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1.Introduction 
Mobile robots have become increasingly widespread 

in industrial and logistics applications, with car-like 

robots being particularly valuable for their 

maneuverability and load-carrying capabilities [1, 2]. 

Point-to-point control systems, especially those 

utilizing proportional-integral-derivative (PID) 

controllers, remain fundamental in robotics due to 

their reliability and straightforward implementation 

[3, 4].  
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Recent advances in adaptive control strategies have 

highlighted the importance of considering load 

variations in mobile robot navigation, [5]. The 

integration of smart manufacturing principles led to 

increased demands for robots that can handle variable 

payloads while maintaining precise positioning [6, 7]. 

Studies have shown that traditional fixed-parameter 

PID controllers often struggle with varying load 

conditions, impacting both trajectory tracking and 

final positioning accuracy, [8, 9]. Modern industrial 

applications require robust control systems that can 

adapt to changing payload conditions while 

maintaining optimal performance metrics [10, 11]. 

 

Research Article 

Abstract  
The control of car-like robots is crucial for various applications, including autonomous vehicles and industrial 

automation. Achieving precise and robust movement in these robots, especially under varying load conditions, 

necessitates advanced control strategies. Traditional proportional-integral-derivative (PID) tuning methods, such as 

Ziegler-Nichols and Cohen-Coon, often fall short in addressing the dynamic challenges posed by changing loads. 

Although adaptive and intelligent methods have been explored, they can be computationally intensive and complex to 

implement. There is a clear need for a more efficient and adaptive PID tuning approach that maintains simplicity while 

offering robustness against varying loads. This research aims to develop a gain-scheduled PID tuning method specifically 

designed for car-like robots, enabling them to adapt to varying load conditions during point-to-point movements. The 

study focuses on the kinematic model of car-like robots, operating in simulated environments with dynamically changing 

loads. The gain-scheduled PID controller is designed using a combination of analytical and adaptive techniques. The 

analytical technique aims to meet step response performance criteria, including no overshoot, a rise time of less than 1 s, 

and a settling time of under 1.5 s. In contrast, the adaptive technique focuses on updating the gains during point-to-point 

movements to accommodate load variations, ensuring optimal performance throughout the robot's operation. The results 

are validated across multiple load-carrying scenarios. The performance of the proposed method is benchmarked against 

basic PID tuning method. In three trials of random load-carrying across 10-point destinations, the basic tuning method 

resulted in an average completion time of 27.86 s, while the gain-scheduled tuning method achieved an average of 11.27 

s. This demonstrates that the gain-scheduled approach offers superior adaptability and robustness, along with reduced 

computational complexity. The study successfully achieves the objective of developing a robust and efficient PID tuning 

method for car-like robots. 
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The primary challenge in implementing PID control 

for car-like robots arises from the inherent 

nonlinearity of their system dynamics, especially 

under varying load conditions [12, 13]. Traditional 

fixed-gain PID controllers often struggle to maintain 

consistent performance across different loads, 

resulting in degraded positioning accuracy and 

increased settling times [14]. Load variations amplify 

the coupling effects between longitudinal and lateral 

motions, further complicating precise point-to-point 

movements [15]. Moreover, ensuring real-time 

adjustment of control parameters while maintaining 

system stability poses significant computational 

challenges [16]. 

 

The primary objective of this paper is to develop an 

adaptive gain scheduling mechanism for PID 

controllers in car-like robots that automatically 

adjusts control parameters based on payload 

variations. The goal is to improve point-to-point 

positioning accuracy while maintaining system 

stability across different loading conditions. The 

research focuses on developing a computationally 

efficient solution suitable for real-time 

implementation in industrial settings. 

 

This paper contributes to the field by presenting a 

novel gain scheduling framework that integrates 

advanced tuning techniques for PID controllers in 

car-like robots. An adaptive algorithm is introduced, 

capable of real-time adjustments based on load 

variations, demonstrating significant improvements 

in performance metrics such as settling time and 

overshoot. Additionally, comprehensive simulations 

validate the proposed method against traditional PID 

control strategies, highlighting its effectiveness in 

maintaining stability across diverse operational 

scenarios. 

 

The paper is structured as follows: it begins with an 

introduction outlining the significance of PID tuning 

in robotic control systems and literature review. 

Following this, a detailed methodology section 

describes the proposed gain scheduling algorithm and 

its implementation. The results section presents a 

comparative analysis between the proposed approach 

and conventional methods, concluding with a 

discussion of implications and future research 

directions. 

 

2.Literature review 
A basic control system for a car-like robot typically 

involves point-to-point navigation, where the robot is 

required to move from one location to another 

accurately and efficiently. The PID controller is a 

widely used method for achieving this control due to 

its simplicity and effectiveness. The primary 

objective of PID tuning is to adjust the controller 

parameters (proportional, integral, and derivative 

gains) to achieve optimal performance in terms of 

stability, speed, and accuracy. This is particularly 

critical for mobile robots, where the dynamic 

behavior can change significantly depending on the 

load and operating conditions. As mobile robots often 

need to navigate complex environments and handle 

varying payloads, it is essential to implement robust 

and adaptive PID tuning methods to maintain precise 

control over their motion and positioning [17–19]. 

The challenge lies in maintaining optimal 

performance despite these variations, which 

necessitates advanced tuning strategies [20–22]. The 

performance of a PID controller is highly dependent 

on its tuning parameters, which determine how the 

controller responds to errors. Various methods have 

been proposed to address these challenges, each with 

distinct methodologies, results, advantages, and 

limitations. 

 

Classical tuning methods, such as Ziegler-Nichols 

and Cohen-Coon, serve as the foundation of PID 

control design. The Ziegler-Nichols method relies on 

empirical tuning based on step response data, 

offering a quick and straightforward way to set PID 

parameters. While it provides acceptable 

performance for simple systems, it often leads to 

suboptimal results in systems with time delays or 

nonlinearities. For instance, although it effectively 

stabilizes simple systems, it may cause high 

overshoot and oscillations in more complex 

applications [23–25]. On the other hand, the Cohen-

Coon method offers an improvement over Ziegler-

Nichols by better accommodating time-delay 

systems, providing a balance between stability and 

response speed. Despite its advantages, it still faces 

limitations in nonlinear and time-varying systems and 

often requires further fine-tuning to meet specific 

performance criteria in robotic applications [26]. The 

advantages of classical PID tuning methods are their 

simplicity, speed, and effectiveness for linear 

systems. However, they struggle with nonlinearity, 

time-varying dynamics, and complex environments. 

 

Analytical methods use the system's dynamic 

characteristics for precise tuning, emphasizing step 

response optimization to minimize overshoot, settling 

time, and steady-state error. For instance, 

optimization-based tuning for differential-drive 

robots has shown enhanced accuracy and response 
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speed by tailoring the controller parameters to the 

system's dynamics [27, 28]. As they provide more 

tailored tuning for specific systems, they offer better 

performance in complex dynamics. However, they 

require high computational intensity and reliance on 

accurate system methods; therefore, they are less 

adaptable in real-time scenarios. 

 

Adaptive PID tuning methods, such as gain-

scheduling, dynamically adjust the controller 

parameters in real-time based on the current 

operating conditions. This approach is particularly 

useful for mobile robots that must adapt to changing 

loads or varying environmental conditions. Gain-

scheduling has been successfully applied in various 

robotic systems, where it allows the controller to 

maintain optimal performance despite significant 

changes in the system's dynamics [29]. This method 

is crucial for applications where the robot must 

perform consistently across a wide range of tasks or 

when dealing with uncertain or varying payloads, 

ensuring stability and precision in motion control. By 

continuously updating the PID gains, gain-scheduling 

helps in maintaining optimal control performance, 

making it an essential technique in modern robotics 

[30]. The advantages of adaptive methods lie in their 

real-time adaptability and robustness to dynamic 

variations. However, they require accurate modeling 

and may struggle to perform effectively in highly 

nonlinear systems. 

 

Intelligent tuning methods, such as fuzzy logic and 

neural networks, integrate artificial intelligence to 

handle uncertainties and nonlinearities. Fuzzy logic 

controllers, leveraging linguistic rules, have been 

used for path tracking in mobile robots, offering 

improved adaptability where traditional PID methods 

fall short [31–33]. This has been effectively used in 

mobile robot path tracking and manipulator control, 

where traditional PID controllers may struggle [34–

36]. Neural network-based PID controllers, such as 

self-tuning neural networks, have demonstrated 

significant adaptability and performance 

improvements in complex systems like selective 

compliance articulated robot arm (SCARA) robots 

[37–39]. Furthermore, deep reinforcement learning 

has emerged as a robust dynamic gain auto-tuning 

approach, enhancing real-time control [40–42]. The 

intelligent tuning methods are highly adaptive and 

effective in handling nonlinearities and uncertainties. 

However, they are computationally demanding and 

require extensive training or rule design. 

 

Evolutionary algorithms, such as genetic algorithms 

(GA) and particle swarm optimization (PSO), have 

been increasingly used for PID tuning due to their 

ability to explore a wide search space and find near-

optimal solutions. These methods are particularly 

useful in scenarios where the control system must 

handle nonlinearities, time delays, or multiple 

objectives [43]. For instance, PSO has been used to 

tune fuzzy PID controllers for mobile robot trajectory 

control, resulting in enhanced performance and 

robustness [44, 45]. Similarly, GAs have been 

applied to optimize PID parameters in various robotic 

systems, demonstrating significant improvements in 

control accuracy and system stability [46–48]. These 

methods offer an alternative to traditional tuning 

approaches, especially for complex and high-

dimensional control problems [49, 50]. Apart from 

mobile robots, PSO and Bayesian optimization 

algorithms have been employed to tune the PID 

controllers of robotic manipulator joints [51, 52]. 

More advanced evolutionary methods include the use 

of the bat algorithm [53], whale optimization 

algorithm [54], ant colony optimization [55], and 

artificial gorilla troop optimization [56]. They are 

effective for complex, nonlinear, and multi-objective 

optimization problems. However, similar to 

intelligent methods, they are computationally 

intensive and not always suitable for real-time 

implementation. 

 

Classical methods, while foundational, lack the 

robustness required for complex or time-varying 

systems. Analytical methods provide precision but 

require accurate system modeling and significant 

computational resources. Adaptive methods like 

gain-scheduling offer real-time adaptability but can 

struggle with highly nonlinear behavior. Intelligent 

methods show great potential in handling 

uncertainties but demand extensive computational 

and design efforts. Evolutionary algorithms provide 

powerful optimization capabilities but are often 

limited by their computational demands and inability 

to adapt in real-time. The gap in the current state of 

PID tuning lies in developing a hybrid approach that 

combines the precision of analytical methods, the 

adaptability of gain-scheduling, and the robustness of 

intelligent and evolutionary techniques. Such a 

unified framework could enable real-time, robust PID 

tuning for mobile robots operating under varying load 

conditions, addressing the limitations of individual 

methods and ensuring optimal performance in diverse 

environments. 
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The objective of this research is to develop a gain-

scheduled PID tuning strategy for a car-like robot 

that can adapt to changing loads. This approach will 

integrate analytical and adaptive techniques to create 

a robust control system. The ultimate goal is to 

achieve precise and stable point-to-point motion 

control in mobile robots, ensuring consistent 

performance across a wide range of tasks and 

environments. This research focuses on a simulation 

aspect of a car-like robot operating on 10 m by 10 m 

workspace. Specifically, the kinematics model of car-

like robot is going to be derived and loading 

dynamics affects the speed and turning of the car-like 

robot. 

 

3.Methods 

The structural design of the car-like robot is 

illustrated in Figure 1 showcasing its four-wheel 

configuration. The robot consists of a chassis with 

four wheels, where the front two wheels are capable 

of steering, enabling directional control, and the rear 

two wheels are responsible for propulsion. The 

coordinate system of the robot includes the 𝑥𝑏, 𝑦𝑏 , 

and 𝑧𝑏 axes representing the body-fixed frame, with 

𝑥𝑏 directed forward, 𝑦𝑏  directed to the left, and 𝑧𝑏 

directed upward. 

 

 
Figure 1 Car-like robot design 

 

The kinematic model of the car-like robot can be 

described by the following Equations 1 to 3: 

�̇� = 𝑣 𝑐𝑜𝑠(𝜃) (1) 

�̇� = 𝑣 𝑠𝑖𝑛(𝜃) (2) 

�̇� =
𝑣

𝐿
 𝑡𝑎𝑛(𝛾) (3) 

where: 

𝑥 and 𝑦 are the global coordinate 

𝜃 is the heading angle 

𝑣 is the linear velocity 

𝐿 is the wheelbase 

𝛾 is the steering angle 

 

The navigation problem involves the car-like robot 

moving from a starting point to an ending point 

through a series of intermediate waypoints as shown 

in Figure 2. The robot must traverse from a starting 

point to an endpoint through a series of predefined 

waypoints. This illustration highlights the trajectory 

planning challenge, which is further complicated by 

dynamic load variations. The figure provides context 

for the trajectory tracking equations and control 

strategies proposed in the subsequent sections. 

The problem model is represented as follows: 

• The robot starts at coordinates (𝑥𝑠𝑡𝑎𝑟𝑡 , 𝑦𝑠𝑡𝑎𝑟𝑡) 

• It needs to reach the end coordinates (𝑥𝑒𝑛𝑑 , 𝑦𝑒𝑛𝑑), 

passing through waypoints (𝑥𝑖 , 𝑦𝑖) where 𝑖 =
1, 2 … , 𝑛 

 

 
Figure 2 Navigation problem 

 

The problem can be formulated as finding a control 

strategy that allows the robot to follow a desired 

trajectory (𝑥𝑤𝑠(𝑡), 𝑦𝑤𝑠(𝑡)), while accounting for load 

changes. The trajectory tracking can be represented 

by Equations 4 and 5: 

𝑒𝑥 = 𝑥𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑡) − 𝑥𝑎𝑐𝑡𝑢𝑎𝑙(𝑡) (4) 

𝑒𝑦 = 𝑦𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑡) − 𝑦𝑎𝑐𝑡𝑢𝑎𝑙(𝑡) (5) 

 

where 𝑒𝑥 and 𝑒𝑦 are the tracking errors in the 𝑥 and 𝑦 

directions, respectively. 

 

The proposed control system block diagram for the 

car-like robot moving point-to-point with load effect 



Mohd Faid Yahya and Mad Helmi Ab. Majid 

78 

 

is shown in Figure 3. The diagram includes the 

multiple goals (waypoints), angle difference 

calculations, and the integration of throttle and 

steering PID controllers. The "Loading and Tuning" 

block is of particular importance, as it dynamically 

adjusts the controller gains based on load variations, 

ensuring smooth transitions and robust performance 

under different operating conditions. The main 

components are: 

1. Multiple Goals (Start and End Points): The system 

starts with the defined multiple goals, including 

start and end points. 

2. Throttle and Steering Control: The robot's throttle 

and steering are controlled based on the PID 

controller outputs. 

3. Angle Difference Calculation: This block 

calculates the angular difference 𝜃 between the 

robot's current orientation and the desired 

direction. 

4. PID Controllers: Two PID controllers are used - 

one for controlling the throttle and the other for the 

steering angle. 

5. Car-Like Robot Kinematics: This block uses the 

kinematic model of the robot to update its position 

and orientation based on the control inputs. 

6. Loading and Tuning: The system incorporates the 

effect of changing loads and uses a tuning 

mechanism for gain-scheduled PID control. 

 

 
Figure 3 Proposed control system block diagram 

 

The PID model is defined by the following Equation 

6: 

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡) 𝑑𝑡 + 𝐾𝑑
𝑑𝑒(𝑡)

𝑑𝑡
 (6) 

where: 

• 𝑢(𝑡) is the control input (throttle or steering 

angle), 

• 𝑒(𝑡) is the error between the desired and actual 

values, 

• 𝐾𝑝, 𝐾𝑖, 𝐾𝑑 are the proportional, integral, and 

derivative gains, respectively. 

 

The presence of varying loads affects the robot's 

dynamics. The block diagram accounts for this by 

incorporating a loading block that adjusts the robot's 

parameters based on the current load. For every 1 kg 

added to the car-like robot, the speed and turning 

angle would reduce by 10%. The maximum load was 

set to 9 kg. The proposed method employs a gain-

scheduled PID controller, where the gains K_p, K_i, 

K_d are adjusted based on the load and the robot's 

state. This adaptive tuning ensures optimal 

performance across different operating conditions. 

The tuning block dynamically updates the PID gains, 

thereby improving the robot's ability to follow the 

desired path accurately. 

 

The development of the gain-scheduled PID control 

system for the car-like robot is based on several key 

assumptions. First, it is assumed that the sensors 

provide accurate readings of the robot’s position and 

orientation. Accurate sensor feedback is essential for 

maintaining the integrity of the control system, as any 

inaccuracies could introduce errors in the feedback 

loop, potentially leading to instability or degraded 

performance. This assumption is particularly valid for 

simulation environments or scenarios using high-

precision sensors like encoders and inertial 

measurement units (IMUs). However, in real-world 

applications, sensor inaccuracies, such as noise or 

bias, would need to be mitigated using techniques 

like filtering or sensor fusion. 
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Another assumption is that no slippage occurs 

between the wheels and the ground. The kinematic 

model assumes constant traction between the wheels 

and the ground, ensuring the validity of the motion 

equations. Slippage, caused by factors like sudden 

changes in load or surface irregularities, could 

invalidate the model and lead to inaccuracies in 

motion control. While this assumption simplifies the 

study, real-world applications may require 

enhancements such as the inclusion of slip dynamics 

or traction control mechanisms to account for 

variable surface conditions. 

 

The third assumption is that environmental 

conditions, such as friction between the wheels and 

the ground, remain constant throughout the operation 

of the robot. Consistent frictional forces eliminate 

external uncertainties in the control design and tuning 

process, making the system more predictable. 

However, in practical scenarios, environmental 

factors like wet surfaces or uneven terrain could 

introduce variations, necessitating adaptive control 

strategies to maintain performance. 

 

In addition to these assumptions, specific constraints 

are defined for the system. The robot’s maximum 

allowable load is set at 9 kg. This constraint ensures 

safe operation and prevents overloading, which could 

result in mechanical failure or performance 

degradation. Increasing the load capacity would 

require a redesign of the system, including stronger 

components and more powerful actuators, which falls 

outside the scope of this study. 

 

The performance targets for the PID controller 

represents another crucial constraint. These include a 

rise time of less than 1s, no overshoot, and a settling 

time of less than 1.5s. These targets are standard in 

precision control applications and ensure the robot's 

navigation is both efficient and stable. Meeting these 

criteria minimizes oscillatory behavior and ensures a 

responsive system capable of adapting to varying 

load conditions. Failure to meet these performance 

metrics could compromise the robot’s practical 

usability, highlighting the importance of robust 

tuning and control design. 

 

The experiments were conducted entirely in a 

simulation environment using MATLAB, where all 

programming and controller implementation were 

developed from scratch. As this study is simulation-

based, no physical hardware was used, and the robot's 

behavior was modeled to reflect its kinematic 

characteristics without the need for sensor feedback. 

MATLAB served as the simulation platform, 

enabling precise implementation of the gain-

scheduled PID control strategy. A fixed time step of 

0.01 s was utilized to ensure high-resolution 

simulation and accurate point-to-point tracking. 

 

For each load condition, the simulations were 

repeated three times to evaluate the robot’s 

performance under random load variations during 

fixed point-to-point movements. This repetition 

helped ensure the robustness of the proposed control 

method. As the study was purely simulation-based, 

sensors were not incorporated into the model; 

instead, all required states, such as position, 

orientation, and velocity, were directly derived from 

the simulation framework. This setup provided a 

controlled, reproducible environment for analyzing 

the effectiveness of the gain-scheduled PID tuning 

method, isolating it from hardware imperfections and 

external disturbances. 

 

The gain-scheduled PID tuning involves adjusting the 

controller gains 𝐾𝑝, 𝐾𝑖, 𝐾𝑑 in real-time based on the 

current load conditions. This adaptive tuning 

mechanism ensures that the control system can 

handle varying loads without compromising 

performance as per Equations 7 to 9. 

𝐾𝑝(𝑡) = 𝑓𝑝(𝑙𝑜𝑎𝑑) (7) 

𝐾𝑖(𝑡) = 𝑓𝑖(𝑙𝑜𝑎𝑑) (8) 

𝐾𝑑(𝑡) = 𝑓𝑑(𝑙𝑜𝑎𝑑) (9) 

 

where 𝑓𝑝, 𝑓𝑖, and 𝑓𝑑 are functions that determine the 

gains based on the load. This research focuses solely 

on the kinematics of the robot, acknowledging the 

significant impact of load variations on its 

movement, while excluding its other dynamic 

properties. Therefore, the function 𝑓 serves as a 

representation of the gain value adjustments 

determined through trial and error to achieve the 

desired performance when the robot carries a load. 

 

The algorithm for gain-scheduled PID tuning of car-

like robot is given as follow: 

 

Start 

Set desired_positions = [(𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . ] 
Set load = 0  # Initial load in kg 

Initialize Kp_speed, Ki_speed, Kd_speed, Kp_steering, Ki_steering, 

Kd_steering 

for each load from 0 kg to 9 kg: 

    Run simulation with current PID values 

    while not near desired_position: 

        Observe robot motion 

        if motion not smooth: 
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            Adjust transition distance 

            Adjust Kp_speed, Ki_speed, Kd_speed, Kp_steering, 

Ki_steering, Kd_steering through trial and error 

        if step_response not desired: 

            Adjust Kp_speed, Ki_speed, Kd_speed, Kp_steering, 

Ki_steering, Kd_steering to achieve: 

                Overshoot = 0 

                Rise time < 1 s 

                Settling time < 1.5 s 

        Record Kp_speed, Ki_speed, Kd_speed, Kp_steering, 

Ki_steering, Kd_steering for current load 

    Increase load by 1 kg 

Set gain schedule based on recorded PID values 

End 

 

The description of the algorithm is shown below: 

1. Start: Begin the process. 

2. Set desired_positions: Define the desired points 

the robot needs to reach. These points are 

predetermined based on the task requirements or a 

specified path. 

3. Set load: Initialize the load to 0 kg. 

4. Initialize PID values: Set the initial values for the 

PID parameters for both speed and steering. 

5. For each load from 0 kg to 9 kg: Iterate through 

the load values, incrementing by 1 kg each time. 

o Run simulation with current PID values: Execute 

the simulation with the current set of PID values. 

o While not near desired_position: Continue 

adjusting as long as the robot has not reached the 

desired position. 

▪ Observe robot motion: Monitor the robot's 

movement. 

▪ If motion not smooth: If the movement is 

not smooth, adjust the transition distance. 

▪ Adjust PID values through trial and error: 

Manually fine-tune the PID parameters to 

achieve the desired motion characteristics. 

▪ If step_response not desired: Ensure the 

step response meets the specified criteria 

(no overshoot, rise time < 1s, settling time 

< 1.5s). 

▪ Adjust PID values to achieve 

desired step response: Further adjust 

the PID parameters to meet these 

criteria. 

▪ Record PID values: Document the PID 

values for the current load. 

o Increase load by 1 kg: Move to the next load 

increment. 

6. Set gain schedule: Establish the gain schedule 

based on the recorded PID values for different 

loads. 

7. End: Conclude the process. 

Figure 4 and Figure 5 show the reference and actual 

x, y-position signals of the robot over simulation 

time. The blue line represents the reference positions 

the robot should reach, while the orange line 

represents the actual positions achieved by the robot. 

The goal is to minimize the difference between the 

reference and actual x, y positions. The minimal 

deviation between these lines demonstrates the 

controller's precision in following the desired path. 

Together, Figures 4 and Figure 5 provide a 

comprehensive view of the robot's accuracy in 2D 

space, highlighting the gains achieved through the 

proposed PID tuning method. Figure 6 depicts the 

error signals for both x and y positions over 

simulation time. The blue line represents the error in 

the x position, and the orange line represents the error 

in the y position. The decreasing error magnitudes 

indicate the effectiveness of the gain-scheduled PID 

controller in reducing positional deviations. This 

figure provides insight into the controller's stability 

and its ability to achieve convergence to the desired 

trajectory under dynamic load variations. As per the 

system design, the robot is programmed to prioritize 

reaching within 0.5 meters of the target point before 

proceeding to the next. 

 

 
Figure 4 Signal for x coordinate 

 

The tuning process for the PID controller was carried 

out systematically to ensure robust performance 

under varying load conditions. The Kp, Ki, and Kd 

gains were initialized based on trial-and-error 

simulations, leveraging prior knowledge of the 

system's dynamics. The primary objective during 

initialization was to minimize the rise time, 

overshoot, and settling time while ensuring stability. 
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Figure 5 Signal for y coordinate 

 

 
Figure 6 Error signal 

 

For the specific case of point-to-point navigation, the 

integral and derivative terms Ki, and Kd were omitted 

during the tuning process. For point-to-point 

movements, steady-state errors are less critical since 

the task primarily focuses on transient response. 

Including Ki could introduce unnecessary overshoot 

or oscillations, particularly for tasks that require 

quick transitions. The derivative term, while useful in 

improving damping and reducing overshoot, was 

found to contribute marginally to performance 

improvement in point-to-point navigation tasks. The 

simplicity of excluding Kd also reduced 

computational complexity, which is advantageous for 

real-time applications. 

 

However, for other navigation tasks, such as 

trajectory tracking or line following, the inclusion of 

Ki and Kd becomes essential to address cumulative 

errors and enhance stability. These tasks demand 

higher precision and robustness against disturbances, 

where the contributions of integral and derivative 

actions are critical. This aspect is acknowledged as a 

potential area for future research, where the gain-

scheduled approach can be extended to dynamically 

tune Ki and Kd based on the task requirements. 

The proportional gains Kp were adjusted adaptively 

using the gain-scheduling mechanism. This allowed 

the controller to respond effectively to load variations 

by increasing or decreasing Kp values to maintain the 

desired transient and steady-state performance. The 

gain scheduling was performed by correlating load 

changes with the required control effort, as 

documented in Table 1. This approach ensured that 

the controller remained efficient and robust for the 

intended point-to-point navigation tasks while 

providing a foundation for extending the method to 

more complex scenarios. 

 

Table 1 lists the gain schedule for the PID parameters 

at different load levels. For each load increment, the 

corresponding PID values for both steering and 

throttle are provided. The table serves as a reference 

for implementing gain-scheduled PID control based 

on the load. It facilitates the adjustment of PID 

parameters to maintain optimal performance as the 

load changes. Notice that the increment of the gains, 

specifically for Kp1 and Kp2 are nonlinear whereas 

other gains remain 0. The integral and derivative 

properties do not need to be tuned because they 

depend on the type of navigation problem. For the 

point-to-point problem, adjustments are made only to 

two gains (Kp1 and Kp2). However, for other 

navigational tasks such as line following, path 

following, or moving to a specific pose, tuning the 

integral and derivative gains becomes essential, 

which is beyond the scope of this paper. 

 

Table 1 Gain schedule for handling load variation 
Loading  

(kg) 

Gain schedule 

Steering Throttle 

Kp1 Ki1 Kd1 Kp2 Ki2 Kd2 

0 1.5 0 0 4 0 0 

1 1.67 0 0 4.1 0 0 

2 1.88 0 0 4.5 0 0 

3 2.15 0 0 5.7 0 0 

4 2.5 0 0 6.5 0 0 

5 3 0 0 7.5 0 0 

6 3.7 0 0 8.5 0 0 

7 5 0 0 13 0 0 

8 7.5 0 0 21 0 0 

9 15 0 0 40 0 0 

 

The gain adjustments are nonlinear due to the 

inherent complexities of the dynamic system, 

particularly in how the car-like robot responds to 
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varying loads. Load variations introduce changes in 

inertia and friction, which affect the system's 

kinematics and control effort in a nonlinear manner. 

Linear gain adjustments were insufficient during 

initial tests to meet performance criteria such as 

eliminating overshoot, achieving a rise time of less 

than 1 s, and maintaining a settling time under 1.5 s. 

Nonlinear adjustments, on the other hand, allowed 

the gains to scale appropriately, providing precise 

control for both small and large load variations. This 

empirical approach, as reflected in Table 1, 

demonstrates how 𝑓𝑝, 𝑓𝑖, and 𝑓𝑑 increase 

disproportionately with load, ensuring that the control 

system responds adequately across the entire 

operating range. 

 

The nonlinear gain adjustments have a significant 

impact on stability and performance. By tailoring the 

gains to specific load conditions, nonlinear gain 

adjustments enhance stability margins, preventing 

oscillations and instability caused by under-tuned or 

over-tuned gains. This approach also improves 

robustness against parameter uncertainties and 

external disturbances, ensuring that the robot 

maintains steady trajectory tracking regardless of 

abrupt load changes. From a performance 

perspective, the nonlinear scheduling ensures optimal 

control across a wide range of loads, balancing 

responsiveness and smoothness. The results 

demonstrated consistent performance, including 

reduced completion times and stable trajectory 

tracking, even under dynamically changing loads. 

Additionally, nonlinear gains improve energy 

efficiency by minimizing control effort for lighter 

loads while maintaining adequate force for heavier 

loads. Nonlinear gain adjustments are essential for 

ensuring stability and achieving optimal performance 

in systems with dynamic and complex behaviors. 

 

4.Results  
The initial experiment was conducted to test the 

robot's performance without any load using poorly 

tuned PID parameters. As illustrated in Figure 7, the 

robot’s trajectory deviates significantly from the 

desired path. The path is marked by multiple 

oscillations and an overall inefficient route, 

indicating the inadequacy of the tuning. The robot 

struggles to follow the set trajectory, resulting in an 

elongated and erratic movement. This emphasizes the 

need for proper tuning methods to achieve stable and 

accurate navigation. 

 

In contrast, Figure 8 demonstrates the robot's 

performance with well-tuned PID parameters. The 

trajectory closely follows the desired path with 

minimal deviation. The improved tuning results in a 

smoother and more efficient route, showcasing the 

effectiveness of the gain-scheduled PID tuning. The 

robot reaches each waypoint accurately and follows a 

consistent path, indicating enhanced stability and 

control. 

 

 
Figure 7 Bad tuning (no load condition with 

𝐾𝑝_𝑠𝑝𝑒𝑒𝑑 = 1.5, 𝐾𝑖_𝑠𝑝𝑒𝑒𝑑 = 3, 𝐾𝑑_𝑠𝑝𝑒𝑒𝑑 = 2, 

𝐾𝑝_𝑠𝑡𝑒𝑒𝑒𝑟𝑖𝑛𝑔 = 3, 𝐾𝑖_𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔 = 3, 𝐾𝑑_𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔 = 1) 

 

 
Figure 8 Good tuning (no load condition with 

𝐾𝑝_𝑠𝑝𝑒𝑒𝑑 = 1.5, 𝐾𝑖_𝑠𝑝𝑒𝑒𝑑 = 0, 𝐾𝑑_𝑠𝑝𝑒𝑒𝑑 = 0, 

𝐾𝑝_𝑠𝑡𝑒𝑒𝑒𝑟𝑖𝑛𝑔 = 4, 𝐾𝑖_𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔 = 0, 𝐾𝑑_𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔 = 0) 

 

In evaluating the performance of the gain-scheduled 

PID controller, key response characteristics were 

measured, including rise time, settling time, and 

overshoot. These parameters were analyzed for 

varying load conditions, with the controller 

consistently maintaining a rise time of less than 1 s, 

settling time of less than 1.5 s, and negligible 
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overshoot, as detailed in the description of the 

algorithm. 

 

Table 2 presents the overall completion time for the 

robot to travel from the start to the last position under 

fixed loading conditions. The analysis of the 

provided data in Table 2 highlights significant 

differences between the performance of the no tuning 

and gain-scheduled approaches in terms of 

completion time, consistency, and predictability. The 

average completion time for the no tuning approach 

is 24.93 s, which is considerably higher than the 

11.26 s achieved with gain-scheduling. This 

difference indicates a substantial improvement in 

performance when gain-scheduling is applied, 

showcasing its effectiveness in reducing completion 

time. 

 

In terms of consistency, gain-scheduling 

demonstrates better stability with a very low standard 

deviation of 0.05 s, compared to the 17.38 s observed 

for the no tuning approach. This low variation 

indicates that gain-scheduling consistently delivers 

nearly the same performance regardless of the load 

applied, while the no tuning method exhibits 

significant variability. 

 

The predictability of the system is further evident 

from the confidence intervals. For gain-scheduling, 

the 95% confidence interval is extremely narrow, 

ranging from 11.22 to 11.30 s. This highlights a high 

degree of reliability and precision in its performance. 

On the other hand, the no tuning approach has a 

much wider confidence interval, spanning from 11.57 

s to 38.28 s. This wide range reflects the variability 

and unpredictability associated with this method, 

particularly as the load increases. 

 

Table 2 Fixed loading from start position to last 

position test 

Loading  

(kg) 

Overall completion time (s) 

No tuning Gain-schedule 

0 11.24 11.24 

1 12.36 11.24 

2 13.81 11.24 

3 15.72 11.22 

4 18.35 11.25 

5 22.11 11.26 

6 27.79 11.41 

7 37.46 11.25 

8 65.49 11.24 

9 n/a 11.24 

 

 

Based on the data from Table 2, the plot of 

completion time comparing no tuning and gain-

scheduled tuning is presented in Figure 9. It reveals 

that gain-scheduling effectively maintains a 

consistent completion time across all loading 

conditions, even under significant load variations. In 

contrast, the no tuning approach shows a clear trend 

of increasing completion times with heavier loads, 

emphasizing its limitations in handling varying 

conditions. Overall, this analysis highlights the 

advantage of gain-scheduled tuning in achieving 

efficient, consistent, and reliable performance. 

 

Table 3 provides data on the robot's performance 

under random loading conditions, detailing the 

coordinates and load for each position. Based on 

Table 3, the average completion time for the no-

tuning method is 27.86 s, whereas the gain-scheduled 

method significantly reduces it to 11.27 s. This 

demonstrates that gain-scheduled tuning provides a 

notable improvement in efficiency, making it much 

faster in handling tasks involving random loads. 

 

When analyzing the standard deviation, the no tuning 

method shows a value of 7.382 s, indicating 

considerable variability in its performance. In 

contrast, the gain-scheduled method achieves a 

standard deviation of just 0.006 s, which is 

exceptionally low. This suggests that gain-scheduled 

tuning not only improves speed but also ensures 

consistency in performance across different trials. 

 

The 95% confidence intervals further support these 

observations. For the no tuning method, the 

confidence interval is wide, with a margin of ±5.674 

s, reflecting high uncertainty and variability in its 

completion times. On the other hand, the gain-

scheduled method has a confidence interval of just 

±0.004 s, reflecting extremely reliable and stable 

outcomes. 

 

Finally, the lower and upper bounds for the no tuning 

method range from 22.186 s to 33.534 s, whereas for 

the gain-scheduled method, the bounds are extremely 

tight, ranging from 11.262 s to 11.271 s. This 

indicates that the gain-scheduled approach provides 

predictable results within a very narrow range, as 

opposed to the wide variability seen in the no-tuning 

method. The gain-scheduled PID tuning method 

significantly outperforms the no-tuning approach in 

terms of efficiency, reliability, and consistency. It is 

evident that gain-scheduled tuning is highly effective 

for managing random loads, providing faster and 

more predictable control in such scenarios. 
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Figure 9 Plot of completion time between no tuning and gain-schedule 

 

Table 3 Random loading from start position to last position test 

Position 
Coordinate (m) Random load trial (kg) 

x y First Second Third 

1 6 1.75 3 2 5 

2 3 2 7 2 5 

3 2.7 3 1 5 1 

4 3.5 3.5 8 2 7 

5 4.5 3 6 8 1 

6 4.5 4.5 8 5 7 

7 3.75 5.5 6 2 3 

8 4.75 8.5 4 7 1 

9 5.75 9 1 4 3 

10 8 9.5 2 8 3 

Overall completion  

time (s) 

No tuning 35.33 27.68 20.57 

Gain-schedule 11.27 11.27 11.26 

 

 
Figure 10 Random load effect on the car-like robot moving point-to-point for first random load trial
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The first random load trial is shown in Figure 10. 

Despite the dynamic changes in load, the robot 

maintains a stable and consistent path, reaching the 

desired waypoints efficiently. This figure exemplifies 

the adaptability of the gain-scheduled PID controller 

in handling unpredictable load variations, a critical 

feature for real-world applications. 

 

5.Discussion  
The experimental results demonstrate the critical 

importance of proper PID tuning in robotic 

navigation, especially under varying load conditions. 

The system's response characteristics, particularly 

rise time, settling time, and overshoot, are indicative 

of its stability and efficiency. The gain-scheduled 

PID tuning effectively minimized overshoot while 

maintaining rapid response times under all tested 

loading conditions. These results demonstrate the 

controller's robustness and suitability for point-to-

point navigation tasks in environments with varying 

loads. The poorly tuned system failed to follow the 

desired path accurately, resulting in inefficient and 

unstable movements. In contrast, the gain-scheduled 

PID tuning showcased significant improvements in 

trajectory accuracy and stability, both for no-load and 

load conditions. 

 

In the first experiment, the gain-scheduled tuning 

method proved its robustness by maintaining 

consistent performance across different fixed loads, 

effectively mitigating the impact of increasing load 

on the robot's navigation efficiency. This indicates its 

suitability for applications where the load is known 

and fixed. In the second experiment, the gain-

scheduled method excelled under random loading 

conditions, providing consistent and reliable 

performance across all trials. This adaptability 

highlights its potential for real-world applications 

where load conditions may vary dynamically. 

 

The experimental results underscore the effectiveness 

of gain-scheduled PID tuning in addressing the 

challenges of dynamic load variations in car-like 

robots. The significant improvements in trajectory 

accuracy, stability, and completion time, as compared 

to traditional PID tuning methods, highlight the 

potential of this approach for real-world applications. 

 

Our findings complement and extend prior studies on 

PID tuning in robotics. For instance, Serrano-Pérez et 

al. [17] demonstrated the utility of offline robust 

tuning for omnidirectional robots but acknowledged 

the limitations in handling real-time dynamic 

changes. Our gain-scheduled approach fills this gap 

by providing a real-time adaptive solution that 

maintains performance across a range of operating 

conditions. 

 

Lee et al. [14] explored adaptive PID tuning for 

robotic manipulators under varying payloads. Their 

approach focused on linear dynamics, while our 

study addresses nonlinearities inherent in car-like 

robots. Additionally, Campos et al. [44] utilized PSO 

for mobile robot trajectory control, achieving high 

precision, though at the cost of computational 

efficiency. Our method offers a simpler yet effective 

alternative by dynamically adjusting PID gains based 

on load variations, ensuring real-time adaptability 

without the need for complex optimization processes. 

 

The proposed gain-scheduled PID tuning method has 

the capability for far-reaching implications in 

industries such as logistics, manufacturing, and 

autonomous transportation. Robots equipped with 

this control system can adapt seamlessly to varying 

payloads, minimizing downtime and maximizing 

operational efficiency. For example, in warehouse 

automation, robots must navigate efficiently while 

carrying loads of different weights. The ability to 

dynamically adjust control parameters ensures 

consistent performance, enhancing overall 

productivity. 

 

Moreover, this study provides a framework for 

improving the adaptability of autonomous vehicles in 

scenarios involving dynamic weight distribution, 

such as passenger cars or delivery drones. The 

emphasis on maintaining stability and reducing 

computational complexity makes this approach 

particularly valuable for embedded systems with 

limited processing power. 

 

While this research focuses on gain-scheduled PID 

tuning, it opens avenues for integrating advanced 

control strategies. Intelligent methods such as fuzzy 

logic or neural networks, as discussed by Mourad and 

Youcef [31], could complement gain-scheduling by 

introducing additional adaptability to handle highly 

nonlinear dynamics. For instance, neural networks 

could predict the required gain adjustments based on 

sensor data, further enhancing the robustness of the 

control system. 

 

Additionally, our approach stands to gain from 

hybrid methodologies combining gain-scheduling 

with evolutionary optimization techniques. Such 

integrations, as highlighted by Campos et al. [44], 
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may allow for finer adjustments in environments with 

extreme variability. 

 

In addition to performance metrics, computational 

overhead is a key consideration for the real-time 

feasibility of gain-scheduled PID controllers. Gain 

scheduling introduces computational requirements 

due to the real-time calculation and adjustment of 

PID gains based on load variations. These 

computations may impact the controller's response 

time, especially in embedded systems with limited 

processing power. 

 

A preliminary analysis of computational demands 

indicates that the proposed gain-scheduled PID 

controller involves repetitive matrix operations and 

look-up table interpolations. These operations are 

lightweight and manageable on modern embedded 

platforms, such as those using ARM Cortex-M 

processors. However, scalability challenges may arise 

when adapting the algorithm for more complex 

environments or higher-dimensional problems. 

Future work should include detailed profiling of 

computational latency and memory usage to ensure 

compatibility with resource-constrained hardware. 

 

This consideration is critical for embedded 

implementation in real-world applications where 

system responsiveness and reliability are paramount. 

The ability to maintain computational efficiency 

while achieving robust control remains an area for 

further optimization. The gain-scheduled PID tuning 

method significantly enhances the performance and 

stability of the car-like robot, making it a viable 

solution for navigating point-to-point with changing 

loads. Future work could explore further optimization 

techniques and real-world implementations to 

validate and extend these findings. 

 

5.1Limitation 

Gain-scheduled PID control for car-like robots, while 

effective for handling varying loads, presents several 

limitations. It heavily depends on accurate modeling 

of the robot and is time-consuming to implement and 

tune for different operating conditions. Ensuring 

smooth transitions between gain sets is challenging, 

with risks of instability or oscillations. The approach 

may struggle with scalability as the number of 

operating conditions increases. Furthermore, gain-

scheduled PID tuning might face difficulties in 

handling sudden changes in environmental 

disturbances, as these scenarios can introduce abrupt 

variations in system dynamics, leading to 

performance degradation or instability. This 

limitation highlights the need for robust mechanisms 

to adapt to unanticipated changes and nonlinearities, 

which could lead to overfitting and reduce 

generalizability and overall performance. A complete 

list of abbreviations is listed in Appendix I. 

 

6.Conclusion and future work 
This paper presents a comprehensive study on gain-

scheduled PID tuning for a car-like robot tasked with 

point-to-point movement under varying load 

conditions. The primary objective was to develop a 

robust PID tuning method that adapts to changing 

loads, thereby ensuring optimal performance across 

different operating scenarios. The research 

successfully achieved its primary objective by 

integrating gain-scheduling into the PID control 

framework. This approach was validated through 

extensive simulation tests, demonstrating significant 

improvements in the robot's tracking accuracy and 

stability compared to traditional PID tuning methods.  

 

One of the key achievements is adaptive 

performance. The gain-scheduled PID controller 

effectively adjusted its parameters in real-time, 

maintaining high performance despite variations in 

load. This adaptability was crucial in minimizing the 

overshoot and settling time, ensuring smooth and 

precise point-to-point navigation. The second key 

achievement is robustness. By incorporating load 

variations into the control strategy, the proposed 

method exhibited robust performance across a wide 

range of operating conditions. This robustness is 

essential for real-world applications where external 

disturbances and load changes are inevitable. The last 

key achievement is in term of comparative analysis. 

The proposed methodology was compared to the 

basic tuning method for benchmarking. The results 

highlighted the superiority of the gain-scheduled PID 

approach in overall completion time, validating its 

effectiveness and applicability. 

 

The gain-scheduled PID tuning method proposed in 

this paper represents a significant advancement in the 

control of car-like robots. By addressing the 

challenges posed by varying loads, this method 

ensures reliable and efficient point-to-point 

navigation. Future work will focus on extending this 

approach to more complex robotic platforms and 

exploring its integration with other advanced control 

techniques. 

 

Future research should aim to extend the applicability 

of this approach by testing it in real-world 

environments to evaluate its robustness and reliability 
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under diverse conditions. Incorporating advanced 

techniques, like machine learning models, could 

improve the precision of gain adjustments by 

predicting system dynamics and adapting to 

unforeseen changes. Additionally, the scalability of 

the method should be examined for larger robotic 

systems or multi-robot environments, where 

interdependencies and cooperative dynamics add 

complexity. Hybrid systems combining gain-

scheduling with intelligent or evolutionary methods, 

such as neural networks or optimization algorithms, 

show promise for improving adaptability and 

robustness in dynamic scenarios. These future 

directions could significantly enhance the versatility 

and impact of the proposed gain-scheduled PID 

tuning strategy. 
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Appendix I 

S. No. Abbreviation Full forms 

1 GA Genetic Algorithms  

2 PID Proportional-Integral-Derivative 

3 PSO Particle Swarm Optimization 

4 SCARA Selective Compliance Articulated 
Robot Arm 

 

 

 

 

 

 

 

 


