVALUATION OF NEW ROTOR ANGLE DEVIATION REGULATOR FOR SYNCHRONOUS GENERATOR USING NONLINEAR SWING EQUATION

DOCTOR OF PHILOSOPHY

Faculty of Electrical Technology and Engineering



Doctor of Philosophy

2024

EVALUATION OF NEW ROTOR ANGLE DEVIATION REGULATOR FOR SYNCHRONOUS GENERATOR USING NONLINEAR SWING EQUATION

NOR SYAZA FARHANA BINTI MOHAMAD MURAD

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2024

DEDICATION

To my dearest husband, Mohd Nor Ilman bin Mahad, for his unwavering support and tolerance.

To my beloved parents, Mohamad Murad bin Zabidi and Norhaidah binti Abdullah for their persistent moral support.

To my precious children, Dhia Inas Safiya binti Mohd Nor Ilman and Idris Fahim bin Mohd Nor Ilman for making my life meaningful.

ABSTRACT

In power system operation, a deviation of the rotor angle of a synchronous generator perturbs the oscillation, deteriorates system performance, and damages protection schemes. In the case of an interconnected power system, any disturbances that occur cause a discrepancy in the rotor angle. Previous studies on rotor angle stability enhancement only focus on the simplified model that adopts a linearized swing equation where the damping power has been neglected, making the accuracy of the model disputed. As such, the need to develop a control algorithm for a synchronous generator of power system is crucial. In order to obtain stabilization upon rotor angle deviation, a regulator based on the Lypapunov algorithm for a synchronous generator is proposed in this research. The dynamic model of a synchronous generator is developed through the swing equation. Nonlinear parameters are included in the modeling, and hence the synchronous generator is portrayed as a nonlinear swing equation. From the nonlinear swing equation, the crucial parameters that affect the stability and transient performance of the synchronous generator are the synchronizing coefficient, P_s and the inertia constant, H. The proposed algorithm, named rotor angle deviation regulator (RADR), is formulated via the combination of backstepping and the Lyapunov redesign technique to regulate the rotor angle deviation in order to maintain the optimum angle of the power angle curve, hence maintaining the stabilization of the synchronous generator. The performance and efficacy of the proposed algorithm are validated via simulation in MATLAB with Simulink toolbox. The simulation result shows that regardless of the faults that occur in the power system, the RADR regulates the rotor angle deviation to always be approaching 0° . The comparison of the transient response between the tested system with and without RADR shows that the system with RADR results in a slower response in terms of rise time and settling time but an improved transient performance in terms of peak undershoot and peak time, except for the tested system with 1.8 p.u. fault occurences, which recorded an improved transient performance in terms of rise time, settling time, peak undershoot, and peak time. In all cases, the implementation of RADR in the systems results in an optimum percentage improvement of the peak value in the range of 99.9989% to 99.9999%. The significant decrease in integral of absolute error (IAE), integral of squared error (ISE), and sum of squared error (SSE) for the systems with implentation of RADR verified the asymptotic stability and robustness of the RADR towards the rotor angle stability.

PENILAIAN PENGATUR BAHARU SISIHAN SUDUT ROTOR UNTUK PENJANA SEGERAK MENGGUNAKAN PERSAMAAN AYUNAN TAK LINEAR

ABSTRAK

Dalam operasi sistem kuasa, lencongan sudut rotor penjana segerak mengganggu ayunan, menurunkan prestasi sistem, dan merosakkan skim perlindungan. Dalam kes sistem kuasa tersaling hubung, sebarang gangguan yang berlaku menyebabkan kelainan dalam sudut rotor. Kajian terdahulu mengenai peningkatan kestabilan sudut rotor hanya tertumpu pada model dipermudah yang menggunakan persamaan ayunan linear di mana kuasa redaman telah terabai, menjadikan kejituan model dipertikaikan. Oleh itu, keperluan untuk membangunkan algoritma kawalan untuk penjana segerak sistem kuasa adalah penting. Untuk mendapatkan penstabilan pada lencongan sudut rotor, pengatur berdasarkan algortima Lyapunov untuk penjana segerak diusulkan dalam kajian ini. Model dinamik penjana segerak dibangunkan melalui persamaan ayunan. Parameter tak linear dimasukkan kedalam pemodelan, dan oleh itu penjana segerak digambarkan sebagai persamaan ayunan tak linear. Dari persamaan ayunan tak linear, parameter penting yang mempengaruhi kestabilan dan prestasi fana penjana segerak ialah pekali menyegerak, P_s, dan pemalar inersia, H. Algoritma yang diusulkan, yang dipanggil pengatur lencongan sudut rotor (RADR), telah diformulasikan melalui gabungan melangkah balik (backstepping) dan teknik rekabentuk semula Lyapunov untuk mengatur lencongan sudut rotor supaya mengekalkan sudut yang optimum dari lengkung sudut kuasa, dengan itu mempertahankan kestabilan penjana segerak. Prestasi dan keberkesanan algoritma yang dicadangkan disahkan melalui simulasi dalam MATLAB dengan Simulink toolbox. Hasil simulasi menunjukkan bahawa tanpa mengira gelinciran yang berlaku dalam sistem kuasa, RADR mengatur lencongan sudut rotor supaya sentiasa mendekati 0°. Perbandingan tindak balas fana antara sistem yang diuji dengan RADR dan tanpa RADR menunjukkan bahawa sistem dengan RADR menghasilkan tindak balas yang lebih lambat dari segi masa kenaikan dan masa penetapan tetapi prestasi fana yang lebih baik dari segi lajakan-turun puncak dan masa puncak, kecuali untuk sistem yang dikaji dengan kejadian gelinciran 1.8 p.u., yang mencatatkan prestasi fana yang lebih tinggi dari segi masa kenaikan, masa penetapan, lajakan-turun puncak, dan masa puncak. Dalam semua kes, pelaksanaan RADR dalam sistem menghasilkan peningkatan peratusan optimum nilai puncak dalam julat dari 99.9989% hingga 99.9999%. Penurunan yang ketara dalam nilai tara ralat-mutlak (IAE), nilai tara ralat-persegi (ISE), dan jumlah ralat-persegi (SSE) untuk sistem dengan pelaksanaan RADR mengesahkan kestabilan berasimptot dan ketahanan RADR kearah keseimbangan sudut rotor.

ACKNOWLEDGEMENT

In the Name of Allah, the Most Gracious, the Most Merciful. First and foremost, I would like to take this opportunity to express my sincere gratitude to my supervisor, Associate Professor Dr. Muhammad Nizam bin Kamarudin from the Faculty of Electrical Technology and Engineering, Universiti Teknikal Malaysia Melaka (UTeM), for his essential supervision, support, and encouragement towards the completion of this thesis.

Especially to Fundamental Research Grant Scheme (FRGS) Grant No. FRGS/1/2021/FKE/F00467, the Centre for Robotics and Industrial Automation (CeRIA), and the Ministry of Higher Education (MoHE) for the financial and technical support throughout this project.

Special recognition to my wonderful husband, children, parents, and siblings for their UNIVERSITITEKNIKAL MALAYSIA MELAKA enthusiastic support throughout this journey.

Lastly, my sincere appreciation to everyone I may have omitted who assisted directly or indirectly in the completion of my PhD thesis.

TABLE OF CONTENTS

i
ii
iii
iv
vii
ix
xii
xiv
xvi
xvii

CHAPTER

		MALAYSIA	
1.		RODUCTION	1
	1.1	Background	1
	1.2	Problem Statement	2 3
	1.3	Research Motivation	
	1.4	Research Objective	4
	1.5	Scope of Research	4
	1.6	Thesis Outline	5
2.	LIT	ERATURE REVIEW	7
	2.1	Introduction - U - G. U - J	7
	2.2	Power System	7
		2.2.1 Synchronous Generator – MALAYSIA MELAKA	11
		2.2.2 Modeling of Non-Salient Pole Synchronous Generator	13
	2.3	Power System Modeling for Stability Study	15
	2.4	Power System Stability	17
		2.4.1 Rotor Angle Stability	19
		2.4.2 Frequency Stability	21
		2.4.3 Voltage Stability	22
	2.5	Studies on the Rotor Angle Stability of Synchronous Generator	23
		2.5.1 Numerical Method	24
		2.5.2 Power System Stabilizer	25
		2.5.3 Sliding Mode Control	27
		2.5.4 Particle Swarm Optimization	28
		2.5.5 Observer-Based Controller	29
		2.5.6 Model Predictive Control	29
		2.5.7 Superconducting Fault Current Limiter (SFCL)	30
		2.5.8 Integral BacksteppingPartial Feedback Linearizing Approach	30
		2.5.9 Lyapunov-Based Trajectory Tracking Controller and Model	01
		Reference Adaptive Control	31

	2.6	Summary of the Selected Literature	
3.	ME'	THODOLOGY	
	3.1	Introduction	
	3.2	Derivation of Nonlinear Swing Equation	
		3.2.1 Swing Equation	
		3.2.2 Synchronous Generator Model for Stability	
		3.2.3 Nonlinear Swing Equation for Stability Analysis	
	3.3	Investigation of The Crucial Parameters Affecting Synchronous	
		Generator Stabilization	
	3.4	Formulation of Lyapunov-Based Backstepping Algorithm	
		3.4.1 Lyapunov Stability Criteria	
		3.4.2 Direct Lyapunov Method	
		3.4.3 Backstepping	
		3.4.4 Robust Lyapunov Redesign	
	3.5	\mathcal{E} \mathcal{E} \langle \rangle	
	3.6	Nonlinear Swing Equation Simulation Setup	
	27	3.6.1 Model Verification of Nonlinear Swing Equation	
	3.7	Implementation of RADR into Nonlinear Swing Equation 3.7.1 Gain Tuning via Fuzzy Logic	
		3.7.1 Gain Tuning via Fuzzy Logic3.7.2 Constant Parameter Selection	
		3.7.3 RADR Simulation Setup	
	3.8	Performance Indices	
	3.9	Summary	
4.	RES	SULT AND DISCUSSION	
-10	4.1	Introduction	
	4.2	Analysis of Transient Response	
		4.2.1 Analysis of Rotor Angle Deviation for Case Study 1: Normal	
		4.2.2 Analysis of Rotor Angle Deviation for Case Study 2:	
		4.2.2 Analysis of Rotor Angle Deviation for Case Study 2: Synchronous Generator System with Fault in The Middle of	
		Transmission Line (Fault = 0.63 p.u.)	
		4.2.2.1 Analysis of Rotor Angle Deviation for 2.5 cycles FCT (0.0416	
		seconds)	
		4.2.2.2 Analysis of Rotor Angle Deviation for 6.5 Cycles FCT (0.1083	
		seconds)	
		4.2.3 Analysis of Rotor Angle Deviation for Case Study 3:	
		Synchronous Generator System with Fault at Bus 1 with Zero	
		to The Ground Impedance (Fault = 1.8 p.u.)	
		4.2.3.1 Analysis of Rotor Angle Deviation for 2.5 Cycles FCT	
		(0.0416 seconds)	
		4.2.3.2 Analysis of Rotor Angle Deviation for 6.5 Cycles FCT	
		(0.1083 seconds)	
		4.2.4 Analysis of Rotor Angle Deviation for Case Study 4:	
		Synchronous Generator with Fault at Bus 1 with an Impedance of	
		j0.01 p.u. to The Ground (Fault = 0.4 p.u.)	

		4.2.4.1 Analysis of Rotor Angle Deviation for 2.5 Cycles FCT	
		(0.0416 seconds)	119
		4.2.4.2 Analysis of Rotor Angle Deviation for 6.5 Cycles FCT	
		(0.1083 seconds)	122
		4.2.5 Summary of Analysis of Transient Response of Rotor Angle	
		Deviation for the Tested System without and with RADR	125
	4.3	Comparison of Transient Response Performance for Tested Systems	
		with RADR	127
		4.3.1 Rotor Angle Deviation of Various Tested Systems with RADR	128
		4.3.2 Rise Time of Transient Response of Various Tested Systems	
		with RADR	130
		4.3.3 Settling Time of Transient Response of Various Tested Systems	
		with RADR	131
		4.3.4 Peak Time and Peak Undershoot of Transient Response of	
		Various Tested Systems with RADR	132
	4.4	Comparison of Performance Index for Tested System with RADR	134
	4.5	Comparison of Output Power for Tested Systems without and with	
		RADRIALAYSIA	135
	4.6	Summary	137
_	CON	ICI LICIONI AND DECOMMENDATIONS FOR EUTUDE	
5.		ICLUSION AND RECOMMENDATIONS FOR FUTURE	139
	KES 5.1	EARCH Introduction	
		Research Contributions	139 140
	5.2 5.3	Recommendation for Future Works	140
	5.5	Recommendation for Future works	141
REFE APPE			143 159

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF TABLES

TABLETITLEPAGE

Table 2.1	Summary on selected literature			
Table 2.2	Summary of research gap	36		
Table 3.1	Effect of Ps towards poles location and stability	52		
Table 3.2	The parameters of nonlinear swing equation of a non-salient two-pole rotor of synchronous generator	73		
Table 3.3	The parameters of nonlinear swing equation of a non-salient two-pole rotor of synchronous generator	78		
Table 3.4	Parameters for synchronous generator for constant parameter selection	81		
Table 3.5	Performance index for $\alpha = 1$	82		
Table 3.6	Performance index for $\varepsilon = 0.00001$	83		
Table 3.7	Simulation condition	85		
Table 3.8	Parameters for nonlinear swing equation with RADR	85		
Table 3.9	UNTransient responses for the system without RADR LAKA	87		
Table 3.10	Performance Indices	88		
Table 4.1	Transient response performance for rotor angle deviation	95		
Table 4.2	Performance index for rotor angle deviation	96		
Table 4.3	Transient response performance for rotor angle deviation	99		
Table 4.4	Performance index for rotor angle deviation	99		
Table 4.5	Transient response performance for rotor angle deviation	102		
Table 4.6	Performace index for rotor angle deviation	102		
Table 4.7	Transient response performance for rotor angle deviation	104		
Table 4.8	Performance index for rotor angle deviation	106		

Table 4.9	Transient response performance for rotor angle deviation 1					
Table 4.10	Performance index for rotor angle deviation					
Table 4.11	Transient response performance for rotor angle deviation	112				
Table 4.12	Performance index for rotor angle deviation	113				
Table 4.13	Transient response performance for rotor angle deviation	116				
Table 4.14	Performance index for rotor angle deviation	116				
Table 4.16	Performance index for rotor angle deviation	119				
Table 4.17	Transient response performance for rotor angle deviation 1					
Table 4.18	Performance index for rotor angle deviation					
Table 4.19	Transient response performance for rotor angle deviation					
Table 4.20	Performance index for rotor angle deviation	125				
Table 4.21	Performance index for various tested system with RADR	134				
	اونيوم سيتي تيكنيكل مليسيا ملاك					

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF FIGURES

FIGURE	TITLE				
Figure 2.1	(a) Salient pole rotor (b) Non-salient pole rotor	13			
Figure 2.2	Single-machine infinite-bus (SMIB) system	15			
Figure 2.3	Power angle	16			
Figure 2.4	Power angle curve	17			
Figure 2.5	Classification of power system stability	18			
Figure 3.1	Flowchart of research activities	39			
Figure 3.2	Power flow of synchronous generator	40			
Figure 3.3	Rotor angular displacement	41			
Figure 3.4	Equivalent circuit of one machine connected to an infinite bus	45			
Figure 3.5	Power angle curve	47			
Figure 3.6	Transient response when $Ps = -1$	52			
Figure 3.7	Transient response when Ps = 1	53			
Figure 3.8	Transient response of rotor angle deviation when H varied	54			
Figure 3.9	Transient response of frequency when <i>H</i> varied	55			
Figure 3.10	Concepts of stability	58			
Figure 3.11	Flowchart of RADR formulation	66			
Figure 3.12	Conceptual block diagram of Equation 3.78 - 3.79	67			
Figure 3.13	Nonlinear swing equation with RADR	72			
Figure 3.14	Single-machine infinite-bus system	73			
Figure 3.15	Rotor angle graph for fault occur (a) in the middle of transmission line and (b) 0.63 p.u.	75			
Figure 3.16	Rotor angle graph for fault occur (a) at bus 1 with zero to the ground impedance and (b) 1.8 p.u.	75			

Figure 3.17	Rotor angle graph for fault occur (a) at bus 1 with an impedance of j0.001 p.u. to the ground and (b) 0.4 p.u.				
Figure 3.18	Initial swing curve without damping in 10seconds	77			
Figure 3.19	Initial swing curve with 0.01 damping in 10 seconds	77			
Figure 3.20	Block diagram of parameter tuner for RADR parameters	80			
Figure 3.21	Performance index for $\alpha = 1$	82			
Figure 3.22	Performance index for $\varepsilon = 0.00001$	84			
Figure 3.23	Rotor angle for system with no fault	86			
Figure 3.24	Rotor angle for system without fault and various fault	87			
Figure 4.1	Rotor angle deviation for various fault conditions	92			
Figure 4.2	Rotor angle for stable system (fault = 0 p.u.)	93			
Figure 4.3	Rotor angle deviation for stable system (fault = 0 p.u)	95			
Figure 4.4	Rotor angle for a system with fault = 0.63 p.u. and no-FCT	97			
Figure 4.5	Rotor angle deviation for a system with a fault of 0.63 p.u. and no-FCT	98			
Figure 4.6	Rotor angle for a system with a fault of 0.63 p.u. and 2.5 cycles of FCT	78			
Figure 4.7	Rotor angle deviation for a system with fault of 0.63 p.u. and 2.5 cycles of FCT	101			
Figure 4.8	Rotor angle for a system with a fault of 0.63 p.u. and 6.5 cycles of FCT	103			
Figure 4.9	Rotor angle deviation for a system with a fault of 0.63 p.u. and 6.5 cycles of FCT	105			
Figure 4.10	Rotor angle for a system with a fault of 1.8 p.u. and no-FCT	107			
Figure 4.11	Rotor angle deviation for system with fault = 1.8 p.u and no-FCT	109			
Figure 4.12	Rotor angle for system with fault 1.8 p.u and FCT 2.5 cycles	111			
Figure 4.13	Rotor angle deviation for system with fault = 1.8 p.u. and FCT 2.5 cycles	112			

Figure 4.14	Rotor angle for the system with fault = 1.8 p.u. and FCT 6.5 cycles		
Figure 4.15	Rotor angle deviation for the system with fault 1.8 p.u. and FCT 6.5 cycles	115	
Figure 4.16	Rotor angle for the system with a fault of 0.4 p.u.	117	
Figure 4.17	Rotor angle deviation for the system with a fault of 0.4 p.u.	118	
Figure 4.18	Rotor angle for the system with fault 0.4 p.u. and FCT 2.5 cycles	120	
Figure 4.19	Rotor angle deviation for the system with fault 0.4 p.u. and FCT 2.5 cycles	121	
Figure 4.20	Rotor angle for the system with fault 0.4 p.u. and FCT 6.5 cycles	123	
Figure 4.21	Rotor angle deviation for the system with fault 0.4 p.u. and FCT 6.5 cycles	124	
Figure 4.22	Percentage of improvement of peak and peak time	127	
Figure 4.23	Rotor angle deviation for the tested system with RADR	128	
Figure 4.24	Final value of the rotor angle deviation for the tested system with RADR	130	
Figure 4.25	Rise time of various tested system	131	
Figure 4.26	Settling time of various tested system	132	
Figure 4.27	Peak time of various tested system	133	
Figure 4.28	Peak undershoot of various tested system	133	
Figure 4.29	Output Power for all cases and conditions	135	
Figure 4.30	Output power for the systems with RADR	136	
Figure 4.31	Steady-state output power	137	

LIST OF ABBREVIATIONS

AC	- Alternator current
AVR	- Automatic voltage regulator
CCT	- Critical clearing time
CES	- Capacitor energy storage
DC	- Direct current
ECRA	Electricity and Co-generation Regulatory Authority
ESS	- Energy storage system
FCT	- Fault clearing time
FIS	- Fuzzy inference system
IAE	- Integral of Absolute Error
ISE	- Integral of squared error
KCL	- Kirchhoff current Law
LQG	ونيومرسيتي تيك ي Linear quadratic gaussian مالاك
LQR	- Linear quadratic regulator
MGGP	- Multi-gene genetic programming
MMF	- Magneto motive force
MPC	- Model predictive control
MRAC	- Model reference adaptive control
MVO	- Multi-verse optimization
PID	- Propoertionsl-integral-derivative
PRL	- Power reaching law
PSO	- Particle swarm optimization
PSS	- Power system stabilizer

RADR	-	Rotor angle deviation regulator
R-SFCL	-	Resistive-type superconducting fault current limiter
SFCL	-	Superconducting fault current limiter
SMC	-	Sliding mode control
SMES	-	Superconducting magnetic energy storage
SMIB	-	Single-machine infinite-bus
SSE	-	Sum of squared error
TCSC	-	Thyristor controlled series compensator
VSC	-	Voltage source control

LIST OF SYMBOLS

α	- Saturation type-parameter (decay function)
С	- Feedback gain
D	- Damping
E	- Voltage behind transient reactance
E'	- Generator voltage
f_0	- Frequency
Н	- Per unit inertia constant
J	- Combined moment of inertia
М	- Inertia constant
p	- Number of poles
P_D	Damping power
P_e	- Electrical power
$P_{e(pu)}$	- Per unit electrical power
P_m	UNIVEMechanical power IKAL MALAYSIA MELAKA
P _{max}	- Maximum power
$P_{m(pu)}$	- Per unit mechanical power
P_{s}	- Synchronizing coefficient
S_B	- Base power
R	- State space region
r	- Small region of state space
T _e	- Electromagnetic torque
T_m	- Mechanical torque

T_a	-	Accelerating or decelerating torque
u	-	Controller input
u _{nom}	-	Nominal control law
u_r	-	Robust control law
V	-	Voltage at terminal load
V_g	-	Generator terminal voltage
W_k	-	Kinetic energy of rotating mass
ω_m	-	Rotor speed/mechanical angular velocity
ω_n	-	Natural frequency
ω_{sm}	10	Synchronous speed/electrical velocity
<i>X</i> ₁₂	N. S. S.	Transfer reactance
X_1 and X_2	TEK	Transfer reactance
x' _d	EIS-	Generator reactance
δ	2411	Load angle/power angle
δ_o	AL	Initial power angle
δ_m		Initial rotor position before disturbances
δ_{mech}	UNIVI	ERSITI TEKNIKAL MALAYSIA MELAKA Mechanical power angle
$\Delta\delta$	-	Rotor angle deviation
ΔΡ	-	Fault/Power input
Δu	-	Input uncertainty
ε	-	Saturation type-control parameter (epsilon)
$ heta_m$	-	Rotor angular displacement

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix A	Simulink diagram of nonlinear swing equation (Equation 3.33)	159
Appendix B	Simulation diagram of nonlinear swing eqaution with RADR	160
Appendix C	Certificate of Best Paper Award for ICoAIMS 2022	161
Appendix D	Certificate of Participation in 3 Minute Thesis National Level	162

LIST OF PUBLICATIONS

The followings are the list of publications related to the work on this thesis:

Murad, N.S.F.M., Kamarudin, M.N., Hanafi, A.N., Jamri, M.S., and Rozali, S.M., 2024. Rotor Angle Stability of a Linearized Synchronous Generator. *AIP Conference Proceedings*, 2895(1). (SCOPUS indexed).

Murad, N.S.F.M., Kamarudin, M.N., Hanafi, A.N., Rozali, S.M., and Ibrahim, M.A., 2024. Exploration of Characteristic Equation Towards the Analysis of Dynamical Stability for Synchronous Generators through Swing Equation. *International Journal of Electrical Engineering and Applied Sciences (IJEEAS)*, 7(1).

Murad, N.S.F.M., Kamarudin, M.N., Ismail, M.F., and Rozali, S.M., 2024. Modelling of a Nonlinear Swing Equation for a Non-Salient Pole Rotor Synchronous Generator. 2024 IEEE 4th International Conference in Power Engineering Applications: Powering the Future: Innovations for Sustainable Development, ICPEA 2024, (March), pp. 232–236. (SCOPUS indexed).

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Murad, N.S.F.M., Kamarudin, M.N., Rozali, S.M., and Zakaria, M.I., 2024. Power System Stability and Control: A Comprehensive Review Focusing on the Rotor Angle Case. *Bulletin of Electrical Engineering and Informatics*, 13(6), pp. 3897–3909. (SCOPUS indexed).

Murad, N.S.F.M., Kamarudin, M.N., and Zakaria, M.I., 2024. Rotor Angle Deviation Regulator to Enhance the Rotor Angle Stability of Synchronous Generators. *International Journal of Electrical and Computer Engineering*, 14(5), pp. 4879–4887. (SCOPUS indexed).

CHAPTER 1

INTRODUCTION

1.1 Background

One of the most important roles of the power system is transmitting electrical energy from the generation system to consumers (Zamee et al., 2016). Despite transmission and distribution systems, the generation system is considered the most important component of the power system due to the fact that the stability of power system operation will be assured by the generator even with the occurrence of failures (Shu and Tang, 2017). In generation systems, synchronous generators are the most commonly utilized generators.

The stability of the power system has become more crucial due to the rapid growth of the human population and the increasing demand for sustainability. Ensuring power system stability is crucial to avoid transmission failures and blackouts, which in turn improves the overall stability and reliability of the power system. The power system stability is commonly categorized into rotor angle stability, frequency stability, and voltage stability (Safavizadeh et al., 2022). Referring to synchronous generator in power system, the rotor angle stability is considered one of the most important types of power system stability. It is focused on generators' ability to maintain the rotor angle in the presence of disturbances. It can be categorized into two categories: small signal stability and large signal stability. Small signal stability considers the small disturbance condition, which refers to the slowly and randomly occurring occurrence of disturbance (Luo et al., 2020). Large signal stability, also known as transient stability, refers to the ability of the system to regain its synchronism when subjected to a large disturbance (Luo et al., 2020; Safavizadeh et al., 2022).

Numerous studies have been conducted by previous researchers in order to analyze and enhance rotor angle stability. Various control systems have been implemented in the studies, but there is still room for improvement in rotor angle stability.

1.2 Problem Statement

In a power system, one of the most crucial problems is maintaining the system's stability. Power system behavior depends on the mechanical and electrical processes of a synchronous generator. Consequently, the behavior of the synchronous generator after disturbances affect the stability of the power system (Yurika et al., 2019). This is because the disturbances perturb the oscillation of the rotor angle of the synchronous generator, which leads to instability (Hasan et al., 2020; Jiang and Wang, 2020; Sankar et al., 2022).

Power angle, also called rotor angle, is the angle between the relative position of the rotor axis and the resultant magnetic field axis, and this angle is fixed under normal operating conditions. However, during the occurrence of disturbances, the rotor will either accelerate or decelerate with regard to the synchronously rotating air gap magnetomotive force (MMF), hence the relative motion begins (Sarkar et al., 2021). This relative motion is described via nonlinear differential equation known as swing equation (Pandya et al., 2020; Munkhchuluun et al., 2019).

The stability of the synchronous generator is preserved if the rotor locks back into synchronous speed. The rotor returns to its normal operating condition if the disturbances do not result in any net change in power; otherwise, the rotor operates at a new power angle corresponding to the synchronously rotating field (Rahim, 2022). The performance of the synchronous generator will be degraded if the rotor angle changes due to the occurrence of disturbances (Sarkar et al., 2021). Thus, it is crucial to develop a control algorithm to improve transient performance, guarantee robustness against rotor angle deviation due to disturbances, and assure fast rotor angle regulation. As such, the problem addressed in this research is to formulate a Lyapunov-based algorithm in order to guarantee the asymptotic stability of the rotor angle for the optimum power angle. Preserving the optimal power angle guarantees the synchronous generator's stable output power and, hence, the stability of the power system.

1.3 Research Motivation

In this research, there are four hypotheses to create breakthroughs in knowledge, as follows:

- i) There exist parameters that have a significant effect on the stability and transient performance of synchronous generators.
- ii) A nonlinear swing equation has some additional parameters that require complex mathematics to solve as compared to a linearized swing equation.
- iii) Regulating the rotor angle of a synchronous generator to zero deviation will bestow power system stability.
- iv) The sufficiency and necessity of Lyapunov stability criteria must be met to ensure the asymptotic stability of any unstable system.