

Faculty of Electrical Technology and Engineering

Doctor of Philosophy

FORMULATION OF H_2 AND H_∞ POWER DEFICIT ESTIMATION METHOD FOR ISOLATED POWER SYSTEM

MOHD SAIFUZAM BIN JAMRI

Faculty of Electrical Technology and Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEDICATION

For my loving wife Siti Fatimah binti Masiran, Childs and my big family

ABSTRACT

An isolated power system network is described as an electrical network that is not connected to the larger power system grid. It was defined as a local electrical network comprising an isolation generator and transformer with branch circuits designed for certain applications. The local generator in an isolated power system network is basically used as the main source. The network is very sensitive to the sudden high equilibrium condition of electrical load demand that can lead to unbalanced power, delayed load performance, overloaded circuits, and severe frequency deviation problems. The undesired frequency response can harm the connected load, damage the protection devices, and cause the network to trip and experience a total blackout. According to the literature review, the rate of frequency deviations gives implicit information about the system's stability. There is an advantage to knowing the magnitude of the power deficit of the network by only observing the system's frequency behaviour. Hence, the main objective of this research is to observe and monitor the power deficit for isolated electrical network conditions through system frequency observation. In this research, the similarities between the structure of H_2 norm and H_{∞} norm filtering problems are examined, and the state-space model equations are used in designing a power deficit estimator. The estimated power deficit is able to give preliminary information about the network stability condition before any further protection scheme takes place. However, the estimation becomes worse when the system has parameter uncertainty. Hence, modifications have been made to the estimator design, and the results show an improvement in steady-state estimation. The comparison between the proposed estimator and the conventional slope method has been conducted, and the results show that the proposed estimator provides better estimation under uncertainty. At the end of the research, the H_{∞} norm method was chosen as the best estimator for a power deficit estimation in an isolated power system application, which has good estimation performance with only 0.1% estimation error in the uncertainty case and the lowest performance index equal to 0.00044982. UNIVERSITI TEKNIKAL MALAYSIA MELAKA

PERUMUSAN KAEDAH ANGGARAN DEFISIT KUASA H₂ DAN H_{∞} BAGI SISTEM KUASA YANG TERASING

ABSTRAK

Rangkaian sistem kuasa terasing dihuraikan sebagai rangkaian elektrik yang tidak disambungkan ke grid sistem kuasa yang lebih besar. Ia ditakrifkan sebagai rangkaian elektrik tempatan yang terdiri daripada penjana pengasingan dan pengubah dengan litar cabangan yang direka untuk aplikasi tertentu. Penjana tempatan dalam rangkaian sistem kuasa terpencil pada asasnya digunakan sebagai sumber utama. Rangkaian ini sangat sensitif kepada keadaan ketidakseimbangan permintaan beban elektrik yang tinggi secara tiba-tiba yang boleh menyebabkan kuasa menjadi tidak seimbang, prestasi beban tertunda, litar terlampau beban, dan masalah sisihan frekuensi yang teruk. Tindak balas frekuensi yang tidak diingini boleh membahayakan beban yang disambungkan, merosakkan peranti perlindungan, dan rangkaian mungkin tersandung dan mengalami kegelapan sepenuhnya. Menurut kajian literatur, kadar sisihan frekuensi sebenarnya memberikan maklumat tersirat tentang kestabilan sistem. Terdapat kelebihan disebalik mengetahui magnitud jumlah defisit kuasa rangkaian dengan hanya memerhatikan gelagat frekuensi sistem. Oleh itu, objektif utama penyelidikan ini adalah untuk memerhati dan memantau keadaan jumlah kekurangan kuasa rangkaian elektrik terpencil melalui pemerhatian frekuensi sistem. Dalam penyelidikan ini, persamaan antara struktur penapisan norma H_2 dan H_{∞} dikaji dan persamaan model keadaan ruang digunakan dalam mereka bentuk penganggar defisit kuasa. Anggaran jumlah kekurangan kuasa mampu memberikan maklumat awal tentang keadaan kestabilan rangkaian sebelum sebarang skim perlindungan selanjutnya mengambil bahagian. Walau bagaimanapun, anggaran menjadi lebih teruk apabila sistem mempunyai ketidakpastian parameter. Oleh itu, pengubahsuaian telah dibuat kepada reka bentuk penganggar dan keputusan menunjukkan penambahbaikan dalam anggaran keadaan mantap. Perbandingan antara penganggar yang dicadangkan dengan kaedah cerun konvensional telah dijalankan dan keputusan menunjukkan penganggar yang dicadangkan memberikan anggaran yang baik di bawah kes ketidakpastian. Pada akhir penyelidikan, kaedah norma H_{∞} dipilih sebagai penganggar terbaik untuk anggaran defisit kuasa dalam aplikasi sistem kuasa terpencil yang mempunyai prestasi anggaran yang baik dengan hanya 0.1% ralat anggaran dalam kes ketidakpastian dan indeks prestasi terendah bersamaan dengan 0.00044982.

ACKNOWLEDGEMENTS

Alhamdulillah, this thesis has been successfully completed. First and foremost, I would like to take this opportunity to express my sincere gratitude acknowledgement to my supervisor Associate Professor Dr. Muhammad Nizam bin Kamarudin from the Faculty of Electrical Technology and Engineering, Universiti Teknikal Malaysia Melaka (UTeM) for his essential supervision, support and encouragement towards the completion of this thesis. I also would like to express my gratitude to my co-supervisor Associate Professor Ir. Ts. Dr. Mohd Luqman bin Mohd Jamil from the Faculty of Electrical Technology and Engineering, Universiti Teknikal Malaysia Melaka (UTeM) for his advice, suggestion and encouragement towards the improvement of the research work and thesis. Special thanks to my beloved wife, parents and children for their moral support in completing this study, and also thank you to everyone who had been involved directly or indirectly in the research work. Lastly, from the bottom of my heart, my humble apology for any mistakes along the journey in completing the study.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

TABLE OF CONTENTS

DE AP DE AB AB AC TA LIS LIS LIS LIS	CLAF PROV DICA STRA STRA STRA CKNOV BLE (ST OF ST OF ST OF ST OF ST OF	CATION VAL TION CT K WLEDGEMENTS DF CONTENTS DF CONTENTS TABLES FIGURES ABBREVIATIONS SYMBOLS APPENDICES PUBLICATIONS	i iii iv vii ix xii xiii xvi xvii
CH	IAPTE	R MALAYSIA 40	
1.	INTE 1.1 1.2 1.3 1.4 1.5 1.6	RODUCTION Introduction Research Motivation Problem Statement Research Objectives Research Scope and Limitations Thesis Organisation	1 1 4 6 7 7 8
2.	LITE	CRATURE REVIEW	10
	2.1 2.2 2.3	Introduction Definition of Stability An Overview of Isolated Power System Network 2.3.1 Generator Working Principle 2.3.1.1 The Principle of Diesel Turbine Generator	10 12 15 21 22
		2.3.1.2 The Principle of Hydro Turbine Generator	23
		 2.3.1.3 The Principle of Wind Turbine Generator Operation 2.3.1.4 The Principle of Steam Turbine Generator Operation 	25 27
	2.4 2.5 2.6 2.7 2.8	Generator Speed Controller System Swing Equation The Equivalent Inertia Constant Overview of Power Deficit Estimation and Frequency Disturbance Dynamical System Filtering 2.8.1 Performance Criteria	28 29 30 33 35 36 27
	2.9 2.10	Background of Kalman, H_2 and H_{∞} Filtering Problem 2.9.1 H_2 and H_{∞} Norm Filter Applications in Engineering Field Summary and Research Gap	37 38 42

3	ME	THODOLOGY	44					
	3.1	Introduction	44					
	3.2	Mathematical Model of Isolated Power System Network	47					
		3.2.1 Frequency Model	49					
		3.2.2 Turbine Model	54					
		3.2.3 Governor model	55					
		3.2.4 Load model	56					
		3.2.5 State space representation	57					
	3.3	Formulation of power deficit estimator for the isolated power system	58					
		network with single local generator						
		3.3.1 The Conceptual of State-space Representation	59					
		3.3.2 The Power Deficit Estimator Design	61					
		3.3.2.1 The Design for Nominal Case	66					
		3.3.2.1.1 H_2 Estimation in Nominal Case	67					
		3.3.2.1.2 H_{∞} Estimation in Nominal Case	68					
		3.3.2.2 The Design for Robust case	69					
		3.3.2.2.1 H_2 Estimation in Robust Case	70					
		3.3.2.2.2 H_{∞} Estimation in Robust Case	71					
	3.4	The Modification of Robust H_2 and H_{∞} Estimator	73					
		3.4.1 Modified of Robust H_2 Estimator	76					
		3.4.2 Modified of Robust H_{∞} Estimator	78					
	3.5	Summary	79					
4.	RESULT AND DISCUSSION							
	4.1	Introduction	80					
	4.2	The Frequency Dynamical Response	81					
	4.3	Analysis of Conventional Power Deficit Estimation 84						
	4.4	Analysis of Power deficit Estimation Using H ₂ Norm	89					
		4.4.1 H_2 Norm Estimation in Nominal Case	89					
		4.4.2 H_2 Norm Estimation in Robust Case 91						
		4.4.2.1 H_2 Norm Estimation in Robust Case Under Wide	93					
		Range of Inertia Values))					
	4.5	Analysis of Power deficit Estimation Using H_{∞} Norm	95					
		4.5.1 H_{∞} Norm Estimation in Nominal Case	96					
		4.5.2 H_{∞} Norm Estimation in Robust Case	97					
		4.5.2.1 H_{∞} Norm Estimation in the Robust Case Under	100					
		Wide Range of Inertia Values	100					
	4.6	Analysis of Modified Robust Power Deficit Estimator	102					
		4.6.1 Analysis of Modified Robust H_2 Norm Estimator	103					
		4.6.1.1 Analysis of Modified Robust H_2 Norm Estimator	105					
		Under Wide Range of Inertia Values	105					
		4.6.2 Analysis of Modified Robust H_{∞} Norm Estimator	108					
		4.6.2.1 Analysis of Modified Robust H_{∞} Norm Estimator	111					
		Under Wide Range of Inertia Values	111					
	4.7	4.7 Comparison of Robust Estimation Performance Between Initial						
		Slope, H_2 and H_{∞} Norm Method	115					
	4.8	Verification of Modified H_2 and H_{∞} Estimator Towards Multifarious	119					
		of Sudden Load Demand Changed and Uncertain Inertia Value	11)					
	4.9	Summary	121					

5.	CON	NCLUSION AND FUTURE WORK	123
	5.1	Research Summary	123
	5.2	Significant Contributions of Research	125
	5.3	Recommendations for Future Work	125
RE AP	FERI PENI	ENCES DICES	127 139

LIST OF TABLES

TABLE	E TITLE	
2.1	Frequency response at every stage	
2.2	Typical Inertia Values	32
2.3	Filter performance criteria	36
2.4	Summary of power deficit determination approach	42
3.1	Isolated power system model parameter	58
4.1	Isolated power system network model parameters setup	81
4.2	The effect of frequency initial slope towards the different inertia constant value	84
4.3	The error performance of power deficit estimation using initial slope method with $H = 5.0$ and 0.2 per-unit load demand changed as reference	85
4.4	The error performance of power deficit steady-state estimation under the wide range of inertia value using initial slope method with H = 5.0 and 0.2 per-unit load demand changed as reference	87
4.5	The estimation error performance at steady-state using H_2 norm method under nominal case	90
4.6	The estimation error performance at steady-state using H_2 norm method under robust case	92
4.7	The estimation error performance at steady-state using H_2 norm method under the robust case with wide range of inertia values	94
4.8	The estimation error performance at steady-state using H_{∞} norm method under nominal case	97
4.9	The estimation error performance at steady-state using H_{∞} norm method under robust case	98
4.10	The estimation error performance at steady-state using H_{∞} norm method under the robust case with wide range of inertia values	100
4.11	The estimation error performance at steady-state using modified robust H_2 norm method	104

4.12	The estimation error performance at steady-state using a modified robust H_2 norm method under wide range of inertia values	106
4.13	The estimation error performance at steady-state using modified robust H_{∞} norm method	109
4.14	The estimation error performance at steady-state using a modified robust H_{∞} norm method under wide range of inertia values	112
4.15	The summary of estimator performance towards the upper bound γ values	122

LIST OF FIGURES

FIGURE	TITLE	PAGE	
1.1	Block diagram of an isolated power system		
2.1	The research work K-Chart structure		
2.2	The classification of stability in power system	14	
2.3	Isolated power system configuration	16	
2.4	The strategies of an islanded microgrid operation	20	
2.5	AC generator circuit diagram	21	
2.6	The block diagram of diesel generator system	22	
2.7	Components of hydropower plant	24	
2.8	The block diagram of wind turbine generator system	26	
2.9	Steam turbine generator system	28	
2.10	An example estimated frequency signal with random noise	34	
2.11	Filter configuration for dynamic plant	35	
2.12	Disturbance to error transfer function	36	
2.13	The application of H_2 norm and H_{∞} norm in engineering field	39	
3.1	Flowchart of research activities	47	
3.2	Single-line diagram of the isolated network	49	
3.3	The block diagram of isolated network fed by a local generator system	49	
3.4	Speed governor characteristic	56	
3.5	Conceptual block diagram of augmented isolated power system network and linear estimator	61	
3.6	Block configuration for an estimator design	62	
3.7	The proposed configuration to estimate the power deficit	66	

3.8	The proposed block configuration to improve the estimator during robust case	74
3.9	The proposed configuration after modification to estimate the power deficit	76
4.1	Frequency dynamical response in per unit towards the variation of load demand	82
4.2	Frequency dynamical response in per unit towards the different inertia constant value	84
4.3	The illustration of initial slope estimator performance through IAE, ISE and RMSE	86
4.4	The illustration of initial slope estimator performance through IAE, ISE and RMSE under the wide range of inertia values	89
4.5	Estimated Power deficit using H_2 Norm with 0.2 per unit sudden electrical load demand changed	90
4.6	Estimated Power deficit using H_2 norm with 0.2 per unit sudden electrical load demand changed and uncertain inertia constant values	91
4.7	The illustration of error performance data at steady-state using H_2 norm method under robust case	93
4.8	The illustration of error performance data at steady-state using H_2 norm method under the robust case with wide range of inertia value VERSITI TEKNIKAL MALAYSIA MELAKA	95
4.9	Estimated Power deficit using H_{∞} norm with 0.2 per unit sudden electrical load demand changed	96
4.10	Estimated Power deficit using H_{∞} norm with 0.2 per unit sudden load demand changed and uncertain inertia constant values	97
4.11	The illustration of error performance data at stead state using H_{∞} norm method under robust case	99
4.12	The illustration of error performance data at steady-state using H_{∞} norm method under the robust case with wide range of inertia value	102
4.13	Estimated Power deficit using modified robust H_2 norm with 0.2 per unit sudden load demand changed and uncertain inertia constant values	103

4.14	The illustration of error performance data at stead state using H_2 norm method under robust case after modification	105
4.15	The illustration of error performance data at steady-state using H_2 norm method under robust case after modification with wide range of inertia values	108
4.16	Estimated Power deficit using modified robust H_{∞} norm with 0.2 per unit sudden load demand changed and uncertain inertia constant values	109
4.17	The illustration of error performance data at stead state using H_{∞} norm method under robust case after modification	111
4.18	The illustration of error performance data at stead state using H_{∞} norm method under robust case after modification with wide range of inertia values	113
4.19	The comparison of error performance before modification	116
4.20	The comparison of error performance after modification	117
4.21	The illustration of error performance data comparison at stead state for initial slope, modified H_{∞} and modified H_2 norm method under robust case	119
4.22	Estimated power deficit under multifarious load demand and uncertain inertia constant using modified H_2 norm method	120
4.23	Estimated power deficit under multifarious load demand and uncertain inertia constant using modified H_{∞} norm method	120

LIST OF ABBREVIATIONS

DG	-	Distributed Generator
LFC	-	Load Frequency Control
SDA	-	Dynamic Security Assessment
PV	-	Photovoltaic
DE	-	Diesel Engine
BS	-	Battery Storage
WT	-	Wind Turbine
AC	-	Alternating Current
DC	- MA	Direct Current
RU	New York	Rectifier Unit
LCU	TI TE	Line Converter Unit
MMF	CON ANT	Magnetomotive Force
RoCoF	ملاك	Rate of Change of Frequency
LoG		Lost of Generation
SG	UNIVE	RSITI TEKNIKAL MALAYSIA MELAKA Synchronous Generetor
DFIG	-	Doubly-Fed Induction Generator
SNR	-	Signal-to-Noise Ratio
LMI	-	Linear Matrix Inequality
RMSE	-	Root Mean Square Error
IAE	-	Integral Absolute Error
ISE	-	Integral Square Error
REs	-	Renewable Energy sources
AVR	-	Automatic Voltage Regulator
AGC	-	Automatic Generation Control

LIST OF SYMBOLS

Δ	-	Deviation
P_e	-	Electrical power demand
P_m	-	Generator mechanical power
P_{gv}	-	Generator governor power
ω	-	Generator frequency response
R	-	Speed regulation setpoint
I_L	-	Line current
I_f	AL	Field current
Н	and the second	Generator per-unit inertia constant parameter
ω_s	TEK)	Synchronous speed
$rac{d}{d_t}$	FRANK	The deviation with respect to time
H_N	alte	Equivalent inertia constant
H_i	LIMINE	Inertia constant of each <i>i</i> -th generator
$P_{n,SG,i}$	UNIVE	Nominal power of each generator
У	-	Plant output state
ź	-	Estimated state
ω_d	-	Disturbance input
n	-	Noise input
\widetilde{Z}	-	Estimation error
G _{ed}	-	Transfer function from the input disturbance to the estimation error
γ	-	The upper bound of objective function
P_d	-	Power deficit

f_N	-	Nominal frequency
$f_z' _{t=t_0}$	-	The initial frequency droop at $t = 0$
$ heta_m$	-	Angular displacement of the rotor
J	-	Moment of inertia
T_a	-	Acceleration torque
δ_m	-	Mechanical rotor angle position
ω _{sm}	-	Mechanical angular velocity
T_m	-	Mechanical torque
T_e	-	Electrical torque
W_k	Nº MA	Rotational kinetic energy
М	TEKHIR	Inertia constant which depends to the rotor angular velocity
δ_e	IL OF ST	Electrical power angle
ρ	ala l	Number of generator pole pair
S_B	ملاك	ويوم سيتي بيصيب Base power
$P_{m(pu)}$	UNIVE	Per unit mechanical powerALAYSIA MELAKA
$P_{e(pu)}$	-	Per unit electrical power
ω_{se}	-	Electrical angular velocity
$ au_T$	-	Generator turbine time constant
$ au_{gv}$	-	Generator governor time constant
д	-	The ratio between percent change in load and percent change in frequency
ż	-	System differential equation
x	-	System state dynamic
x_N	-	The new system state dynamic after augmentation

и	-	System input state
[:] ^T	-	Transposition of state equation
F	-	Causal filter
Р	-	Unknown plant
<i>C</i> ₁	-	Power deficit output state matrix
<i>C</i> ₂	-	Dynamical frequency output state matrix
ŷ	-	Estimated plant output state
L	-	Estimator gain
h	-	An additional augmented low pass filter transfer function
T_h	AL MA	Time constant of additional low pass filter
Ĩ	EK III	Positive definite square matrix
(∎)′	Field	Partition symmetric blocks in the symmetric matrices
P_G	- SAIN	Generator's active power output
Q_G	alle	Generator's reactive power output
P_L	UNIVE	Active power at load _ MALAYSIA MELAKA
Q_L	-	Reactive power at load
«	-	The generator output is deficient
>	-	The generator output is excessive

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	The procedure to check the observability of the system	139
B1	The Flow Algorithm for H_2 Norm Estimator Under Nominal Case	141
B1.1	The MATLAB coding for H_2 Norm Estimator Under Nominal Case	142
B2	The Flow Algorithm for H_{∞} Norm Estimator Under Nominal Case	143
B2.1	The MATLAB Coding for H_{∞} Norm Estimator Under Nominal Case	144
C1	The Flow Algorithm for Modified Robust H_2 Norm Estimator	145
C1.1	The MATLAB Coding for Modified Robust <i>H</i> ₂ Norm Estimator	146
C2	The Flow Algorithm for Modified Robust H_{∞} Norm Estimator	148
C2.1	The MATLAB Coding for Modified Robust H_{∞} Norm Estimator	149
U	NIVERSITI TEKNIKAL MALAYSIA MELAKA	

LIST OF PUBLICATIONS

The followings are the list of publications related to the work on this thesis:

Jamri, M.S., Kamarudin, M.N. and Mohd Jamil, M.L., 2020. Average dynamical frequency behaviour for multi-area islanded micro-grid networks, *Telkomnika (Telecommunication Computing Electronics and Control)*, 18(6), pp. 3324–3330. (Indexed by SCOPUS)

Jamri, M.S., Kamarudin, M.N. and Jamil, M.L.M., 2021. An investigation of inertia constant in single generator on transient analysis for an isolated electrical network system, *Indonesian Journal of Electrical Engineering and Computer Science*, 23(3), pp. 1299–1305. (Indexed by SCOPUS)

Jamri, M.S., Kamarudin, M.N. and Jamil, M.L.M., 2021. Total power deficiency estimation of isolated power system network using full-state observer method, *Indonesian Journal of Electrical Engineering and Computer Science*, 23(3), pp. 1249–1257. (Indexed by SCOPUS)

Jamri, M.S., Kamarudin, M.N. and Mohd Jamil, M.L., 2023. Power deficit estimation for isolated power system network using H∞ norm method, *Bulletin of Electrical Engineering and Informatics*, 12(5), pp. 3142–3152. (Indexed by SCOPUS)

CHAPTER 1

INTRODUCTION

1.1. Introduction

An electric grid is a network of power providers and consumers that are connected by transmission and distribution lines and operated by one or more interconnections. Historically, the grid was introduced and built in the late 19th and early 20th centuries and operated in isolation. Conventionally, the power plants consisted of large and centrally located generators are basically delivered electricity in one direction to the communities as needed. In time with growing technology, the grid system became more interconnected and efficient providing safe, reliable and affordable electric service for more than a century. However, with a growing population, advancements in technology and many new electronic devices, people consume more electricity than they used. Electricity used today is more than 16 times greater than it was in 1950s and it is expected more than that in future. However, the energy sources can be generated more and closer to their point of use with the new sustainability initiatives in such in rise of renewable energy technologies. These developments are pushing the grid to do more than it was designed for and have forced it to evolve and modernize. Thus, the grid is getting smarter and advanced instrumentation and technologies such as relays, sensors and switches have become more affordable and are integrated into the existing grid network to enhance communication, adaptability and efficiency. The energy production provides many benefits to both the consumer and energy

provider because the bidirectional system in the smart grid network gives a new business opportunity supporting the supply chain.

The rise of the smart grid has coincided with emerging technologies such as battery storage, renewable energy, smart meters and advanced metering infrastructure. These integrations made the grid has the capability to self-optimizing and effectively harness its own energy and feed back to the consumer. Hence, the arrival of these emerging technologies integration on the grid has supported the development of custom-designed grid called as microgrids which independent electric system. A microgrid network system has capable to operate as a single or autonomous in parallel to or independent (islanded) from the existing utility power grid. The development of microgrid network is as part of the effort to increase the electrification ratio in remote area. Malaysia has islanded microgrids in Banggi Island, Kema and Tanjung Batu Laut in Sabah and Tanjong Labian, Bario in Sarawak. All these areas covered by microgrids system are equipped with the photovoltaic, battery storage and diesel generator. These islanded microgrids are also defined as an isolated grid network or isolated power system network. It also defined as a local electrical network comprising an isolation generator and transformer with its branch circuits was designed for certain applications. The local generator in an isolated power system network basically used as a main source. The network is very sensitive towards the sudden high equilibrium condition of electrical load demand that can lead to unbalance power, delay load performance, overloaded the circuits and severe frequency deviation problem. The undesired frequency response can harm the connected load, damage the protection devices and the network may trip and experience to total black-out. The local generator in isolated power system network is called as diesel generator and has integrated with other system to control the generator responses towards the load demand (Ganguly et al., 2018, Muhtadi et al., 2019 and Salazar et al., 2015). Basically, the generator control system has consisted of turbine and governor system. Turbine generator is a machine which converts mechanical energy into electrical energy by collecting outsourcing like fossil fuels, wind, solar and steam. Basically, this machine has coupled with generator shaft. There are four types of turbine generators used, such as wind turbines, steam turbines, hydro turbines and solar turbines (Beus and Pandzic, 2022, Cassimere et al., 2015, El-Hawary, 2002, Kure-Jensen and Hanisch, 1991, Polinder et al., 2013, Sterkhov et al., 2022 and G. Zhang et al., 2016). The name of each type is accordance to their source fuels like wind, heat, water and sun. The governor system on the other hand is the speed regulator for the diesel engine to maintain the generator output specifications. The generator output is vital for the isolated power system network as it provides the network frequency as well as the network voltage (Bryant et al., 2021, Mayouf et al., 2013, Peng et al., 2015 and Ramkumar and Durairaj, 2013). According to the literature review therein, the rate of frequency deviations provides the information about system stability condition and the magnitude of total power deficit. The power deficit is defined as a difference of power imbalance between generator power output and load demand output.

The main objective of this research is to estimate and monitor the total power deficiency of isolated power system network condition. To achieve the main objective, the power deficit estimator was designed through the theoretical of filtering of a linear dynamical system. The filtering of dynamical systems has historically been initiated through the application of the Kalman filter. The Kalman filter is an effective tool for estimating the states of a system and has been successfully applied in common industrial applications. However, Kalman filter has problematic in practical application due to mismatches between the underlying assumption and industrial state estimation problems. To resolve these issues, filters based on alternative performance criteria that are more predictable have been developed. The newly developed filter is the H_2 and H_{∞} norm filter. Both filters follow the same structure as the Kalman filter. In this research, the utilization of H_2 and H_{∞} norm

filtering problem that augmented the state-space of network model equations gave an advantage in designing a power deficit estimator. Furthermore, their performance criteria for uncertain parameter conditions under convex polytopic uncertainty were also examined. It is shown that with a suitable change of variables, it can be solved using Linear Matrix Inequality (LMI) machinery. The results show that the estimator using H_{∞} norm filter is the best, with robust performance under parameter uncertainty and multifarious load demand changes. Thus, this power deficit estimator method can be proposed to provide preliminary information about the network stability condition before any further protection schemes take place.

1.2. Research Motivation

The study of isolated power system network power deficit condition monitoring through the observation of local synchronous generator dynamical frequency response has received little investigation. Most of the work is subjected to a number of eventualities such as short circuit analysis for study in transient and dynamic regimes. A synchronous generator system is defined as a dispatchable distributed generator because of its ability to respond to load contingencies by automatically regulating the amount of energy provided by the governor system. The energy is then transferred to the prime mover as kinetic energy and transformed into electrical energy through the generator coils. The combination of all these components makes the system sensitive to any variations in electrical loads. The effect can be seen in the behaviour of generator rotor shaft which is translated into the dynamical behaviour of the frequency network. There is an advantage to knowing the network loading condition by observing this frequency dynamic. Furthermore, knowing the magnitude of total power deficiency between generation and load during the early stages of contingency can prevent severe damage to the network. However, in real applications, a direct measure