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ABSTRACT 

 

An isolated power system network is described as an electrical network that is not connected 

to the larger power system grid. It was defined as a local electrical network comprising an 

isolation generator and transformer with branch circuits designed for certain applications. 

The local generator in an isolated power system network is basically used as the main source. 

The network is very sensitive to the sudden high equilibrium condition of electrical load 

demand that can lead to unbalanced power, delayed load performance, overloaded circuits, 

and severe frequency deviation problems. The undesired frequency response can harm the 

connected load, damage the protection devices, and cause the network to trip and experience 

a total blackout. According to the literature review, the rate of frequency deviations gives 

implicit information about the system’s stability. There is an advantage to knowing the 

magnitude of the power deficit of the network by only observing the system’s frequency 

behaviour. Hence, the main objective of this research is to observe and monitor the power 

deficit for isolated electrical network conditions through system frequency observation. In 

this research, the similarities between the structure of 𝐻2 norm and 𝐻∞ norm filtering 

problems are examined, and the state-space model equations are used in designing a power 

deficit estimator. The estimated power deficit is able to give preliminary information about 

the network stability condition before any further protection scheme takes place. However, 

the estimation becomes worse when the system has parameter uncertainty. Hence, 

modifications have been made to the estimator design, and the results show an improvement 

in steady-state estimation. The comparison between the proposed estimator and the 

conventional slope method has been conducted, and the results show that the proposed 

estimator provides better estimation under uncertainty. At the end of the research, the 𝐻∞ 

norm method was chosen as the best estimator for a power deficit estimation in an isolated 

power system application, which has good estimation performance with only 0.1%  

estimation error in the uncertainty case and the lowest performance index equal to 

0.00044982. 
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PERUMUSAN KAEDAH ANGGARAN DEFISIT KUASA 𝑯𝟐 DAN 𝑯∞ BAGI SISTEM 

KUASA YANG TERASING  

 

ABSTRAK 

 

Rangkaian sistem kuasa terasing dihuraikan sebagai rangkaian elektrik yang tidak 

disambungkan ke grid sistem kuasa yang lebih besar. Ia ditakrifkan sebagai rangkaian 

elektrik tempatan yang terdiri daripada penjana pengasingan dan pengubah dengan litar 

cabangan yang direka untuk aplikasi tertentu. Penjana tempatan dalam rangkaian sistem 

kuasa terpencil pada asasnya digunakan sebagai sumber utama. Rangkaian ini sangat 

sensitif kepada keadaan ketidakseimbangan permintaan beban elektrik yang tinggi secara 

tiba-tiba yang boleh menyebabkan kuasa menjadi tidak seimbang, prestasi beban tertunda, 

litar terlampau beban, dan masalah sisihan frekuensi yang teruk. Tindak balas frekuensi 

yang tidak diingini boleh membahayakan beban yang disambungkan, merosakkan peranti 

perlindungan, dan rangkaian mungkin tersandung dan mengalami kegelapan sepenuhnya. 

Menurut kajian literatur, kadar sisihan frekuensi sebenarnya memberikan maklumat tersirat 

tentang kestabilan sistem. Terdapat kelebihan disebalik mengetahui magnitud jumlah defisit 

kuasa rangkaian dengan hanya memerhatikan gelagat frekuensi sistem. Oleh itu, objektif 

utama penyelidikan ini adalah untuk memerhati dan memantau keadaan jumlah kekurangan 

kuasa rangkaian elektrik terpencil melalui pemerhatian frekuensi sistem. Dalam 

penyelidikan ini, persamaan antara struktur penapisan norma 𝐻2 dan 𝐻∞ dikaji dan 

persamaan model keadaan ruang digunakan dalam mereka bentuk penganggar defisit 

kuasa. Anggaran jumlah kekurangan kuasa mampu memberikan maklumat awal tentang 

keadaan kestabilan rangkaian sebelum sebarang skim perlindungan selanjutnya mengambil 

bahagian. Walau bagaimanapun, anggaran menjadi lebih teruk apabila sistem mempunyai 

ketidakpastian parameter. Oleh itu, pengubahsuaian telah dibuat kepada reka bentuk 

penganggar dan keputusan menunjukkan penambahbaikan dalam anggaran keadaan 

mantap. Perbandingan antara penganggar yang dicadangkan dengan kaedah cerun 

konvensional telah dijalankan dan keputusan menunjukkan penganggar yang dicadangkan 

memberikan anggaran yang baik di bawah kes ketidakpastian. Pada akhir penyelidikan, 

kaedah norma 𝐻∞ dipilih sebagai penganggar terbaik untuk anggaran defisit kuasa dalam 

aplikasi sistem kuasa terpencil yang mempunyai prestasi anggaran yang baik dengan hanya 

0.1% ralat anggaran dalam kes ketidakpastian dan indeks prestasi terendah bersamaan 

dengan 0.00044982. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

1.1. Introduction 

An electric grid is a network of power providers and consumers that are connected 

by transmission and distribution lines and operated by one or more interconnections. 

Historically, the grid was introduced and built in the late 19th and early 20th centuries and 

operated in isolation. Conventionally, the power plants consisted of large and centrally 

located generators are basically delivered electricity in one direction to the communities as 

needed. In time with growing technology, the grid system became more interconnected and 

efficient providing safe, reliable and affordable electric service for more than a century. 

However, with a growing population, advancements in technology and many new electronic 

devices, people consume more electricity than they used. Electricity used today is more than 

16 times greater than it was in 1950s and it is expected more than that in future. However, 

the energy sources can be generated more and closer to their point of use with the new 

sustainability initiatives in such in rise of renewable energy technologies. These 

developments are pushing the grid to do more than it was designed for and have forced it to 

evolve and modernize. Thus, the grid is getting smarter and advanced instrumentation and 

technologies such as relays, sensors and switches have become more affordable and are 

integrated into the existing grid network to enhance communication, adaptability and 

efficiency. The energy production provides many benefits to both the consumer and energy 
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provider because the bidirectional system in the smart grid network gives a new business 

opportunity supporting the supply chain.  

The rise of the smart grid has coincided with emerging technologies such as battery 

storage, renewable energy, smart meters and advanced metering infrastructure. These 

integrations made the grid has the capability to self-optimizing and effectively harness its 

own energy and feed back to the consumer. Hence, the arrival of these emerging technologies 

integration on the grid has supported the development of custom-designed grid called as 

microgrids which independent electric system. A microgrid network system has capable to 

operate as a single or autonomous in parallel to or independent (islanded) from the existing 

utility power grid. The development of microgrid network is as part of the effort to increase 

the electrification ratio in remote area. Malaysia has islanded microgrids in Banggi Island, 

Kema and Tanjung Batu Laut in Sabah and Tanjong Labian, Bario in Sarawak. All these 

areas covered by microgrids system are equipped with the photovoltaic, battery storage and 

diesel generator. These islanded microgrids are also defined as an isolated grid network or 

isolated power system network. It also defined as a local electrical network comprising an 

isolation generator and transformer with its branch circuits was designed for certain 

applications. The local generator in an isolated power system network basically used as a 

main source. The network is very sensitive towards the sudden high equilibrium condition 

of electrical load demand that can lead to unbalance power, delay load performance, 

overloaded the circuits and severe frequency deviation problem. The undesired frequency 

response can harm the connected load, damage the protection devices and the network may 

trip and experience to total black-out. The local generator in isolated power system network 

is called as diesel generator and has integrated with other system to control the generator 

responses towards the load demand (Ganguly et al., 2018, Muhtadi et al., 2019 and Salazar 

et al., 2015). Basically, the generator control system has consisted of turbine and governor 
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system. Turbine generator is a machine which converts mechanical energy into electrical 

energy by collecting outsourcing like fossil fuels, wind, solar and steam. Basically, this 

machine has coupled with generator shaft. There are four types of turbine generators used, 

such as wind turbines, steam turbines, hydro turbines and solar turbines (Beus and Pandzic, 

2022, Cassimere et al., 2015, El-Hawary, 2002, Kure-Jensen and Hanisch, 1991, Polinder et 

al., 2013, Sterkhov et al., 2022 and G. Zhang et al., 2016). The name of each type is 

accordance to their source fuels like wind, heat, water and sun. The governor system on the 

other hand is the speed regulator for the diesel engine to maintain the generator output 

specifications. The generator output is vital for the isolated power system network as it 

provides the network frequency as well as the network voltage (Bryant et al., 2021, Mayouf 

et al., 2013, Peng et al., 2015 and Ramkumar and Durairaj, 2013). According to the literature 

review therein, the rate of frequency deviations provides the information about system 

stability condition and the magnitude of total power deficit. The power deficit is defined as 

a difference of power imbalance between generator power output and load demand output.  

The main objective of this research is to estimate and monitor the total power 

deficiency of isolated power system network condition. To achieve the main objective, the 

power deficit estimator was designed through the theoretical of filtering of a linear 

dynamical system. The filtering of dynamical systems has historically been initiated through 

the application of the Kalman filter. The Kalman filter is an effective tool for estimating the 

states of a system and has been successfully applied in common industrial applications. 

However, Kalman filter has problematic in practical application due to mismatches between 

the underlying assumption and industrial state estimation problems. To resolve these issues, 

filters based on alternative performance criteria that are more predictable have been 

developed. The newly developed filter is the 𝐻2 and 𝐻∞ norm filter. Both filters follow the 

same structure as the Kalman filter. In this research, the utilization of  𝐻2 and 𝐻∞ norm 
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filtering problem that augmented the state-space of network model equations gave an 

advantage in designing a power deficit estimator. Furthermore, their performance criteria for 

uncertain parameter conditions under convex polytopic uncertainty were also examined. It 

is shown that with a suitable change of variables, it can be solved using Linear Matrix 

Inequality (LMI) machinery. The results show that the estimator using 𝐻∞ norm filter is the 

best, with robust performance under parameter uncertainty and multifarious load demand 

changes. Thus, this power deficit estimator method can be proposed to provide preliminary 

information about the network stability condition before any further protection schemes take 

place. 

 

1.2. Research Motivation 

The study of isolated power system network power deficit condition monitoring 

through the observation of local synchronous generator dynamical frequency response has 

received little investigation. Most of the work is subjected to a number of eventualities such 

as short circuit analysis for study in transient and dynamic regimes. A synchronous generator 

system is defined as a dispatchable distributed generator because of its ability to respond to 

load contingencies by automatically regulating the amount of energy provided by the 

governor system. The energy is then transferred to the prime mover as kinetic energy and 

transformed into electrical energy through the generator coils. The combination of all these 

components makes the system sensitive to any variations in electrical loads. The effect can 

be seen in the behaviour of generator rotor shaft which is translated into the dynamical 

behaviour of the frequency network. There is an advantage to knowing the network loading 

condition by observing this frequency dynamic. Furthermore, knowing the magnitude of 

total power deficiency between generation and load during the early stages of contingency 

can prevent severe damage to the network. However, in real applications, a direct measure 


