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Abstract 
In this paper, we proposed an output voltage stabilization of a DC-DC Zeta 
converter using hybrid control. We modeled the Zeta converter under contin-
uous conduction mode operation. We derived a switching control law that 
brings the output voltage to the desired level. Due to infinite switching occur-
ring at the desired level, we enhanced the switching control law by allowing a 
sizeable output voltage ripple. We derived mathematical models that allow one 
to choose the desired switching frequency. In practice, the existence of the 
non-ideal properties of the Zeta converter results in steady-state output volt-
age error. By analyzing the power loss in the zeta converter, we proposed an 
improved switching control law that eliminates the steady-state output voltage 
error. The effectiveness of the proposed method is illustrated with simulation 
results. 
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1. Introduction 

Energy harvesting systems have a power management system that includes a DC-
DC converter. Because of the uncertain nature of the ambient energy, for example, 
low or high irradiance of the sun and fluctuation of the wind speed, the voltage 
generated by the energy harvester, which is connected to the input of the DC-DC 
converter, can possibly be higher or lower than the output voltage. For that reason, 
the fourth-order DC-DC converter is a good candidate for deployment since it 
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has step-up or step-down capability. There are a few topologies available, and the 
selection of a suitable topology is based on the intended application. With a 
smartphone battery charging application in mind where a solar panel gives the 
input, a suitable topology is the Zeta topology due to two reasons: 1) positive out-
put voltage and low output voltage ripple, 2) natural DC input-to-output voltage 
isolation. The DC input in the zeta is disconnected/isolated from the output part 
in one of the two operation modes, precisely when the transistor is turned off. 
This isolation is beneficial, especially in uncertain solar energy sources, since it 
can reduce the effect of input voltage fluctuations. 

There are several pulse width modulation (PWM)-based control techniques 
presented in the literature to control the DC-DC converter. The one most widely 
used is proportional integral (PI) control [1]-[5]. Although PI control produces 
fast output voltage regulation, it suffers from high control effort for the control 
duty-ratio [6] which can cause problems to the PWM circuitry. Another well-
known controller is optimal control [6]-[11]. Conventional optimal linear 
quadratic regulator (LQR) control [6] [7] produces optimal compensation with 
minimal control effort. The downside, however, is that when the parameters 
have high uncertainty, the controller loses the capability to regulate the output. 
In [8]-[12], the authors consider the uncertainties in control design formulation 
and the controller can cope with large uncertainties at the expense of lower per-
formance in nominal conditions. Other types of PWM-based controllers are slid-
ing-mode [13]-[15], fuzzy [16] [17], adaptive [18] [19], and fuzzy-neural [20] [21], 
to name a few. The main disadvantage of the PWM-based controller is the high 
inrush current at the inductor during start-up due to the high switching fre-
quency. 

Hybrid control is a variable switching frequency type of controller. Hybrid con-
trol produces a low switching frequency at start-up; thus, the inrush current can 
be kept small. In [22]-[29], the authors used hybrid control to regulate the output 
voltage of buck [22], boost [23] [24] and buck-boost [25] converter by observing 
the relation between output voltage ripple and inductor current ripple. The fact 
that zeta topology has a very low output voltage ripple makes this method unsuit-
able. Control Lyapunov-based hybrid control is presented in [26]-[29]. Even 
though the output voltage is stabilized, the authors do not consider non-ideal con-
ditions thus the output voltage error is not eliminated. In this paper, we propose 
hybrid control and consider non-ideal Zeta converter by including the transistor 
on resistance, equivalent series resistance for the two inductors, and forward volt-
age drop of the diode. By relating to the non-ideal condition and power loss, we 
introduced an improved hybrid control strategy that not only stabilized the Zeta 
converter, but also removed the steady-state output voltage error. 

The remainder of the paper is organized as follows: In Section 2, we show the 
DC-DC Zeta converter modeling. In Section 3, we formulate a hybrid control 
strategy for the ideal and non-ideal Zeta converter. A design example and simu-
lation results are given in Section 4. Lastly, in Section 5, we conclude our work. 
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Figure 1. DC-DC Zeta converter circuit. 

 

 
(a)                    (b) 

Figure 2. DC-DC Zeta converter equivalent circuit for 
(a) Mode 1, and (b) Mode 2. 

2. DC-DC Zeta Converter CCM Model 

Consider the DC-DC Zeta converter circuit shown in Figure 1. The circuit con-
sists of two inductors 1L  and 2L , two capacitors 1C  and 2C , an ideal diode 
d  and 2C , a DC voltage source gv , a resistive load R , and an ideal switch S . 
Denote the currents of 1L  and 2L  as 1Li  and 2Li , the voltages of 1C  and 

2C  as 1Cv  and 2Cv , respectively. Consider continuous conduction mode 
(CCM) operation of the converter. When the switch is closed (Mode 1), the con-
verter is equivalent to the circuit shown in Figure 2(a), and when the switch is 
open (Mode 2), the converter is equivalent to the circuit shown in Figure 2(b). 
The state-space equation for the DC-DC Zeta converter is constructed using the 
state vector [29] 
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With the DC-DC Zeta converter model having been presented, the formulation 
of the switching control is addressed in the next section. 

3. Hybrid Switching Control Formulation 

The aim of the control is to design the switching law of S  in such a way that the 
voltage of the load R  becomes a prescribed value refv . For the DC-DC Zeta 
converter case, the steady-state operation point [29] is given by 
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3.1. Ideal DC-DC Zeta Converter Control 

Choose a control Lyapunov function (CLF) candidate 

 ( ) ( ) ( )T* *V x x x P x x= − − , 1 2 1 2diag , , ,
2 2 2 2
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 
. (5) 

Let ( )1 xα  and ( )2 xα  be the derivative along the trajectory under Mode 1 
and Mode 2, respectively. Then 
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Based on the CLF (5), we define the switching control law as follows: 
 

Switching Control Law 1 

When the current mode is Mode 1, if ( )1 0xα < , then stay in Mode 1, otherwise 

change to Mode 2. 
When the current mode is Mode 2, if ( )2 0xα < , then stay in Mode 2, otherwise 

change to Mode 1. 

 
Direct implementation of Switching Control Law 1 however induces infinite 
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switching at the operating point which is impossible in practice. To overcome this 
problem, we propose an improved Switching Control Law 2 that makes the 
steady-state switching frequency finite. 

 
Switching Control Law 2 

When the current mode is Mode 1, if ( )1 1xα β< , then stay in Mode 1, otherwise 

change to Mode 2. 
When the current mode is Mode 2, if ( )2 2xα β< , then stay in Mode 2, otherwise 

change to Mode 1. 

 
With 1 0β >  (under Mode 1) and 2 0β >  (under Mode 2), the state-trajec-

tory will move around the operating point where the states 1Li , 2Li , 1Cv , and 

2Cv , are bounded by sizeable ripples. As a result, the switching is delayed, and 
since the switching time is inversely proportional to the switching frequency, the 
switching frequency is therefore reduced. 
 

 
Figure 3. Approximate state-trajectory (top) and it’s respected 
switching signal (bottom) at the steady-state. 
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Substituting *x x= , then the gradient at the operating point is given by 
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Observing Figure 3, it is found that 
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From (8) and (9) above, by defining the desired steady-state switching fre-
quency f , Switching Control Law 2 will enforce the voltage regulation and 
makes the DC-DC Zeta converter operate at the prescribed switching frequency. 

3.2. Non-Ideal DC-DC Zeta Converter Control 

In practice, there exists an internal resistance or a voltage drop at the electronics 
components. Under this circumstance, the average input power inP  for the con-
verter is given by in out lossP P P= + , where outP  and lossP  is the output power, 
and the loss power, respectively. Since out inP P< , then 
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As shown above, the output voltage is less than the prescribed value. To com-
pensate for the output voltage discrepancy, extra input power needs to be supplied. 
Consider the output voltage equal to the prescribed value. With the assumption 
of constant input current, the input voltage, therefore, needs to be increased, con-
sequently the power loss is expressed by 
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Dividing (8) and (9), the ratio of 1β  over 2β  is given by 

 1
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v
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= . (11) 

For the Zeta topology, since the input voltage is only connected during Mode 1, 
the increase in the input voltage is therefore translated to the increment of 1β . 
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Let define 
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Eliminating 2β  in (11) and (12), and solving for 1β ′  yield 
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Consider an on resistance ( )ds onr  at the power switch S , a forward voltage 
drop fwV  at the diode d , and an equivalent series resistance (ESR) 1Lr  and 

2Lr  at the inductor 1L  and 2L , respectively. Then, the average power loss un-
der this condition is given by 
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Consequently, substituting (14) into (13), therefore 
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Therefore, to adapt the Switching Control Law 2 in practice and to overcome 
the issue of the steady-state output voltage error, 1β  needs to be replaced with 

1β ′ . To evaluate the effectiveness of the proposed switching control law, a design 
example and the simulation results are presented in Section 4. 

4. Design Example and Simulation Results 

With the smartphone charging application in mind, we choose the converter pa-
rameters, as shown in Table 1. The typical rated voltage to charge a smartphone 
battery is 5 V, therefore it is the selected reference output voltage refv  for the 
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converter. Meanwhile, 2 A is the typical rated current hence the load resistance 
R  is set to 2.5 Ω. As for the non-ideal parameters ( )ds onr , 1Lr , 2Lr , and fwV , 

they are realistically defined based on the datasheet in [30]-[32]. 
 
Table 1. DC-DC Zeta converter parameters. 

Parameter Value 

gv  18 V 

( )o refv v  5 V 

R  2.5 Ω 

1L  100 μH 

2L  100 μH 

1C  100 μF 

2C  220 μF 

f  100 kHz 

( )ds onr  0.16 Ω 

1Lr  33 mΩ 

2Lr  33 mΩ 

fwV  0.52 V 

 
Table 2. Input voltage perturbation setup. 

Input voltage gv  
Ave. input 
power gP  

Ave. input  
current gI  Load resistance R  

18 V 10 W 0.56 A 2.5 Ω 
9 V 5 W 0.56 A 5 Ω 

4.5 V 2.5 W 0.56 A 10 Ω 

 
On the other hand, the input voltage gv  is assumed to be generated from pho-

tovoltaic (PV) panel with 10 W power rating. By looking at the 10 W PV datasheet 
[33], the typical voltage and current during maximum power generation are 18 V, 
and 0.56 A, respectively. Based on the characteristic of the PV [34], if less power 
is generated due to the low temperature and assumed that the irradiance remains 
constant at 1000 W/m2, the current remains constant, but the voltage will be de-
creased. With this fact, we reflect the decrease of the input voltage gv  to the load 
resistance R  with the assumption of zero power loss. For example, when input 
voltage gv  reduces to 9 V, since the average input current gI  is constant at 
0.56 A, this gives an indication that the average input power gP  is 5 W 
( g g gP I v= ). Assuming all the input power gP  is transferred to the output/load, 
this is equivalent to the load resistance R  of 5 Ω. For other examples, refer to 
Table 2.  

To have a full on-line computation capability, in addition to the four state var-
iables 1Li , 2Li , 1Cv , and 2Cv , two other variables are measured namely the input 
voltage gv  and the load current oi , In practice, it is highly favorable to have less 
computation burden. As such, the parameters that are fixed are computed off-line 
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to reduce unnecessary on-line computation. Moreover, the floating number is 
avoided to achieve fast computation especially if one wants to implement hybrid 
control digitally. Considering the criteria, with (4), Table 1 and 2C oR v i= , the 
following expressions are gathered. 

 ( ) ( ) ( )1 1 2 2 1 2
2
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o
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i v
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β
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 (20) 

Following Switching Control Law 2, the hybrid control algorithm for the stabi-
lization of the DC-DC Zeta converter is executed as follows: 
 

Hybrid Control Algorithm 

Define initial conditions: 1Set = , 0Reset = , 0S = , 0currentS = . 
a) Measure 1Li , 2Li , 1Cv , 2Cv , gv  and oi . 

b) Compute 1α , 2α , 1β ′  and 2β  in (16), (17), (18) and (19), respectively. 

c) If ( )1 1xα β ′< , assign 0Reset = , else 1Reset = . 

If ( )2 2xα β< , assign 0Set = , else 1Set = . 

If 1Set =  and 0Reset = , assign 1S = , 
else if 0Set =  and 1Reset = , assign 0S = , 
else assign S currentS= , currentS S= . 
Repeat (a) to (c). 

 

 
Figure 4. Simulation results under perturbations. Comparison of the responses from the 
hybrid control with the inclusion of 1β  or 1β ′ .  
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Figure 5. Close view (zoom in) of the steady-state 
switching signal at three-different time intervals. 

 
Tested in PSIM®, the simulation results under the perturbations are shown in 

Figure 4. Initially, the input voltage is set to 18 V, and the corresponding load 
current is 2 A ( 2.5R =  Ω). As can be observed, with the controller either utilizes 

1β  or 1β ′ , the output voltage settles at approximately 5 ms with no overshoot for 
both cases, with the different though is the former produces approximately −2.4% 
output voltage steady-state error ( 4.88ov =  V). At 20t =  ms, the input voltage 
abruptly drops to 9 V (−50%) which in turn reduces the output current to 1 A 
( 5R =  Ω). Although with the large input voltage perturbation, the effect in term 
of output voltage overshoot is quite minimal for both controllers (with 1β  or 

1β ′ ) although some oscillations are found before they settle down at approxi-
mately t  = 15 ms. However, the output voltage steady-state error increases to -
4.6% ( 4.77ov =  V) for the controller with 1β . Moreover, at 20t =  ms, the in-
put voltage drops further to 4.5 V and the output current becomes 0.5 A ( 10R =  
Ω). Interesting to note here is at this condition, the converter’s operation changed 
from step-down (at 0t =  ms and 10t =  ms) to step-up thus highlight the use-
fulness of the Zeta topology which can handle two operation modes. The output 
voltage steady-state error (with 1β ) is at its worst at −7.4% ( 4.63ov =  V) even 
though with less overshoot and oscillation as compared to previous case. On the 
contrary, in all the cases, the controller with 1β ′  provides a very good compen-
sation in such that no output voltage steady-state error is observed. 

So far, we have proved the effectiveness of the proposed hybrid control in reg-
ulating the output voltage even with the existence of large perturbation. Next, we 
want to confirm the correctness of the mathematical models in reducing the steady-
state switching frequency. To begin with, let’s have a look at the close view (zoom 
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in) of the switch S  waveform in Figure 5. As seen in the figure, with the input 
power of 10 W, 5 W, and 2.5 W, the respected steady-state switching frequency 
for the controller with 1β  is 100 kHz, 98 kHz, and 94 kHz, whereas 87.7 kHz, 
83.3 kHz, and 70.4 kHz, respectively, are recorded for the one with 1β ′ . As a ref-
erence, the pre-defined switching frequency is 100 kHz (refer to Table 1). There-
fore, there are some discrepancies especially for the later controller. This is due to 
relatively lower efficiency at lower input power which in turn gives higher power 
loss thus from (13), this increases the magnitude of 1β ′ . Furthermore, since 1β ′  
is inversely proportional to the switching frequency, lower switching frequency is 
expected. Nonetheless, the mathematical models guarantee the upper bound of 
the switching frequency thus preventing the arbitrary fast switching frequency 
from happening. 

5. Conclusion 

In this paper, we have presented output voltage stabilization with consideration 
of non-ideal DC-DC Zeta converter components. From the simulation results, it 
is shown that by taking into consideration the non-ideal properties of the Zeta 
converter in the switching control law formulation, the steady-state output voltage 
error is successfully eliminated. Furthermore, the upper bound of desired steady-
state switching frequency is achieved. The above results make this research close 
to a practical environment. Nevertheless, the hardware experimental validation, 
as well as other input sources such as wind and thermal energy, will be investi-
gated in future research.  
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