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ABSTRACT 

 

 

Stretchable and flexible printed electronics, which utilize conductive materials made from 

graphene, have attracted considerable interest due to their cost-effectiveness, flexibility, and 

impressive ability to conform to various shapes. However, these materials often experience 

performance failures when subjected to strain, which poses challenges for diagnosing 

electrical conducting failures and predicting their behaviour. To address these issues, a 

numerical modelling and simulation method is needed to predict the performance of 

stretchable conductive ink (SCIs) based on graphene nanoplatelets (GNPs). Furthermore, 

when the SCI/substrate system is subjected to mechanical loadings like stretching, torsion, 

and bending, it can affect the functionality of the SCI, leading to electrical failures. To 

overcome these challenges, finite element analysis (FEA) can be employed to simulate and 

observe the electrical performance of the printed electronics. However, to the best of our 

knowledge, predictive modelling to forecast the electrical performance of the printed 

electronics based on the development of stress and strain energy is yet to be studied. This 

thesis focuses on predicting the performance of the SCI/substrate system using the FEA 

method. The main goal of this study was to optimize the geometrical parameters of SCI using 

design of experiment (DOE) software through incorporation with finite element (FE) 

method. In an independent study, different shapes of silver conductors (straight, zigzag, 

square, and sinusoidal) were compared in terms of their impact on stress, strain, and 

electrical performance. The straight pattern exhibited the highest average von Mises stress 

and maximum principal strain, while the zigzag pattern showed the lowest stress and strain. 

These results aligned with experimental findings, indicating that increasing stress and strain 

decrease the maximum strain before conductivity is lost. To validate the simulation model, 

input parameters were acquired by subjecting both the thermoplastic polyurethane (TPU) 

substrate and formulated SCI to uniaxial tensile tests. The simulated results were then 

compared with the experimental data, and the model exhibiting quasi-static loading with 

non-linear material behaviour demonstrated the closest fit with the lowest peak stress error. 

Lastly, the development of equivalent plastic strain was predicted using the DoE method, 

considering the thickness and width parameters of the conductor. Through the optimization 

of geometrical parameters, a printed circuit with a thickness of 0.04 mm and width of 2.66 

mm was found to produce the lowest maximum equivalent plastic strain. These optimized 

geometrical parameters enhance the stretchability of the SCI system, allowing for greater 

strain tolerance and reducing the likelihood of electrical failure when subjected to 

mechanical deformation. In summary, this research provides insights into the performance 

prediction and optimization of stretchable and flexible printed electronics based on graphene 

conductive materials. The combination of numerical modelling, simulation, and 

experimental validation offers valuable tools for enhancing the reliability and functionality 

of these systems in various applications. 
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PEMODELAN RAMALAN DAKWAT KONDUKTIF BOLEH REGANG 

MENGGUNAKAN ANALISIS UNSUR TERHINGGA 
 

ABSTRAK 

 

Elektronik bercetak boleh regang dan fleksibel menggunakan bahan konduktif graphene 

telah mendapat perhatian yang ketara kerana kosnya yang rendah, fleksibiliti dan 

kesesuaian yang tinggi. Walau bagaimanapun, bahan ini sering mengalami kegagalan 

prestasi apabila mengalami ketegangan, yang menimbulkan cabaran untuk mendiagnosis 

kegagalan pengalir elektrik dan meramalkan kelakuannya. Untuk menangani isu ini, kaedah 

pemodelan dan simulasi berangka diperlukan untuk meramalkan prestasi dakwat konduktif 

boleh regang (SCI) berdasarkan nanoplatelet graphene (GNP). Tambahan pula, apabila 

sistem SCI/substrat tertakluk kepada beban mekanikal seperti regangan, kilasan dan 

lenturan, ia boleh menjejaskan fungsi SCI, yang membawa kepada kegagalan elektrik. 

Untuk mengatasi cabaran ini, analisis unsur terhingga (FEA) boleh digunakan untuk 

mensimulasikan dan memerhati prestasi elektrik elektronik bercetak. Walau bagaimanapun, 

sepanjang pengetahuan kami, pemodelan ramalan untuk meramalkan prestasi elektrik bagi 

elektronik bercetak berdasarkan perkembangan tekanan dan tenaga terikan masih belum 

dikaji. Tesis ini memfokuskan kepada meramal prestasi sistem SCI/substrat menggunakan 

kaedah FEA. Matlamat utama kajian ini adalah untuk mengoptimumkan parameter 

geometri SCI menggunakan perisian reka bentuk eksperimen (DOE) melalui penggabungan 

dengan kaedah unsur terhingga (FE). Dalam kajian bebas, bentuk konduktor perak yang 

berbeza (lurus, zigzag, segi empat sama dan sinusoidal) telah dibandingkan dari segi 

kesannya terhadap tekanan, terikan dan prestasi elektrik. Corak lurus menunjukkan tekanan 

von Mises purata tertinggi dan regangan prinsipal maksimum, manakala corak zigzag 

menunjukkan tegasan dan regangan yang paling rendah. Keputusan ini sejajar dengan 

penemuan eksperimen, menunjukkan bahawa peningkatan tegasan dan terikan 

mengurangkan terikan maksimum sebelum kekonduksian hilang. Untuk mengesahkan model 

simulasi, parameter input diperoleh dengan menundukkan kedua-dua substrat poliuretana 

termoplastik (TPU) dan merumuskan SCI kepada ujian tegangan uniaxial. Hasil simulasi 

kemudiannya dibandingkan dengan data eksperimen, dan model yang mempamerkan 

pemuatan kuasi statik dengan gelagat bahan bukan linear menunjukkan kesesuaian paling 

hampir dengan ralat tegasan puncak terendah. Akhir sekali, perkembangan terikan plastik 

yang setara telah diramalkan menggunakan kaedah DoE, dengan mengambil kira ketebalan 

dan parameter lebar konduktor. Melalui pengoptimuman parameter geometri, litar bercetak 

dengan ketebalan 0.04 mm dan lebar 2.66 mm didapati menghasilkan regangan plastik 

setara maksimum yang paling rendah. Parameter geometri yang dioptimumkan ini 

meningkatkan keanjalan sistem SCI, membolehkan toleransi terikan yang lebih besar dan 

mengurangkan kemungkinan kegagalan elektrik apabila mengalami ubah bentuk mekanikal. 

Ringkasnya, penyelidikan ini memberikan pandangan tentang ramalan prestasi dan 

pengoptimuman elektronik bercetak boleh regang dan fleksibel berdasarkan bahan 

konduktif graphene. Gabungan pemodelan berangka, simulasi dan pengesahan eksperimen 

menawarkan alat berharga untuk meningkatkan kebolehpercayaan dan kefungsian sistem 

ini dalam pelbagai aplikasi. 
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T - Conductivity exponent  

R - Resistance 

Tn - Tin 

Zn - Zinc 

Rs - Sheet resistance 

Ro - Initial resistance 

V - Volume fraction or weight percentage of filler 

C - Composite  

P - Particulate phase 

M - Matrix  

Vm - Volume fraction of PEDOT: PSS solution 

E - Elastic modulus or Young’s modulus 

F - Minimum force 



xviii 

 

VL - Loading speed 

T - Holding time 

D - Indentation depth 

G - Correction factor 

V - Voltage  

I - Current  

σ1 - Principal stress in x-axis 

σ2 - Principal stress in y-axis 

σ3 - Principal stress in z-axis 

Σe - Equilibrium stress 

µ - Poisson’s ratio 

ϵ1 - Principal strain in x-axis 

ϵ2 - Principal strain in y-axis 

ϵ3 - Principal strain in z-axis 

ϵyt - Yield point strain 

σyt - Yield point stress 

∂z - Expansion of the simulation model 

θz - Contraction of the simulation model 

∆Lx - Total displacement for longitudinal stretch of biaxial load (3.0 

mm) 

∆Ly - Total displacement for lateral stretch of biaxial load (9.5 mm) 

∆Lx1 - Positive longitudinal stretch = 9.5 mm (uniaxial loading) and 

1.5 mm (biaxial loading) 

∆Ly1 - Positive lateral stretch = 3.0 mm (uniaxial loading) and 4.75 

mm (biaxial loading) 



xix 

 

∆Lx2 - Negative longitudinal stretch = 1.5 mm (biaxial loading) 

∆Ly2 - Negative lateral loading = 4.75 mm (biaxial loading) 

∆Ltotal - Total displacement of biaxial tensile loading 

σTPU,max - Highest peak stress among three TPUs 

σ̅TPU - Average peak stress of three TPUs 

σTPU,min - Lowest peak stress among three TPUs 

Ω/sq - Ohm/square 

Ω.m - Ohm meter 

Σ - Population standard deviation 

xi - Individual value from population 

Μ - Mean of the population 

N - Sample size of the population 

σmax,1 - Peak normalized stress for the first specimen of bulk 

GNP/PEDOT: PSS ink 

σmax,2 - Peak normalized stress for the second specimen of bulk 

GNP/PEDOT: PSS ink 

σavg - Average Von Mise stress for elastic model 

σmax - Maximum Von Mises stress for elastic model 

σmin  - Minimum Von Mises stress for elastic model 

Ei - Input strain 
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