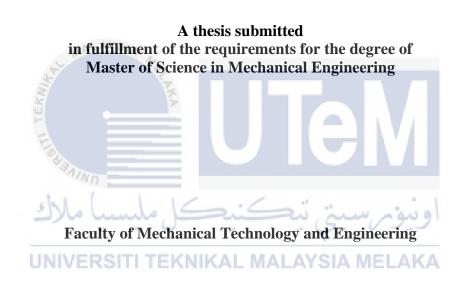


UNIVERSITI TEKNIKAL MALAYSIA MELAKA

IMPROVING THE EFFICIENCY AND RELIABILITY OF CONE LAYING AND COLLECTING (C2L) MACHINE USING TRIZ METHOD

MASTER OF SCIENCE IN MECHANICAL ENGINEERING


Faculty of Mechanical Technology and Engineering

Master of Science in Mechanical Engineering

IMPROVING THE EFFICIENCY AND RELIABILITY OF CONE LAYING AND COLLECTING (C2L) MACHINE USING TRIZ METHOD

MUHAMMAD REZA BIN ZAINAL ABIDIN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2024

DEDICATION

This thesis in wholeheartedly dedicated to my wife, Aisyatul Badriah binti Abdul Ghani for her endless support and confidence in my journey, for believing in me at every turn. Her patience, understanding, and countless sacrifices made this achievement possible. I also dedicate this thesis to my children, Nur Iman Raihanah and Hamzah Aziz, who are my constant source of inspiration and joy. I hope that my journey inspires you to dream big and always work hard towards your dreams.

ABSTRACT

PLUS Berhad (PLUS) executes the temporary signing procedure when maintenance or repair works needs to be done along the highway. Setting up cones around the work area would inform incoming traffic of the lane closure, thus helping the drivers to steer into open lanes. Manually handling the cones impacts the health of the workers while also exposes the workers to the potential of being hit by live traffic and other safety hazards as well. The Cone Laying and Collecting (C2L) semi-automated machine was then developed to address the health and safety issues faced by the workers. The machine's features enable it to lay and collect cones as per PLUS requirements. However, the machine has not yet been tested on its reliability and operational efficiency when under actual working condition, which is a crucial requirement for it to replace the manual cone handling procedure. In this thesis, the C2L machine was tested under several parameters. During the laboratory test, the C2L machine was tested on a test rig to determine the impact of road surface condition on the machine's operation. The operational efficiency of the machine and the mechanical failures that occurred during the test were analysed. TRIZ methodologies were then used on redesigning the machine to address the mechanical failures and further improve the machine's efficiency and reliability. The improved C2L machine was then tested under the field test to determine if it can lay and collect cones according to PLUS requirement. The result from the Laboratory Test showed that the operational efficiency of the C2L machine was consistent on both smooth (Test Motion A) and uneven surface (Test Motion B), suggesting that the efficiency of the C2L machine is not impacted by the road condition. For Test Motion A, the mean of the Total distance traveled on the test rig per minute was 9.43 (m/min), while the median was 9.81 (m/min). For Test Motion B, the mean was 9.54 (m/min), and the median was 10.34 (m/min). Next, the mean of the Total actual distance travelled per minute under Test Motion A was 77.25 (m/min) while the median was 81.63 (m/min). The mean under Test Motion B was 76.17 (m/min) while the median was 82.59 (m/min). The third operational data that was analysed was the Total laying and collecting movements per minute. For Test Motion A, the mean was 7.73 (count/min) while the median was 8.13 (count/min). For Test Motion B, the mean was 7.62 (count/min) while the median was 8.26 (count/min). In terms of reliability analysis, three failed components were redesigned using TRIZ methodologies. The welded joint had a high MTTR (1:00:00), as did the hook spring (1:50:00), while the PLC had low MTTF (0:10:12) and MTBF (0:12:16). These results indicate that these three components may severely affect the reliability of the C2L machine. The redesigned C2L 02 machine was then tested under several Field Test parameters. Overall, the results showed that the machine could lay and collect cones as per PLUS requirements. The time to lay and collect 10 sets of safety cones and 10 sets of super cones during Field Test 1 was consistently 5 minutes across two days. For Field Test 2, the time lay and collect 20 sets of cones in a straight and tapered orientation remained at 10 minutes on both days. These positive results suggested that the C2L 02 machine is reliable and operationally efficient to execute the cone laying and cone collecting activities along PLUS highway. It enhances safety and efficiency in highway maintenance by reducing worker risks and physical strain, leading to fewer injuries and better operational continuity.

PENINGKATAN KECEKAPAN DAN KEBOLEHPERCAYAAN MESIN CONE LAYING AND COLLECTING (C2L) MENGGUNAKAN KAEDAH TRIZ

ABSTRAK

PLUS Berhad (PLUS) melaksanakan prosedur penutupan jalan setiap kali kerja penyelenggaraan dilakukan di sepanjang lebuh raya. Kon di lokasi kerja bertindak sebagai amaran awal untuk memberitahu pengguna tentang penutupan lorong agar pemandu dapat beralih ke lorong yang terbuka. Pengendalian kon secara manual ini didapati memberi kesan buruk kepada kesihatan pekerja, mendedahkan pekerja kepada potensi dilanggar oleh kenderaan dan risiko keselamatan lain. Mesin "Cone Collecting and Laying" (C2L) telah dibangunkan untuk mengatasi isu-isu ini. Walaupun ciri-ciri mesin ini membolehkannya meletak dan mengangkat kon, namun mesin ini belum diuji dari segi kebolehpercayaan dan kecekapan operasinya di bawah kondisi kerja sebenar, yang merupakan keperluan penting untuk mesin ini dibolehkan untuk mengganti prosedur pengendalian kon secara manual. Dalam tesis ini, mesin C2L telah diuji pada rig ujian untuk menentukan kesan keadaan permukaan jalan terhadap operasi mesin. Kecekapan operasi mesin kemudian dianalisis menggunakan analisis deskriptif. Kegagalan mekanikal dan komponen yang berlaku semasa ujian juga dianalisis. Mesin C2L yang baru tersebut kemudian diuji di bawah ujian lapangan. Ujian ini akan menentukan jika mesin C2L yang telah diperbaharui dapat melaksanakan prosedur meletak dan mengangkat kon di sepanjang jalan lurus dan rata mengikut keperluan PLUS. Hasil dari ujian makmal menunjukkan bahawa kecekapan operasi mesin C2L adalah konsisten apabila diuji di atas permukaan yang licin dan permukaan tidak rata, yang menunjukkan bahawa kecekapan mesin itu tidak dipengaruhi oleh keadaan jalan. Berdasarkan analisis kebolehpercayaan, tiga komponen yang gagal ketika ujian makmal telah direka semula menggunakan metodologi TRIZ, bagi meningkatkan kebolehpercayaan mesin C2L. Apabila mesin C2L 02, iaitu mesin yang telah diperbaharui, diuji di bawah parameter ujian lapangan, mesin tersebut telah menunjukkan yang ianya berupaya untuk meletak dan mengangkat kon tanpa gagal. Hasil positif ini menunjukkan bahawa mesin ini berpotensi melaksanakan aktiviti meletak dan mengumpul kon di sepanjang lebuh raya PLUS dan menggantikan prosedur manual yang sedia ada. Penggunaan mesin ini berpotensi untuk meningkatkan keselamatan dan kecekapan dalam penyelenggaraan lebuh raya. Ia secara signifikan mengurangkan risiko keselamatan pekerja dan tekanan fizikal dalam pengendalian kon, disamping mengurangkan kes kecederaan berkaitan kerja, sekaligus meningkatkan imej PLUS sebagai organisasi yang memberi fokus kepada keselamatan. Penggunaan C2L juga akan membuka jalan untuk kajian inovatif baru dijalankan oleh PLUS. Dari segi akademik, proses pembangunan mesin C2L menawarkan templat komprehensif untuk penyelidikan teknologi baru. Model penyelidikan ini meliputi kajian terhadap keselamatan dan reka bentuk kejuruteraan kebolehpercayaan operasi. Penyelidikan ini boleh menjadi panduan untuk kajian yang bertujuan untuk menukar sesuatu proses manual ke sistem separa automatik dengan menawarkan panduan untuk menangani masalah kompleks dari pelbagai aspek.

ACKNOWLEDGEMENT

In the Name of Allah, the Most Gracious, the Most Merciful. First and foremost, I would like to take this opportunity to express my sincere gratitude to my supervisors, Assoc. Prof. Ir. Ts. Dr. Mohd Azli bin Salim and Assoc. Prof. Dr. Nor Azmmi bin Masripan. Their expertise and continuous guidance were instrumental in shaping this thesis. Also, their confidence in my own ability to execute and complete this research had fuelled my motivation to complete my studies. I am also grateful to Ts. Dr. Norbazlan bin Mohd. Yusof, the Head of Unit of Innovation and Centre of Excellence Department, PLUS Berhad for providing insights on the highway maintenance procedures which strengthen this research. Finally, I would like to express my appreciation to PLUS Berhad for providing access to their internal resources and operational data which became the foundation for this work.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

TABLE OF CONTENTS

DECLARATION	
APPROVAL	
DEDICATION	
ABSTRACT	i
ABSTRAK	ii
ACKNOWLEDGEMENT	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vii
LIST OF FIGURES	ix
LIST OF ABBREVIATIONS	xiv
LIST OF SYMBOLS	xvi
LIST OF APPENDICES	xvii
LIST OF PUBLICATIONS	xviii

CHAPTER

CHA	APIER		
1.	INT	RODUCTION	1
1.	1.1	Background	1
	1.1	Problem Statement	7
	1.2		8
	1.5	Research Objective Scope of Research	8 8
	1.4	Thesis Outline	0 10
	1.5		10
2.	LIT	ERATURE REVIEW	12
	2.1	Introduction	12
	2.2	PLUS Malaysia Berhad	14
		2.2.1 Temporary Signing Procedure Along PLUS Highway	16
		2.2.2 Safety Issues Related to the Manual procedure of Laying and	
			20
	2.3	Existing Technologies on Cone Collecting and Laying Procedure	33
			34
		2.3.2 X-Cone 2.0 by Janschitz GmbH	35
			38
		2.3.4 Adaptability and Safety Issues on Existing Cone Laying and	
		Collecting Activities	42
	2.4	The Cone Collecting and Laying (C2L) Machine	43
			44
		2.4.2 The C2L Body – Main Component of C2L Machine	45
		2.4.3 Guide Post – Setting the Cones for Operation	55
		2.4.4 Operating the C2L Machine	57
		2.4.5 Improving the Safety of Cone Collecting and Laying Procedure	
		Using C2L Machine	64
	2.5	Determining the Readiness of the C2L Machine to be Used Under Actual	
		Working Condition	66
		2.5.1 The Importance of Laboratory Test on C2L Machine	67

		2.5.2 The Importance of Reliability Test on C2L Machine	69
		2.5.3 The Importance of Field Test on C2L Machine	74
	2.6	TRIZ Methodologies for Innovation	75
		2.6.1 Fundamental Concepts of TRIZ	77
		2.6.2 Methodologies of TRIZ	79
		2.6.3 Application of TRIZ Methodologies for Innovation	83
		2.6.4 Application of TRIZ Methodologies in Improving System	
		Reliability	88
	2.7	Summary	91
3.	ME	THODOLOGY	93
	3.1	Introduction	93
		3.1.1 The Cone Laying and Collecting (C2L) Machine Used in	
		Highway Operation	96
		Research Design	97
		The Methodology	99
	3.4	Laboratory Test	101
		3.4.1 Test Rig System Mechanism	103
		3.4.2 The Procedure for Laboratory Test	108
		3.4.3 The Parameters Involved in Laboratory Test	110
	2.5	3.4.4 Data Collection	111
	3.5	Reliability Analysis	114
		3.5.1 Static Analysis	115
		3.5.2 Dynamic Analysis	117
	3.6	3.5.3 Determining the Reliability Metrics from Machine Failure Data	123 124
	3.0	Analysing the Failure Data and Ideating Innovative Solution 3.6.1 Function Model (FM)	124
		3.6.2 Substance-Field (Su-Field) Analysis	123
		3.6.3 The 76 Standard Inventive Solution	120
		3.6.4 Redesigning the C2L Machine	134
	3.7	Field Test	135
	5.7	3.7.1 C2L 02 Set-up	136
		3.7.2 C2L 02 Field Test Procedure	137
		3.7.3 C2L 02 Field Test Parameter	139
		3.7.4 Analysing the Data from the Field Test	140
	3.8	Summary	141
4.	RES	SULT AND DISCUSSION	142
	4.1	Introduction	142
	4.2	Analysis of Laboratory Test	143
		4.2.1 Test Motion A	144
		4.2.2 Test Motion B	152
		4.2.3 Analyzing the Operational Data from Test Motion A and	
		Test Motion B	157
	4.3	Result and Analysis on Reliability Analysis	172
		4.3.1 Reliability Metrics Analysis from Test Motion A	172
		4.3.2 Reliability Metrics Analysis from Test Motion B	176

	4.3.3	Discussion from Reliability Metrics	179
4.4	Improvi	ing the Design of C2L Machine Using TRIZ Methodologies	181
	4.4.1	Analysing the C2L Machine Failure from Test Motion A and	
		Test Motion B	181
	4.4.2	Improving the Machine Design Using TRIZ Methodologies	184
	4.4.3	New C2L Design Called C2L 02	193
4.5	Analysi	s of Field Test for C2L 02	195
	4.5.1	Field Test Operational Data	196
	4.5.2	Analyzing the Operational Data of Field Test	200
	4.5.3	Summary of the Field Test	201
4.6	Summa	ry	203
COI	NCLUSI	ON AND RECOMMENDATIONS FOR FUTURE	
	SEARCH		205
5.1	Introdu	ction	205

5.

5.1	Introduction	205
5.2	Summary of the Research Objectives	206
5.3	Research Contributions	207
5.4	Pratical Implications and Beneficiaries	217
5.5	Limitions of The Present Study	219
5.6	Future Works	221
5.7	Summary	222
REFEREN		224 238
	اونيوم سيتي تيكنيكل مليسيا ملاك	

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1	Breakdown of highways maintained by PLUS Malaysia Berhad	16
Table 2.2	Comparison of Commercial Systems' Compliance with PLU Requirements for Cone Laying and Collecting Operation	JS 41
Table 3.1	Summary of Operational Data	113
Table 3.2	Summary of failures during Test Motion A and Test Motion B	114
Table 3.3	Components analysed to determine the reliability metrics	124
Table 3.4	The Grouping of 5 Classes of the 76 Standard Inventive Solutions	134
Table 3.5	Summary of Operational Data from Field Test	140
Table 4.1	Summary of Operational Data from Test Motion A	144
Table 4.2	Observation of the condition of the C2L machine and test rig durin Test Motion A	ng 146
Table 4.3	Summary of Operational Data from Test Motion B	152
Table 4.4	Observation of the condition of the C2L machine and test rig durin Test Motion B	ng 153
Table 4.5	Summary of Total distance travelled on test rig per minute (m/mi between Test Motion A and Test Motion B	n) 158
Table 4.6	Descriptive Analysis between Test Motion A and Test Motion B of the Total distance travelled on test rig per minute (m/min)	on 160
Table 4.7	Summary of Total actual distance travelled per minute (m/mi between Test Motion A and Test Motion B	n) 164
Table 4.8	Descriptive Analysis between Test Motion A and Test Motion B of the total actual distance travelled per minute (m/min)	on 165
Table 4.9	Summary of Total laying and collecting movements per minu (count/min) between Test Motion A and Test Motion B	ite 167
Table 4.10	Descriptive Analysis between Test Motion A and Test Motion B of the Total laying and collecting movements per minu (count/min)	

TABLE	TITLE	PAGE
Table 4.11	Data from C2L machine failures during Test Motion A	172
Table 4.12	Reliability Metrics of failed components during Test Motion A	175
Table 4.13	Data from C2L machine failures during Test Motion B	176
Table 4.14	Reliability Metrics of failed components during Test Motion B	178
Table 4.15	Summary of Reliabity metrics of failed components	180
Table 4.16	Summary of failures during Test Motion A and Test Motion B	182
Table 4.17	Operation Data from Field Test	197

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.1	Infographic of the expressway maintained by PLUS Malaysia Berhad	a 15
Figure 2.2	Different sections within the Traffic Control Zone	18
Figure 2.3	Cone spacing according to zones during the temporary signing procedure	g 19
Figure 2.4	The worker at the back of the lorry will pass a cone to the worker of the pavement who will then arrange it accordingly	n 21
Figure 2.5	Transferring the cones from pavement to the back of the lorr involves lifting heavy cones while twisting the torso	22
Figure 2.6	The manual procedure of laying and collecting cones for temporary signing procedure exposes the workers to live traffic	y 24
Figure 2.7	Collision of highway users into the temporary signing area (Januar) - November 2023)	y 26
Figure 2.8	Relation between types of collision, when the collision occurred and injuries suffered by PLUS workers	d 27
Figure 2.9	Standing at the back of a moving lorry while the back door is open is a violation under Malaysia Road Transportation Department	n 31
Figure 2.10	The Auto Cone machine installed on a 4x2 chasiss vehicle	34
Figure 2.11	The X-Cone 2.0 machine	36
Figure 2.12	The X-Cone 2.0 machine dropping the cone during the cone laying procedure	g 38
Figure 2.13	The Dyamic Lift System (DLS) by J-Tech	39
Figure 2.14	The X-Cone 2.0 machine dropping the cone during the cone collecting procedure, where (a) the roller panel scoops the cone from the pavement when the lorry is in reverse and (b) the cones are uploaded onto the lorry using the lift	1
Figure 2.15	The Cone Laying and Collecting (C2L) machine	43

FIGURE	TITLE	PAGE
Figure 2.16	Test bed installed at the back of a lorry, where the C2L machine be hooked onto the sliding rods	will 44
Figure 2.17	(a) Front and (b) Back view of the C2L body	45
Figure 2.18	The smaller ramp on the left is used when handling the smaller sa cones, while the bigger ramp on the right is used when hand super cones	•
Figure 2.19	Condition of the cone when being held by the ramp	47
Figure 2.20	The AC Motor	48
Figure 2.21	Part of the motion sensors and mechanical sensors installed on C2L machine	the 50
Figure 2.22	Roller bearing	51
Figure 2.23	Control panel of the C2L machine	51
Figure 2.24	Control box of the C2L machine	52
Figure 2.25	The Programmable Logic Control (PLC)	53
Figure 2.26	Miniature Circuit Breaker (MCB)	54
Figure 2.27	اويور سيبي بيڪيڪ مليسيا مارڪ	55
Figure 2.28	The condition of the C2L machine when the guide post is (a) fol (not in use) and (b) unfolded (ready to be used	ded 56
Figure 2.29	The breakdown of each component of the guide post.	57
Figure 2.30	The worker loading a cone onto the ramp during cone lay procedure	ving 59
Figure 2.31	The tipping bar pushes the cone up into the correct position	60
Figure 2.32	Lorry moving in reverse during cone collecting procedure	62
Figure 2.33	The ramp scoops the cones from the pavement	63
Figure 2.34	Removing cone from the ramp	63
Figure 2.35	The relation between MTTF, MTBF and MTTR with operation ti downtime and repair time	me, 70

х

FIGURE	TITLE	PAGE
Figure 2.36	TRIZ General Problem Solution	78
Figure 2.37	The Function Model (FM) of the C2L Machine	80
Figure 2.38	Cause and Effect Chain Analysis (CECA) diagram	81
Figure 3.1	The Cone Laying and Collecting (C2L) machine	96
Figure 3.2	Research flow chart	98
Figure 3.3	The Cone Laying and Collecting (C2L) machine setup on the test r and the length of the test rig is 3.13 meters	ig 101
Figure 3.4	The control panel of the test rig	103
Figure 3.5	The motor of the test rig	104
Figure 3.6	The sensors on the test rig	105
Figure 3.7	The chains that move the C2L machine across the test rig	106
Figure 3.8	The rails of the test rig	106
Figure 3.9	(a) The design of the humps (b) The condition of humps, indicate by red arrow, installed in the rail	ed 107
Figure 3.10	Interaction between bearing and C2L body	115
Figure 3.11	Interaction between chains and bearing case IA MELAKA	116
Figure 3.12	Interaction between cone and cone lifter	117
Figure 3.13	Movement of cone lifter when collecting cone	119
Figure 3.14	(a) Connecting the movement between gear and chain during concollecting procedure and (b) Movement of cone lifter during concollecting procedure	
Figure 3.15	Movement of cone lifter when laying cone	120
Figure 3.16	Connecting movement between gear, chain and cone lifter durin cone laying procedure	ng 121
Figure 3.17	Components within C2L machine that will receive strain durin operation: a) Chain and Sprocket, (b) Bearing, (c) Gear, (d) Sprin (e) Motor and (f) Structure	-

FIGURE	TITLE	PAGE
Figure 3.18	A graphical representation of a Function Model (FM)	127
Figure 3.19	Interactions between components and product within a system as supersystem	nd 128
Figure 3.20	Basic Substance-Field Model, where S1 and S2 are Substance and is the Field	F 131
Figure 3.21	Incomplete model of the Su-Field analysis	132
Figure 3.22	Ineffective model of the Su-Field analaysis	132
Figure 3.23	Harmful model of the Su-Field analysis	133
Figure 3.24	Measurement model of the Su-Field analysis	133
Figure 3.25	(Left) Safety cone and (Right) Super cone	135
Figure 3.26	The setup of Field Test using The C2L machine version 02	136
Figure 3.27	Orientation of the cones during Field Test	138
Figure 3.28	Orientation of the Super Cones and Safety Cones during Fie Test 2	ld 139
Figure 4.1	(a) Roller that is used control the vertical movement of the ramp at(b) The location of the roller in the ramp	nd 147
Figure 4.2	(a) Crack on the welded joint, below the ramp and (b) Condition the joint after rewelding	of 148
Figure 4.3	The location of the chains that was dislodged from the gear is show in the red circle	vn 149
Figure 4.4	The lock that holds the guidepost dislodges from position	150
Figure 4.5	Faulty sensor at the right side of C2L machine	151
Figure 4.6	(a) The broken hook spring, which connects the chain to the con- lifter and (b) Condition of the hook spring after replacement	ne 156
Figure 4.7	Boxplot between Test Motion A and Test Motion B on the Tot distance travelled on test rig per minute (m/min)	al 162
Figure 4.8	Boxplot between Test Motion A and Test Motion B on the Tot actual distance travelled per minute (m/min)	al 166

Figure 4.9	Boxplot between Test Motion A and Test Motion B on the Tota laying and collecting movements per minute (count/min)	l 169
Figure 4.10	Condition of the cone being held by the ramp, which is supported by the welded joint	y 185
Figure 4.11	Interaction between components that handles the cone	186
Figure 4.12	Su-Field model between Cone and Ramp	186
Figure 4.13	Su-Field model showing the improved interaction between Cone and Ramp	d 187
Figure 4.14	Interaction between PLC and other components	188
Figure 4.15	Su-Field model between C2L body and PLC	189
Figure 4.16	Su-Field model showing the improved interaction between C2I body and PLC	 190
Figure 4.17	Hook spring functions as connector between the chain and the load which is part of the cone lifter	, 190
Figure 4.18	Interaction between hook spring, load and cone	191
Figure 4.19	Su-Field model between Load and Hook Spring	191
Figure 4.20	Su-Field of the improved interaction between Spring hook and Load	d 193
Figure 4.21	(a) Old design of Ramp with straight bar and (b) New design o Ramp with triangular bar, (c) Condition of PLC without damper and (d) Condition of PLC with damper, (e) Using hook spring to hold the load and (f) Using spring hook to hold the load	f
Figure 4.22	(a) Old design of C2L, before redesigning parts that failed during Lab test and (b) New C2L design (C2L 02)	g 195

TITLE

FIGURE

PAGE

LIST OF ABBREVIATIONS

AiCl	-	Advanced Academia Industry Collaboration Laboratory
AC	-	Alternating Design
AD	-	Axiomatic Design
BKE	-	Butterworth-Kulim Expressway
C2L	-	Cone Collecting and Laying
CECA	-	Cause and Effect Chain Analysis
CFD	-	Computational Fluid Dynamics
CCR	N-MA	Cutter Changing Robot
DC	- 1	Direct Current
DLS	- 1	The Dynamic Lift System
ELITE	Fiers	Expressway Lingkaran Tengah Sdn. Bhd
FM	- all	Function Model
FTME	ملاك	Faculty of Technology and Mechanical Engineering
IFR	UNIVE	Ideal Final Result KAL MALAYSIA MELAKA
Linkedua	-	Linkedua (Malaysia) Berhad
LBP	-	Low Back Pain
МСВ	-	Miniature Circuit Breaker
MHA	-	Malaysian Highway Authority
MTBF	-	Mean Time Before Failure
MTTF	-	Mean Time to Failure
MTTR	-	Mean Time to Repair
NKVE	-	New Klang Valley Expressway
NRF	-	Non-repairable Failures

NSECL	-	The North-South Expressway Central Link
PBSM	-	Penang Bridge Sdn Bhd
PEB	-	PLUS Expressways Berhad
РМВ	-	PLUS Malaysia Berhad
PLC	-	Programmable Logic Control
PLUS	-	Projek Lebuhraya Usahasama Berhad
PLUS Berha	ıd -	Projek Lebuhraya Utara-Selatan Berhad
QFD	-	Quality Function Deployment
RAMD	-	Reliability, Availability, Maintainability, and Dependability
RF	-	Repairable Failures
SPDH	LAL- MI	Seremban-Port Dickson Highway
SRB	- EKM	Spherical roller bearings
TRIZ	F F	The Theory of Inventive Problem Solving
USSR	100 ANT	Union of Soviet Socialist Republics
UTeM	sht	Universiti Teknikal Malaysia Melaka
WMDs	~	Work-related musculoskeletal disorder
	UNIVE	RSITI TEKNIKAL MALAYSIA MELAKA

LIST OF SYMBOLS

- F Force
- *k* Spring constant
- *x* Change in length

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix A	Temporary Signing Procedure Involving Emergency Lanes ar Slow Lane	nd 238
Appendix B	The Dimension, Weight, Colour, Material And Design Of Sup Cones	er 239
Appendix C	The Dimension, Weight, Colour, Material And Design Of Safe Cones	ty 238
Appendix D	The Design of the Rails of the Test Rig	239
Appendix E	Sub-Class List Of The 76 Standard Inventive Solutions	238
Appendix F	Procedure Of Installing C2l Machin At A Lorry To Execute Con Laying And Collecting Procedure	ne 239
l	JNIVERSITI TEKNIKAL MALAYSIA MELAKA	

LIST OF PUBLICATIONS

The followings are the list of publications related to the work on this thesis:

M. Reza, M. A. Salim, N. A. Masripan, N. M. Yusof and M. R. A. Prunomo, 2023. Improving the efficiency of operating the Cone Laying and Collecting Machine (C2L) using TRIZ Method. *Journal of Advanced Manufacturing Technology*, vol. 17, no.3, 2023.

CHAPTER 1

INTRODUCTION

1.1 Background

PLUS Malaysia Berhad (PMB) was originally founded as Highway Concessionnaires Berhad on June 1986 before changing its name to Projek Lebuhraya Utara Selatan Berhad on May 1988. PMB was incorporated on November 2010 (PLUS, 2023). A year after that, Projek Lebuhraya Usahasama Berhad (PLUS) was born. As of 2023, the PLUS highway is still the largest toll expressway operator in Malaysia. It consist of the North-South Expressway (NSE), New Klang Valley Expressway (NKVE), Seremban-Port Dickson Highway (SPDH), North-South Expressway Central Link (NSECL), Linkedua, Butterworth-Kulim Expressway (BKE) and the Penang Bridge, which stretches to approximately 945km.

Projek Lebuhraya Usahasama Berhad (PLUS) was established on 2011 following the incorporation of PLUS Malaysia Berhad (PMB) a year before (PLUS, 2023). Currently, PLUS is the biggest toll highway operator in Malaysia, managing several highways including the North-South Expressway (NSE) and New Klang Valley Expressway (NKVE), which covers a total distance of about 946.5km.

The daily traffic volume along PLUS highway is approximately 1.5 million vehicles. Hence, proper maintenance and repair work are constantly conducted so that the highway assets are maintained to the highest standard. This will ensure that the highway users can experience a smooth and safe driving along their journey. Everytime a maintenance or repair work needs to be done, it needs to be preceeded with the temporary signing procedure. The temporary signing procedure refers to the action of closing several affected lanes. Proper signages and cones are set up on areas leading to and around the location where maintenance work will be done. By doing so, incoming traffic will be alerted about the work done on the roads ahead. The drivers can then carefully steer their vehicles into the lanes that are not closed, maintaining the fluidity of the traffic movement along the highway.

When a driver reaches closer to the area where the temporary signing procedure is being executed, the first area that the driver will see is the Advance Warning Zone. There will be a series of signages arranged within the zone to provide early warning to incoming vehicles of the lane closure ahead. After the driver passes the Advance Warning Zone, the driver will reach the Transition Zone. By aranging several super cones and arrows in a tapered orientation, the drivers are guided to move into open lanes. The Buffer Zone comes next to the Transition Zone, which is an area that provides a safety buffer area for both workers and driver. This area is free from equipments and vehicles, but safety cones are used to enclose this area. The most impotart area is the Work Zone, which is the area where the maintenance work and repair work happens. The length of the Work Zone depends on the type of the work that needs to be conducted. Safety cones are arranged parallel along the zones to separate the work area with live traffic. The bright coloured cones would also alert the drivers to be careful when driving along the Work Zone. The Termination Zone is at the end, also enclosed by safety cones and a signboard, which is a small area that helps traffic to merge back into the normal traffic lanes.