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Abstract 
Location-based services are among important applications in current telecommunication 
networks which causes an increasing demand in the advancements of indoor positioning 
systems (IPS). This paper presents a comprehensive review of the technologies and 
techniques employed in recent works related to IPS and discusses the challenges in IPS 
implementations. This study widely categorizes indoor positioning technologies into five 
types which are computer vision, short-range communication, acoustic-based, magnetic 
methods, and radio frequency (RF) technologies. The strengths and limitations of each 
technology is discussed based on its accuracy, coverage, infrastructure, implementation cost 
and signal characteristics. The literature study shows that range-based and fingerprinting are 
two main techniques employed in IPS. In addition, the study indicates that fingerprinting 
methods utilizing Wi-Fi and cellular networks are prevalent due to their widespread 
availability. However, these technologies face some challenges such as multipath fading, 
signal instability, device heterogeneity, infrastructure and cost implications, computational 
complexity, and privacy and security concerns. This paper emphasizes the need for innovative 
approaches to enhance positioning accuracy and reduce infrastructure costs, thereby 
fostering broader adoption of IPS across diverse applications. 
Keywords: Indoor Positioning Systems, RF Positioning, Location-Based Services 
 
Introduction  
The increasing demand for advanced location-based services within modern 
telecommunication networks is a direct result of the growing access to information in both 
outdoor and indoor settings. This surge in demand is further propelled by the ongoing 
development and standardization of fifth generation (5G) cellular communication systems, 
where a significant emphasis is placed on enhancing the precision of mobile station (MS) 
positioning within the network (3GPP, 2017). The accurate estimation of an MS's location and 
the continuous monitoring of its movement are essential for a multitude of applications, such 
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as vehicle navigation systems, child tracking devices, social networking tools, healthcare 
monitoring, transportation management, localized weather reporting, traffic updates, urban 
concierge services, automation industry applications, drone operations, assisted living 
technologies, and the burgeoning field of the internet of things (IoT). A variety of indoor 
positioning technologies and techniques have been proposed to provide efficient indoor 
positioning systems (IPS). These methods need to be specifically tailored to meet the sole 
requirements of different environments and applications. This paper reviews the 
technologies and techniques employed in recent works related to IPS and discusses discusses 
several challenges in IPS implementation. The next section gives an overview of the 
technologies and techniques of IPS. Subsequently, a detailed discussion on IPS technologies 
and techniques is presented in separate sections. Finally, the paper outlines several 
challenges in IPS implementation that can serve as a reference for future research on IPS 
enhancement. 
 
Overview of the Indoor Positioning Systems 
The implementation and deployment of IPS lies in the user-oriented and environment-specific 
nature, which largely depends on the requirements of the users and the limitations of the 
environment. Developing suitable IPS is a challenging task due to the wide variety of indoor 
positioning technologies and principles, as well as the complex and dynamic nature of indoor 
environments. As discussed in the literature, the required indoor positioning accuracy is still 
yet to be achieved, and efforts on designing and developing optimal techniques that perform 
well under any indoor environment setting and circumstances are still ongoing (Guo et al., 
2020; Subedi & Pyun, 2020; Zafari et al., 2019). Figure 1 presents a structured overview of the 
technologies, techniques, and corresponding parameters commonly employed in the 
implementation of IPS.  
 
As shown in Figure 1, the technologies used in indoor positioning are broadly categorized into 
computer vision (optical-based), magnetic, acoustic-based (sound), short/medium 
communication, and radio frequency (RF). Computer vision, magnetic induction, and sound 
fall under non-radio frequency (non-RF) technologies commonly employed in IPS. Computer 
vision capitalizes visual features that are available in the environment to determine the 
location of objects or targets (Morar et al., 2020). Primarily, this technology employs feature 
detection and matching methods, which rely on the identification and correspondence of 
typical visual features such as natural objects in the environment or artificial tags captured by 
cameras or other optical sensors. On the other hand, magnetic induction methods leverage 
variations in the Earth's magnetic field to determine the location of targets within indoor 
environments. This technology typically involve the use of magnetometers to measure these 
magnetic field variations in the studied area. The most common approach in magnetic-based 
IPS is magnetic fingerprinting (Kwak et al., 2019; Y. Zheng et al., 2021), where a database of 
unique magnetic field signatures is created at various locations within the studied area. 
Sound-based IPS utilize various acoustic methods to determine the location of targets or 
objects within indoor environments. These systems typically employ either an active or 
passive sound-based approach. Active systems use sound signals that are intentionally 
emitted, such as ultrasound or audible sound waves, to calculate the ToF or time-difference-
of-arrival (TDOA) between the emitter and the receiver (Delabie et al., 2023; Gualda et al., 
2021). Passive systems, on the other hand, rely on ambient sounds that are naturally present 
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in the environment to create a fingerprint that can be used to identify specific locations (Tariq 
et al., 2017). 
 
Visible light communication (VLC), infrared (IR), and Bluetooth Short are popular technologies 
used for short to medium range data communication. Surprisingly, these technologies have 
shown good potential as a signal source for IPS. VLC-based IPS utilizes the existing lighting 
infrastructure as the positioning signal sources for fingerprinting or range-based positioning 
approaches. In fingerprinting techniques, the unique flickering patterns of light emitting 
diodes (LEDs) are exploited to create fingerprints that act as distinct location identifiers. 
Meanwhile, range-based methods rely on the received signal strength (RSS) of light signals to 
calculate the distance between the LED source and the receiver (Zafari et al., 2019). 
 
IR-based IPS commonly employ range-based approach, utilizing the time-of-flight (ToF) of the 
IR signal to estimate the distance between an IR emitter and a receiver (Maheepala et al., 
2020). The same approach is often found to be used in Bluetooth-based IPS where the RSS 
from multiple Bluetooth beacons is captured and processed to estimate the position of a 
target (Abed et al., 2022). 
 
Four key RF technologies used for indoor positioning are Ultra-Wide Band (UWB), Radio 
Frequency Identification (RFID), Wireless Fidelity (Wi-Fi), and cellular networks. RF-based 
indoor positioning technologies employ various methods including range-based, proximity 
sensing, and fingerprinting. UWB technology provides a wide spectrum of frequencies to 
transmit data, allowing for high-precision channel parameters measurement that is crucial in 
positioning accuracy (Djosic et al., 2021; Yu et al., 2019). RFID systems use RFID tags and 
readers to communicate and identify objects, with active and passive tags emitting or 
reflecting signals that can be used for positioning (Motroni et al., 2021). Both Wi-Fi and 
cellular technologies use the same resource allocation scheme, which is orthogonal frequency 
division multiplexing (OFDM). Wi-Fi based indoor positioning commonly employs 
fingerprinting by utilizing RSS. Cellular-based indoor positioning commonly employs range-
based methods utilizing time, direction or RSS (X. Li, 2019; You & Wu, 2020), and 
fingerprinting (Chai et al., 2020; Rizk, 2019). 
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Figure 1: Technologies and techniques of IPS 
 
The chart of Figure 1 apparently shows that range-based and fingerprinting are the most 
prominent techniques in IPS. These techniques are widely adopted across various IPS 
technologies. In terms of IPS technology, Wi-Fi and cellular networks emerge as the two most 
prominent technologies used, owing to their extensive availability in indoor environments. 
This is due to the advent of the modern wireless communication era and the demand for IoT 
services that led to the ubiquitous deployment of Wi-Fi infrastructure across a multitude of 
settings, including offices, homes, airports, restaurants, and shopping malls. This pervasive 
presence of Wi-Fi has facilitated the adoption of fingerprinting as a primary method for indoor 
positioning, which leverages the RSS of Wi-Fi signals. Concurrently, cellular networks have 
adapted to the increasing density of mobile users in indoor areas by introducing small cells 
technology, which enhances network capacity and coverage in confined spaces (Andrade et 
al., 2021; Fuschini et al., 2015). It is also worth to note that IPS utilizing optical, IR, and 
ultrasonic signals are resistant to multipath effects and offer relatively high accuracy. 
However, the IPS based on these technologies suffer from limitations such as lack of 
communication capabilities, reduced robustness, limited coverage, and difficulties in 
integration with other systems (Asaad et al., 2022; Morar et al., 2020; Sesyuk et al., 2022). 
Conversely, RF-based IPS technologies, including Wi-Fi (Hernández et al., 2021; Zou et al., 
2017), Bluetooth (Abed et al., 2022; Giuliano et al., 2020), UWB (Djosic et al., 2021; Jespersen 
et al., 2018), and RFID (Motroni et al., 2021), are more robust, feature a low setup cost, and 
are easily integrated with other systems. 
 
Technologies for Indoor Positioning Systems  
This section discusses various technologies employed in recent works of IPS, including 
magnetic, ultrasonic, VLC, Bluetooth, infrared, computer vision, and RF technologies. In 
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addition, the advantages and challenges faced by these systems, such as signal instability and 
environmental interference are discussed. 
 
Magnetic Field Induction 
Magnetic-based IPS leverage the unique properties of magnetic fields, which are only 
influenced by ferromagnetic materials and are not reflected by mechanical surfaces. These 
fields do not require line of sight (LOS), are immune to multipath interference and fading, and 
necessitate low-cost transmitters and receivers, along with simple development setups. 
Magnetic field-based IPS can utilize either an artificial magnetic field (Kusche et al., 2021; K. 
Li et al., 2022; Y. Zheng et al., 2021), or the geomagnetic field (Abid et al., 2021; Antsfeld & 
Chidlovskii, 2021). Artificial magnetic-based applications need additional infrastructure to 
generate the magnetic field. On the contrary, the geomagnetic field approach employs the 
disturbances caused to the Earth’s natural magnetic field by the indoor infrastructure. The 
utilization of geomagnetic field characteristics for indoor positioning offers notable 
advantages in terms of stability as the geomagnetic field is constantly present. The theoretical 
uniqueness of the geomagnetic field at any given point in near-Earth space adds an appealing 
feature, forming a robust foundation for IPS.  The unique pattern of magnetic field allows 
many magnetic-based IPS to apply fingerprinting techniques based on geomagnetic field 
features to enhance accuracy (C. Huang et al., 2024). An illustration of the magnetic field 
variations in a building is shown in Figure 2. 

 
Figure 2: Illustration of the magnetic field in a building (C. Huang et al., 2024) 
 
The geomagnetic magnetic field is subjected to certain limitations including its inherent non-
uniformity, influenced by factors such as the building’s construction and the presence of 
metal elements like electrical equipment. Additionally, in a long run, the reliability of 
geomagnetic field is affected by diurnal variations impact. Since the prominent positioning 
technique employed in magnetic-based IPS, the reference fingerprints must be remeasured 
whenever there are changes in the field distribution, especially due to the relocation of metal 
components within the indoor environment. This poses the challenge of the reliance on 
fingerprint database. In complex indoor environments, the range of magnetic fields is limited 
and can be attenuated or distorted by obstacles such as walls, furniture, and human bodies. 
This interference significantly impacts the reliability of magnetic field measurements. 
Moreover, magnetic field measurements are highly sensitive to the orientation and position 
of the sensing device. Even a minor change may result in significant variations, leading to 
errors in positioning estimation. Therefore, the development of accurate and robust indoor 
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positioning algorithms based on magnetic fields requires advanced signal processing 
techniques, including sensor fusion, filtering, and magnetic field modelling. 
 
Ultrasonic 
In ultrasonic-based IPS, high-frequency sound waves are utilized to estimate the location of 
targets or objects. These systems typically consist of an ultrasound emitter and receiver, 
which commonly combined into a single device. The system estimates the target's position 
based on the distance of sound wave traveled from the transmitter to the receiver, which 
basically done by measuring the time of arrival (TOA). One of the key benefits of the 
ultrasonic-based IPS is their non-line of sight (NLOS) capability, which allows for accurate 
positioning even when direct visual contact between the emitter and receiver is absent. This 
is particularly useful in environments with obstacles or in situations where maintaining a clear 
LOS is impractical. Additionally, these systems are relatively low cost, making them accessible 
for a wide range of uses, from consumer electronics to industrial applications. Furthermore, 
ultrasonic systems are known for their low power consumption, which is advantageous for 
battery-operated devices as it extends battery life and reduces the need for frequent 
recharging or replacement. 
 
Despite these advantages, ultrasonic-based IPS also face several challenges including limited 
limited range of transmission, which restricts the positioning area. This constraint can be a 
barrier in large indoor spaces where extended coverage is necessary. Additionally, these 
systems are sensitive to environmental factors such as temperature, humidity, and air density 
that can affect the speed of sound, which is the main parameter that affects the TOA 
measurement. These systems also are prone to interference from other ultrasonic sources 
can disrupt the signal, causing inaccurate measurements. The development of ultrasonic-
based IPS requires careful system design, calibration, and the implementation of advanced 
signal processing techniques to mitigate the impact of environmental factors and interference 
(Delabie et al., 2023; Gualda et al., 2021). 
 
Visible Light Communication 
VLC-based IPS operate under Lambert’s emission law, incorporating both LOS and NLOS 
scenarios. These systems exploit the unique capabilities of LEDs to transmit data by 
modulating light intensity and frequency (Miramirkhani & Uysal, 2015; A. B. M. M. Rahman 
et al., 2020; Sarbazi et al., 2014). As depicted in Figure 3, the data transmission involves the 
process of modulating the light emitted by LEDs, which is then received by a photodetector 
or camera sensor on a user device, such as a smartphone. The modulated light carries 
information necessary for positioning, including the identifier and location of the LED fixture. 
Upon receiving the data, a positioning algorithm on the device interprets the unique 
identifiers of the LED fixtures and uses signal processing techniques to calculate the position. 
Common methods for position calculation include trilateration and triangulation. 
Trilateration estimates the user's position based on the ToF from multiple LED fixtures, while 
triangulation uses the angle of arrival (AOA) of the received signal. VLC-based indoor 
positioning can also implement fingerprinting techniques and proximity sensing for position 
estimation  (Xie et al., 2018). 
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Figure 3: A basic concept of VLC-based indoor positioning (A. B. M. M. Rahman et al., 2020) 
 
VLC-based IPS offer high throughput, and enhanced security due to confined light propagation 
across a short range (A. B. M. M. Rahman et al., 2020). Additionally, these systems are cost-
effective because they leverage existing lighting infrastructure and remain imperceptible to 
the human eye due to rapid changes in visible light intensity. However, these systems are 
subjected to limited range, sensitivity to obstacles, and potential interference necessitate 
careful system design for accurate indoor positioning. 
 
Bluetooth 
Bluetooth is short-range communication that typically operates within a range of 10-15 
meters. Despite its low-bandwidth capability, this technology offers a low-cost infrastructure. 
Therefore, Bluetooth is widely integrated into a variety of electronic devices commonly found 
in indoor settings, such as mobile phones, laptops, printers, watches, and earphones. The 
widespread adoption of Bluetooth in current short-range communication systems and its easy 
infrastructure setup make it a promising candidate for providing beacons for indoor 
positioning. Additionally, the advancements of the new Bluetooth standard offer high 
processing speed, facilitating easy and rapid RSS reading. Another advantage of Bluetooth 
chips is their low power consumption, which is particularly beneficial for battery-limited 
systems (Giuliano et al., 2020). Bluetooth low energy (BLE) technology, especially in the case 
of BLE beacons, does not have varying RSS regulations, making it a more stable choice for 
indoor positioning. 
 
Bluetooth technology has several weaknesses that impede its performance in providing high 
accuracy for indoor position estimation. As a short-range communication system, Bluetooth 
offers limited coverage. Therefore, to necessitate a comprehensive indoor positioning 
coverage, a Bluetooth-based IPS requires a large number of Bluetooth beacon nodes (tags). 
In addition, since Bluetooth operates in the crowded 2.4 GHz frequency band, the signals are 
susceptible to interference, which affects the reliability of Bluetooth-based IPS. Since these 
systems rely on the number of anchors providing beacons, achieving high accuracy in fine-
grained positioning requirements is challenging due to the low density of anchor nodes. This 
limitation is due to the coarse distance estimates typically provided by Bluetooth signal 
measurements, which are based on RSS or ToF. 
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Infrared 
IR-based positioning is gaining popularity in the field of robotics due to its high accuracy, with 
some devices capable of achieving accuracy down to millimeters. This technology allows the 
system to simultaneously estimate the target’s position and build a detailed map of the 
environment, making it widely implemented in simultaneous localization and mapping 
(SLAM) algorithms (Y. Yang et al., 2021; Zhou et al., 2022). IR-based IPS operate in LOS 
scenarios, where an emitter (LED) projects an IR light grid to an IR sensor, such as a 
photodiode or camera. A common method of position estimation used in this technology is 
triangulation, which involves analysing the angles and distances from multiple reference 
points (Alkhawaja et al., 2019; Maheepala et al., 2020).  
 
Among the advantages of implementing IR technology in IPS is this technology offers 
simplicity, low weight, compact size, and immunity to interference. Howver, as it relies on LOS 
communication through light signals, its application is limited due to its poor penetration in 
obstructed scenarios. Moreover, it is sensitive to environmental factors such as sunlight and 
fluorescent lighting (J. Huang et al., 2023). 
 
Computer Vision 
Computer vision-based IPS involves the process capturing images or video frames through 
cameras that are either placed at known locations in the environment or carried by a mobile 
target as depicted in Figure 4. These systems locate and track the targets by combining image 
processing technique and images of features or surrounding structures within the positioning 
area (Morar et al., 2020). The position of the target is estimated based on landmarks available 
in the surrounding area, which can include artificial markers such as Quick Response (QR) 
codes and fiducial tags, or objects that are part of the environment (Morar et al., 2020; Yan 
et al., 2022). 
 

 
Figure 4: Illustration of a basic vision-based indoor positioning with (a) mobile camera, and 
(b) static cameras (Morar et al., 2020) 
 
The high accuracy and real-time tracking capabilities offered by the computer vision-based 
IPS, provide the potential for seamless integration with augmented reality applications. The 
use of visual information allows for precise positioning and navigation in indoor 
environments. In addition, the adaptability and advancement of computer vision algorithms 
enable the recognition of diverse visual features, contributing to robust IPS deployment. 
However, since this positioning method involves three-dimensional (3D) modelling, it often 
suffers from high computational cost and reconstruction delays (Y. Li et al., 2022). Moreover, 
issues related to privacy and security may arise, especially when relying on visual data for 
tracking. 
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Radio Frequency 
RF-based IPS encompass a range of wireless technologies used for estimating the position of 
targets (receivers) within indoor environments including RFID, UWB, Wi-Fi, and cellular 
networks. These systems posses distinct characteristics and applications. The technique 
exploits the behavior of wireless signals as they interact with surrounding objects and 
obstacles to produce specific signal characteristics that represent the position of a target or 
receiver. Several common concepts used in RF-based IPS are trilateration, triangulation, 
fingerprinting, and hybrid approaches. These approaches rely on wireless signal parameters 
such as RSS, range, and angle measurements. 
 
Radio Frequency Identification 
RFID-based technology consists of RFID readers that read the data from RFID tags in the 
positioning environment. In a typical positioning system setup, RFID tags are attached to the 
target, while the readers are fixed at a strategic location such as walls and ceilings (Motroni 
et al., 2021). The readers act as anchors and measure their distance to the target by analysing 
RSS emitted by the target. RFID is commonly used for indoor positioning due to its availability 
and specific attributes, making it suitable for various applications. This technology is relatively 
unaffected by obstacles and walls in the environment, therefore offers fast positioning 
process. However, it is important to consider the trade-offs between speed, security, and 
accuracy when evaluating RFID-based IPS for specific applications. 
 
Ultra-Wideband 
The term ‘wide’ in the UWB terminology refers to the ability of the technology to transmit 
signals simultaneously over multiple bands, specifically in the 3.1 to 10.6 GHz range (Cimdins 
et al., 2020; Djosic et al., 2021; J. Wang et al., 2018). UWB technology is an emerging 
technology used in indoor positioning due to the wide bandwitdh it offers. A UWB transmitter 
emits ultra-short signals, typically in one nanosecond of duration. This special characteristic 
makes the signals easy to distinguish from the reflected signals caused by the multipath effect. 
Because of the high penetration ability of UWB, the accuracy of the UWB-based IPS can 
achieve in the range of tens of centimeters. 
 
A UWB-based IPS revolves around measuring the ToF of UWB signals between a transmitter 
and a receiver to calculate the distance between them. The common position methods 
involved in UWB-based IPS are trilateration or multilateration, which rely on multiple UWB 
transmitters to perform the estimation. UWB is known for its accuracy, especially when 
considering the 3D geometry of the environment and accounting for reflections caused by 
walls or objects. One of its applications is in detecting human posture during indoor activities 
such as indoor sports (Minne et al., 2019; Ridolfi et al., 2018) and mobile user localization 
(Yoon et al., 2017). Despite the ability to resolve multipath signals, multipath signals 
propagation still affects the system’s performance since UWB signals can be affected by 
interference from metallic walls in unknown environments. Additionally, adherence to 
regulatory constraints is crucial, including compliance with power spectral density limits and 
interference mitigation strategies to ensure coexistence with other wireless systems and 
avoid regulatory issues. 
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Wireless Fidelity 
Wi-Fi is a more general name of the Wireless Local Area Networks (WLANs) operated based 
on the IEEE 802.11 standard. This technology facilitates high-speed data transmission and is 
widely deployed in diverse indoor environments, ranging from homes and universities to 
malls, hospitals, and airports. Wi-Fi emerges as a preferred choice for indoor positioning due 
to several advantages including an extended range it provides, ensuring broader coverage 
within indoor areas compared to technologies like Bluetooth. Moreover, Wi-Fi is a cost-
effective option for IPS implementation as it leverages existing infrastructure that offer 
seamless connectivity to a variety of devices such as smartphones, laptops, desktops, printers, 
and other This factor enhance the versatility and scalability in WiF-based indoor positioning 
applications.  
 
Most of Wi-Fi-based IPS rely on RSS for estimating location using fingerprinting techniques 
(Basri & El Khadimi, 2017; Caso et al., 2020; Dai et al., 2020; Shang & Wang, 2022; Song et al., 
2019; X. Wang et al., 2020). Therefore, the main challenge of implementing WiFi-based IPS is 
the variability of Wi-Fi RSS resulting from signal fluctuations, changes in the indoor 
environment, and device heterogeneity (Basri & El Khadimi, 2017), which impacts the 
accuracy of fingerprints.  
 
Cellular Networks 
Cellular networks have extensive coverage in urban and indoor environments, with numerous 
BSs providing signals within buildings. Unlike GNSS, cellular signals can penetrate buildings, 
making it possible for the MS to receive signals while being indoors. With the proliferation of 
smartphones and the availability of cellular signals in most indoor environments, cellular 
networks are the best alternative to substitute GNSS signals in indoor environments (Rizk et 
al., 2021). Similar to UWB, cellular networks also have wide bandwidth that facilitates high 
temporal resolution. This resolution is pivotal in attaining positional accuracy that approaches 
the centimeter-level. However, to ensure this accuracy in indoor environments, several 
factors must be considered to fulfill the demand for high positioning accuracy in indoor 
applications. The main challenge of implementing cellular-based indoor positioning is that the 
signals may have low penetration due to walls and other obstacles. Furthermore, range-based 
cellular positioning requires many BSs, which need to be synchronized at the time of 
positioning signal transmission for accurate time measurement. These two factors cause 
traditional range-based estimation methods to be potentially inaccurate due to measurement 
errors. 
 
There is a need of expanding the coverage in indoor environments by deploying small cells 
(Rizk, 2019), due to the high demand for indoor mobile data transmission and LBS. Two 
common types of small cells deployed in confined areas are femtocells and picocells. These 
small cellular networks resemble Wi-Fi access points but are more versatile, connecting to 
both outdoor and indoor cellular networks. Femtocells, designed for residential or small office 
settings, connect to existing broadband internet, providing cellular coverage within a limited 
area such as a single room or small office space (Naser et al., 2023). On the other hand, 
picocells, slightly larger than femtocells, are deployed in more extensive indoor environments 
such as shopping malls, airports, or stadiums, offering coverage over larger areas like a floor 
or section of a building. Picocells function similarly to macrocells but cover smaller areas, 
typically 100-200 meters. These BSs are distinguished from their outdoor counterparts, such 
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as microcells and macrocells, primarily by their operational parameters of power 
consumption and transmission range. These small cells offer an efficient and targeted solution 
for enhancing indoor cellular coverage and positioning accuracy. This implementation makes 
the cellular network a promising wireless technology for IPS implementation. 
 
Indoor Positioning Techniques 
Indoor positioning techniques can be classified into range-based and range-free mechanisms. 
Range-based mechanisms rely on the time or direction measurements of the signal received 
at the target’s location. The major time measurements involved in positioning include TOA 
and its derivative, TDOA. For angle measurements, AOA is commonly considered in two-
dimensional (2D) positioning systems, while both AOA and elevation of arrival (EOA) are 
necessary for 3D positioning. On the other hand, range-free mechanisms rely on feature-
matching strategies, including proximity-based, fingerprinting, pedestrian dead reckoning. 

 
Range-Based Indoor Positioning Techniques 
Range-based positioning techniques estimate a target’s location based on three-point 
positioning, utilizing position information contained in electromagnetic wave propagation 
characteristics, including TOA, TDOA, AOA, and RSS (Deng et al., 2022; Menta et al., 2019; 
Mosleh et al., 2021). This technique manipulates the measured parameters of the physical 
uplink and downlink communication layers of the systems. Two classical range-based 
positioning approaches are trilateration and triangulation.  
 
Trilateration involves determining the location of a point by measuring distance from known 
reference points. The method requires distance information to the target from at least three 
reference points to perform position estimation. In classical trilateration methods, the 
reference points are physical transmitters from which the target receives signals. The distance 
can be calculated by obtaining the TOA of the signal at the target’s location. TOA is the time 
it takes for a signal to travel from the transmitter to the receiver, which in turn describes 
circles around the reference devices. If the receiver obtains TOA as evidence, say t0, it will 
estimate range d using the speed of light c = 3x108m/s, where d = ct0. In a 2D positioning 
system, the estimated position is represented by the intersection of the circles centered at 
the reference points (Figure 5(a)), while in a 3D positioning system, the intersection of the 
spheres centered at the reference points represents the estimated point (Figure 5(b)). 

 

  
(a) (b) 

Figure 5: Illustration of trilateration method: (a) 2D system, (b) 3D system 
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Several challenges emerge when employing TOA measurement techniques in IPS. Firstly, 
unlike GPS, which relies on predetermined satellite positions established by orbital 
parameters, indoor positioning lacks a universally accepted reference point. This absence 
complicates the establishment of a consistent frame of reference for accurate TOA 
measurements. Secondly, the challenges intensify in the context of indoor spaces due to the 
significantly shorter distances involved. In such confined environments, the time differences 
become extremely small, demanding an exceptionally high level of precision (B. Li et al., 
2020). The potential for errors in TOA measurements arises from various sources, including 
ambient noise, limitations in measurement precision, and substantial distortions caused by 
signal reflections, multipath interference, and scattering phenomena. Consequently, the 
estimated position is not a precise single point but rather a spatial region. Within this region, 
the task is to select the point deemed the best estimate, acknowledging the inherent 
uncertainties introduced by measurement errors and environmental factors in the indoor 
positioning process. 
 
TDOA-based IPS operate similarly to TOA by utilizing the propagation time from the 
transmitter to the receiver to estimate distances. However, TDOA does not rely on the exact 
transmission time, which is sometimes not available (Deng et al., 2022; Manap et al., 2018). 
These systems calculate the difference in propagation times from each transmitter to 
estimate distances. This eliminates the necessity to know the time of transmission. Achieving 
accuracy in measurements still requires synchronization between devices, a prerequisite 
shared with TOA and other time-based methods. Since TDOA does not rely on the actual 
distance between the transmitter and the receiver, synchronization is not mandatory 
between the transmitter and the receiver. This characteristic presents both challenges and 
opportunities in the context of indoor positioning studies using TDOA. While synchronization 
complexities persist, the independence from direct distance measurements offers flexibility 
and potential advantages in certain indoor positioning scenarios.  
 
Triangulation method uses the direction of the signal that arrived at the target’s location to 
determine the location of the target. It involves measuring the angles between two or more 
known reference points and the object of interest. By using the known distances between the 
reference points, the angles can be used to calculate the position of the object using 
geometric principles. Triangulation finds the intersection between measurements from 
multiple reference points in pointing out the target location, as shown in Figure 6. In the 
triangulation method, the location of the object in a 2D environment (Figure 6(a)) with at least 
two reference points (B. Li et al., 2020). AOA provides a measurement of the angle at which a 
signal is received by the target. The AOA is measured by the receiver based on the direction 

from which the signal is transmitted with respect to the reference line. In Figure 6(a), 1, 2, 

and 3 represent the AOA of the signal received from points A, B, and C, respectively. The 
estimated target’s location is denoted as Te {Xe, Ye}. 

 
In the 3D triangulation method (Figure 6(b)), there are two angles involved: the azimuth angle 
and the elevation angle. The azimuth angle refers to the horizontal angle measured 
anticlockwise from the x-axis as a reference direction. It is commonly called the AOA and 
provides the horizontal bearing of the target point from a known reference point. As 

illustrated in Figure 6(b), the AOA of the signal received from A and B are denoted as 1 and 
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2, respectively, while 1 and 2 represent the elevation angle, commonly called the EOA, of 
the signal received from A and B, respectively. 

 
 

(a) (b) 
Figure 6: Illustration of triangulation method: (a) 2D system, (b) 3D system 
 
The triangulation method offers the benefit of not necessitating time synchronization among 
reference points, which simplifies the operational requirements and reduces the complexity 
of system coordination. However, this method’s drawback is the requirement for 
sophisticated hardware to accurately measure the AOA. This typically involves the use of an 
array antenna (Deng et al., 2022), which must be capable of processing multi-dimensional 
received signals to determine the direction from which the signal originates. The complexity 
of the hardware, along with the associated signal processing algorithms, can pose significant 
challenges in terms of implementation and cost. 
 
RSS is another valuable parameter used in estimating the distance between a target and a 
reference point or transmitter. It quantifies the power level of the signal received by the 
target from the reference point. In this method, the RSS is analyzed to estimate the distance 
between the target and reference point, typically using techniques such as TOA or TDOA. The 
RSS is measured at the receiver, and distance is calculated using a signal propagation model 
or other methods. The RSS method necessitates the use of multilateration to pinpoint the 
target’s location. 
 
In addition to direct manipulations of the measured parameters, many solutions have 
recommended enhancement techniques by utilizing available system resources such as beam 
forming (Xiao et al., 2012), multiple input multiple output (MIMO) systems (Awang Md Isa & 
Markarian, 2011), relay stations (Te Hennepe et al., 2012), and OFDM-based approach (Leria 
& Lohan, 2012). 
 
In IPS implementation, the accurate estimation of multipath channel delays is a critical step 
for achieving accurate range-based positioning. The estimation is heavily reliant on the 
bandwidth of the channel, as a limited bandwidth often results in poor positioning 
performance due to the challenges in accurately determine the TOA. Several works have 
proposed mitigation methods to solve this issue. For example, Kazaz et al. (2019) capitalize 
on the multiband and carrier frequency switching functionalities of wireless transceivers. 
Their approach involves the acquisition of channel state information (CSI) across multiple 
frequency bands, thereby exploiting a broad frequency spectrum. The resulting data model 
exhibits a multiple shift-invariance structure, which the authors leverage to devise a high-
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resolution delay estimation algorithm. In (R. Yang et al., 2022), the authors estimated the AOA 
and ToF from Wi-Fi CSI using a 2D multiple packets-based matrix pencil. This approach 
significantly reduces computational complexity by employing the discrete Fourier transform 
(DFT). In addition, it overcomes low signal-to-noise ratio (SNR) issues by accumulating 
multiple CSI packets. The approach proposed by the authors achieves a positioning accuracy 
of 42 cm in an indoor hall setting. 
 
In their study, Gonultas et al. (2022), employ a probabilistic method to estimate the position 
of an MS based on CSI measurements from LAN MIMO-OFDM systems. The CSI 
measurements are collected from the uplink channel at one or multiple unsynchronized 
access points (APs). For each AP receiver, the extraction of unique features from the CSI, 
which are resilient against the system impairments commonly encountered in practical 
transceivers. These features serve as inputs to a Neural Network (NN) algorithm, which 
generates a probability map that reflects the likelihood of the MS's presence at specific grid 
points within the coverage area. The outputs from the NN, corresponding to different APs, 
are then integrated to produce a final estimated position of the MS. The study presents 
experimental results obtained from real-world indoor measurements, conducted under both 
LOS and NLOS propagation conditions. These experiments were performed using an IEEE 
802.11ac system with an 80MHz bandwidth, involving an MS equipped with two transmitting 
antennas and two AP receivers, each with four antennas. The results demonstrate that the 
proposed approach achieves a median distance error at the centimeter level, representing a 
significant improvement of an order of magnitude over conventional positioning methods. 
 
Proximity-Based Indoor Positioning Techniques 
Proximity-based position estimation techniques determine the target’s position by assessing 
its proximity to a known location which is commonly referred to as a reference point. These 
techniques rely on detection methods to measure the nearness of the target to the reference 
point, thereby providing an estimate of the target’s location based on this spatial relationship. 
One common way of implementing proximity sensing is through physical contact between the 
target and reference points, for instant by touching a tag to a reader equipped with touch 
sensors, capacitive field sensors, or using technologies such as RFID, Near-Field 
Communication (NFC), and QR codes (Tariq et al., 2017). Another method of estimationg the 
target’s location is by monitoring changes and disturbances in the signal strength within the 
vicinity of access points. The presence of a target in the vicinity causes changes in the signal 
strength, which can be detected by the positioning system. For example, surrounding objects, 
including humans and furniture, affect the propagation of the RF signals (Koh et al., 2021), 
and give impact on the detection characteristics of the 2.4 GHz wireless signal in the near-
field region. Therefore, the target's location can be estimated to be within the range of that 
reference point.  
 
Proximity-based IPS may offer low-cost and low energy solutions. However, this method 
suffers from several disadvantages. Firstly, proximity-based methods have limited accuracy 
since they rely on signal measurements from a nearby beacon or transmitter. In complex 
indoor environments, the presence of obstacles between transmitter and receiver will 
deteriorate the signal measurement accuracy. In such cases, the placement of the signal 
source is crucial, with a LOS configuration being most preferable. Secondly, proximity-based 
methods provide coarse-grained location information, estimating only the general zone of the 



INTERNATIONAL JOURNAL OF ACADEMIC RESEARCH IN BUSINESS AND SOCIAL SCIENCES 
Vol. 1 5 , No. 2, 2025, E-ISSN: 2222-6990 © 2025 

444 

receiver’s position. This low precision limits its application for navigation and tracking in 
indoor environments. Finally, this method requires the installation and maintenance of 
infrastructure. Not only that, but the implementation also necessitates meticulous planning 
and arrangement of beacon placement to ensure acceptable positioning accuracy is obtained. 
 
Fingerprinting Indoor Positioning Techniques 
Fingerprinting-based indoor positioning is among the most popular techniques found in 
recent literature (Dai et al., 2020; Djosic et al., 2021; Gao et al., 2021; Shang & Wang, 2022; 
Tong et al., 2021). Other common names for this technique include pattern matching-based 
positioning or scene analysis positioning. This technique involves two phases: the site survey 
stage (also called the offline phase or training phase) and the positioning stage (also called 
the online phase or testing phase). The traditional technique of fingerprinting positioning is 
depicted in Figure 7. Offline phase involves the process of fingerprint collection and data 
storage, while the online phase involves position estimation using a matching algorithm. A 
fingerprint represents the uniqueness of the signal propagation profile between the 
transmitter and receiver at a particular position. The characteristic of the fingerprint is heavily 
influenced by surrounding factors and can include various attributes of wireless signals from 
Wi-Fi, cellular networks, VLC, Bluetooth, and magnetic fields. A set of fingerprints is measured 
at reference points in the studied area and stored in the form of vectors in a database. This 
database serves as the reference for the matching algorithm during the position estimation 
process. 
 

 
Figure 7: The basic concept of fingerprinting-based indoor positioning 

 
In the matching phase, the attributes collected from the target are compared with the stored 
fingerprints to estimate the closest location of the target. This technique harnesses the 
distinctive multipath characteristics of signals to create unique fingerprints at different 
reference points. Unlike traditional range-based positioning, which is vulnerable to multipath 
errors, this approach showcases resilience in the face of such challenges. This technique is 
very feasible as positions are characterized by detected signal patterns, eliminating the 
complications associated with LOS and NLOS considerations and the need for accurate range 
or angle measurements. However, it is essential to acknowledge that the training phase of 
fingerprinting often incurs a notable labor surveying cost. A common method used to conduct 
a site survey in RSS-based fingerprinting is through RSS measurement at every reference point 
in the studied area by using a Wi-Fi-compatible mobile device (Caso et al., 2020; Hernández 
et al., 2021; Shang & Wang, 2022). The precision is determined by the number of pre-created 
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RSS fingerprints, which is related to the number of RSS reference points and the available 
signal sources in the environment.  
 
From the review shown in Table 1, it is found that Wi-Fi and cellular networks are the most 
common sources of signals used in fingerprinting indoor positioning. This is because, in the 
current communication setup, these two technologies are prominent and the most commonly 
available systems. Despite their widespread availability almost everywhere, Wi-Fi signals are 
found to be the most unstable, fluctuating rapidly within short periods, leading to low 
accuracy in position estimation. In comparison to Wi-Fi, the RSS pattern in cellular networks 
exhibits greater stability. The RSS in cellular communication systems is typically estimated 
using the log-distance path loss model. The path loss exponent is the critical factor that 
distinguishes the RSS of mobile communication signals across different areas. In free space 
outdoors, the path loss exponent is typically set to 2. However, in urban environments where 
signal propagation is affected by buildings and other structures, the exponent ranges from 
2.7 to 3.5. Indoor settings with a clear line-of-sight, the exponent vary between 1.6 and 1.8. 
In contrast, obstructed indoor environments yield a higher path loss exponent, ranging from 
4 to 6 (El Khaled et al., 2022; Sharma et al., 2023). 
 
A common technique used in fingerprinting methods involves recording and processing the 
channel parameters (commonly RSS and CSI) transmitted from multiple BSs to provide 
overlapping received signal patterns in the area of interest. However, the drawback is that 
this process is labor-intensive and time-consuming. The authors in (Cimdins et al., 2020) 
extracted the magnitude and phase of the UWB channel impulse response (CIR) to design 
feature vectors in device-free localization. The authors applied a multipath-assisted concept 
in a device-free localization system. A propagation model was proposed based on the effect 
of different user’s location in the target area on the received signal. 
 
In IPS implementation, fingerprinting methods specifically those using WiFi and cellular 
networks, offer several advantages including the low implementation cost due to the 
widespread availability of these networks. Additionally, with enhancements in data collection, 
feature selection and matching algorithms, these methods can offer accurate positioning 
within buildings to facilitate various applications. However, the main challenge faced by these 
methods is signal instability that can lead to inaccuracies in fingerprints generation. Another 
challenge to note is the process of fingerprint measurements which are labour intensive and 
privacy concerns as they often involve collecting and analyzing user data. 
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Table 1 
Technologies and Channel Parameters Used in Indoor Fingerprinting Positioning 

Channel 
Paramete

r 

Technologies 

Wi-Fi 
Cellular 

Networks 
BLE RF 

OFDM 
signal 

Radio 
Boradcastin

g 

Magneti
c 

RSS 

(Cui et 
al., 

2020; 
Dai et 

al., 
2020; 
Hoang 
et al., 
2019; 
Jin et 

al., 
2020; 
Le et 
al., 

2021; 
Liang 
& Liu, 
2020; 
Mosle

h & 
Daraj, 
2021; 
Poulos

e & 
Han, 
2021; 
Yoo, 

2020; 
L. 

Zhang 
et al., 
2020) 

(Alhomaya
ni & 

Mahoor, 
2020; 

Alkiek et 
al., 2020; 

Chai et al., 
2020; Rizk 
& Youssef, 
2019; H. 
Zheng et 
al., 2020) 

(Giulian
o et al., 
2020; 

Jiménez 
et al., 
2018; 

Wysocki 
et al., 
2022) 

(Denis et 
al., 

2020; 
Wye et 

al., 
2021) 

(Tsen
g et 
al., 

2017) 

(Duan et 
al., 2021; 

M. M. 
Rahman et 
al., 2017) 

 

CSI 

(Choi 
& 

Choi, 
2021; 
Gao et 

al., 
2021; 
Tong 
et al., 
2021; 

X. 
Wang 
et al., 

(Song et 
al., 2019; 
Ye et al., 
2017; J. 
Zhang et 
al., 2017) 

  

(Tsen
g et 
al., 

2017) 
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Channel 
Paramete

r 

Technologies 

Wi-Fi 
Cellular 

Networks 
BLE RF 

OFDM 
signal 

Radio 
Boradcastin

g 

Magneti
c 

2017) 

Magnetic 
Field 

      
(Fisher 
et al., 
2021) 

AOA    

(Wieland
t et al., 
2018; 

Wielandt 
& De 

Strycker, 
2017) 

   

PLE  
(J. Zhang et 
al., 2017) 

     

 
Challenges in Indoor Positioning Systems  
This section discusses several challenges that might be facing in the IPS implementation. It is 
important to note that the development of IPS differs from outdoor positioning and 
navigation due to the complex nature of the surrounding and the signal propagation 
behaviour. The complexity of multi-dimensional spaces and varying user experiences 
necessitates innovative solutions that integrate multiple technologies while maintaining user-
friendly interfaces. Generally, the challenges are closely related to the signal measurements 
handling and the design of position estimation algorithms.  
 
Multipath Fading and Line of Sight Issues 
Multipath fading is one of the primary challenges in IPS implementation. This error occurs 
when signals reflect off surfaces, creating multiple paths that can confuse the receiver. This 
complexity is intensified in scenarios lacking a consistent LOS between the transmitter and 
receiver, as reflections from walls, furniture, and other obstacles introduce substantial noise 
and phase shifts into the received signal (Liu et al., 2023; Qi et al., 2024). Multipath 
interference can lead to destructive effects, including signal fading and inaccuracies in 
positioning data. Consequently, addressing multipath fading necessitates the development of 
sophisticated techniques, such as advanced signal processing algorithms and adaptive 
filtering, to enhance the reliability and precision of indoor positioning. 
 
Device Heterogeneity and RSS Variations 
In the realm of smartphone-based IPS, device heterogeneity presents an alarming challenge. 
This is particularly due to the inherent discrepancies in RSS measurements across various 
smartphone models. These discrepancies arise from differences in hardware components, 
antenna designs, and signal processing algorithms, which can significantly affect the accuracy 
of RSS readings (Sartayeva et al., 2023). Consequently, such variability leads to inconsistencies 
in positioning accuracy, undermining the reliability of localization solutions. This challenge is 
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further intensified by the need for universal position estimation algorithms that must 
accommodate a wide array of devices, each with unique characteristics (Subedi & Pyun, 
2020). As a result, the development of robust and adaptable positioning systems becomes 
increasingly complex, necessitating innovative approaches to mitigate the effects of device 
heterogeneity on localization performance. 
 
Infrastructure Dependence and Cost Implications 
The implementation of IPS often depends on extensive infrastructure to facilitate sufficient 
signal sources and comprehensive positioning coverage. The needs of installing a large 
number of transmitters, anchor nodes or beacons not only escalates deployment and 
maintenance costs but also poses significant barriers for smaller enterprises that may lack the 
financial resources to invest in such sophisticated systems (Al-Bawri et al., 2022; Ljungzell, 
2018). The financial burden associated with infrastructure-heavy indoor positioning system 
can deter these businesses from adopting advanced positioning technologies, thereby limiting 
their operational capabilities and competitive edge. Consequently, minimizing infrastructure 
dependence emerges as a pivotal area for research and development. Innovative approaches, 
such as collaborative positioning algorithms and single transmitter system deployment (Y. Li 
et al., 2020; Manap et al., 2023; Schmidt et al., 2024), could potentially alleviate these 
constraints, fostering broader accessibility and implementation of indoor positioning system 
across diverse organizational contexts. 
 
Computational Complexity in Real-Time Applications 
The implementation of IPS in real-time applications, particularly in navigation and tracking, 
necessitate systems that operate with minimal latency and high computational efficiency. 
Current positioning methods, such as fingerprinting and SLAM, often exhibit significant 
computational complexity (Fang et al., 2021; Hu et al., 2019), which can impede their 
applicability in scenarios where timely responses are critical. The inherent trade-off between 
accuracy and computational demands poses a challenge for developers and researchers in 
this field. Therefore, there is an urgent need for innovative algorithmic approaches that not 
only enhance the precision of positioning systems but also optimize their computational 
performance. Future research may focus on the development of hybrid models that 
effectively reconcile these competing requirements, thereby facilitating the deployment of 
robust real-time applications. 
 
Privacy and Security Concerns 
The privacy and security concerns are another challenge to focus since the implementation 
of IPS necessitates the access of position related information that might involves the 
collection and processing of sensitive location data. The inherent risks associated with 
unauthorized access to, and manipulation of this data necessitate the development and 
implementation of robust secure positioning mechanisms (Holcer et al., 2020; H. Yang et al., 
2022). Therefore, the algorithms must incorporate advanced encryption techniques, access 
controls, and user authentication protocols to safeguard sensitive information. Furthermore, 
ongoing research in this domain is essential for enhancing user trust, as it directly impacts the 
willingness of individuals to engage with IPS technologies. Compliance with stringent data 
protection regulations, such as the General Data Protection Regulation (GDPR) (Tamburri, 
2020), is also critical to ensure ethical handling of location data and to mitigate potential legal 
repercussions. 
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Conclusion 
In conclusion, the development of accurate IPS is critical for fulfilling the demand of advanced 
LBS in the current technology-driven society which highly dependence on digital 
communication and IoT. This review highlights various IPS technologies and techniques 
proposed in recent works. The review findings indicate the importance of tailoring solutions 
to meet specific user and environmental needs by enhancing the signal processing techniques 
and position estimation algorithms. Future research in IPS development necessitate 
consideration on the challenges imposed by the environmental and regulatory factors, such 
as signal instability, infrastructure dependence, and privacy concerns. Developing hybrid 
models that reconcile the trade-offs between accuracy and computational efficiency, as well 
as implementing robust security measures to protect sensitive location data are among the 
potential focus for future research. By addressing these challenges, the potential for IPS to 
transform industries and improve user experiences can be fully realized. 
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