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 This article proposes an optimization method to predictively model the 

perovskite solar cell with molybdenum disulfide (MoS2) based inorganic 

hole transport material (HTM) for improved fill factor (FF) and power 

conversion efficiency (PCE) by finding the most optimum thickness and 

donor/acceptor concentration for each layer via a hybrid L27 Taguchi grey 

relational analysis (GRA) based genetic algorithm (GA). Numerical 

simulation of the device is carried out by employing one-dimensional solar 

cell capacitance simulator (SCAPS-1D) while the optimization procedures 

are developed based on combination of multiple methods; L27 Taguchi 

orthogonal array, GRA, multiple linear regression (MLR), and GA. The 

results of post-optimization reveal that the most optimum layer parameters 

for improved FF and PCE are predicted as follows; SnO2F thickness (0.855 

μm), SnO2F donor concentration (9.206×1018 cm-3), TiO2 thickness (0.011 

μm), TiO2 donor concentration (9.306×1016 cm-3), CH3NH3PbI3 thickness 

(0.897 μm), CH3NH3PbI3 donor concentration (0.906×1013 cm-3), MoS2 

thickness (0.154 μm), and MoS2 acceptor concentration (9.373×1017 cm-3). 

Both FF and PCE of the device are improved by ~1.1% and ~12.6% 

compared to the pre-optimization.  
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1. INTRODUCTION 

In recent years, perovskite materials have been intensively investigated owing to their distinctive 

capacity to accommodate large-sized cations, which makes them extremely appropriate for the production of 

organic-inorganic solar cells. In addition to high yielding solution based production, perovskite solar cells 

have the same adaptability, portability, and cost effectiveness as dye-sensitized and organic solar  

cells [1]–[3]. In the preceding twelve years, substantial academic and industry researches have been 

conducted on the development and enhancement of perovskite solar cells. From 2010 to 2022, the power 

conversion efficiency (PCE) per device increased from 3.8% to beyond 30%, comparable with silicon-based 

solar cells [4]–[8]. Sufficient band gap, a significant absorption coefficient, longer diffusion lengths, 
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extraordinary charge mobility, and a decreased exciton recombination rate are exemplary optoelectronic 

characteristics that make perovskite solar cells particularly appealing [9]. Despite these remarkable features, 

there are still restrictions regarding stability, environmental protection, and PCE for their commercial 

application. 

There have been several published research and applications on two-dimensional (2D) 

semiconductor materials due to their viability as platforms for ultra-fast carrier propagation. Molybdenum 

disulfide (MoS2), molybdenum diselenide (MoSe2), tungsten disulfide (WS2), and tungsten diselenide (WSe2) 

are all widely used 2D semiconducting materials primarily composed of a few thin sheets [10]–[13]. They 

were identified as crucial for their ultrafast transmission and accessibility of semiconducting band gaps. 

Materials like MoS2 and MoSe2 were developed specifically to remove generated holes from perovskite 

layers [14]–[18]. The observed high charge recombination is the greatest obstacle to achieving high 

efficiency utilizing these inorganic hole transport material (HTM), as do the methods documented for 

producing single sheets and few-layer MoS2 (or Se2) [19]–[22]. Due to the fact that the documented methods 

for producing single sheets and few-layer MoS2 (or Se2) do not provide uniform distribution of the medium, 

attaining high charge recombination is the crucial step towards achieving high efficiency with these inorganic 

HTMs [23]. Herein, it would be conceivable to generate high-efficiency, long-lasting, low-cost perovskite 

solar cells by using uniform, single-sheet MoS2 (or Se2) [24]–[28]. 

In both academia and industry, intrinsic variations in semiconductor materials have been extensively 

explored and studied. A recent investigation on the performance characteristics of a MoS2 solar cell with 

antimony trisulfide (Sb2S3) HTM was carried out by Haque et al. [29] utilizing the one dimension solar 

capacitance simulator software tool (SCAPS-1D). The findings of the study showed that the values of Jsc, fill 

factor (FF), and PCE grow with an increase in the thickness of MoS2, but the value of Voc rises with a 

reduction in the absorber thickness for structures including an HTM layer. In addition, the Voc, FF, and PCE 

were noticeably improved as a result of an increase in the doping density of the MoS2 layer with HTM layer 

from 1014 to 1021 cm-3. The impact of CdTe film thickness variation, the influence of CdTe defect density, 

and the effect of acceptor density on the MoS2 layer was investigated, as reported by Singh et al. [30]. When 

compared to the fundamental CdTe structure, which did not have a MoS2 layer anywhere in it, the efficiency 

of the solar cell is increased by 4.8% as a result of determining the optimal values for thickness, defect 

density, and acceptor density. Further, Kohnehpoushi et al. [31] have shown that if the MoS2 thickness is 

made a little bit thicker, the Jsc of the perovskite device drops dramatically to 20.75 mA/cm2. This implies 

that the thicker MoS2 multilayers have a higher resistance and lower MoS2 transmission. 

For past few years, numerous optimization techniques have been utilized to identify the optimal 

combination of material parameters for solar cells that delivers the optimum electrical and optical 

performance. Response surface methodology (RSM) was employed in the design and optimization of 

nanocrystalline optically transparent coatings for Si solar cells, resulting in less than 5% reflection values 

over a broad range of wavelengths and near zero reflection at 560 nm for a 38 nm ZnO nanoparticle size, 

which can significantly improve photoactivity [32]. Optimization of an organic tandem solar cell using RSM 

has led to a 47.7% improvement in PCE as a result of changes in the thicknesses of the front and  

back cells [33]. In addition, the Taguchi technique was used to determine the ideal combination of bandgap 

for the front, rear, minimum, and along the x-axis of the CIGS solar cell, which optimally improves Jsc, Voc, 

and FF, achieving an average efficiency of 22.08% [34]. Taguchi technique was also utilized to build 

photoanodes for dye-sensitized solar cells (DSSC), which showed a dramatic increase in FF and PCE [35]. 

The implementation of the Taguchi technique towards the prediction of the optimal thickness of cadmium 

sulfide (CdS), perovskite (CH3NH3Pbl3), and copper telluride (CuTe) resulted in higher levels of Jsc, Voc, and 

PCE [36]. 

A limitation of optimizing solar cell structures through SCAPS-1D simulation without a design of 

experiment (DOE) approach is the risk of not fully exploring the parameter space. SCAPS-1D enables 

simulation of various solar cell parameters, including PCE, J-V characteristics, and quantum efficiency. 

However, without a systematic DOE, the optimization process might overlook parameter interactions or fail 

to reach the true global optimum, leading to less accurate performance predictions and a weaker 

understanding of how different factors impact the PSC's efficiency and stability. The effectiveness of PSCs is 

greatly influenced by the materials and fabrication methods used. The HTM layer is particularly important 

for charge transport and overall device efficiency. Traditional HTM materials have drawbacks such as high 

cost, instability, and complicated fabrication processes. MoS2 is a promising alternative due to its excellent 

electrical properties, affordability, and stability. However, optimizing multiple layers along with MoS2-based 

HTM layer for maximum PCE in PSCs requires a systematic approach. 

In an effort to discover the ideal solution for improved solar cell performance, device simulation can 

be combined with numerous optimization techniques [37]–[42]. Before enduring real testing and production 

processes, these methodologies give predictive insight into the device's performance, saving a substantial 

amount of time and money [39]. In this study, a SCAPS-1D simulation incorporated with a hybrid 
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optimization approach consisting of L27 Taguchi orthogonal array, grey relational analysis (GRA), multiple 

linear regression (MLR), and genetic algorithm (GA) is proposed to optimize the layer parameters of the 

perovskite solar cell with MoS2-based inorganic HTM for enhanced FF and PCE. The following contributes 

significantly to the optimization approach for perovskite solar cells using MoS2-based inorganic HTM: 

− To develop a new hybrid optimization approach consisting of L27 Taguchi orthogonal array, GRA, MLR, 

and GA. 

− To identify the most significant layer parameters affecting the FF and PCE of the device. 

− To predict the best combination of layer parameters that yields the highest possible FF and PCE of the 

device. 

− To validate the proposed hybrid optimization approach by comparing it with pre-optimization and 

Taguchi-GRA technique. 

  

 

2. METHOD 

This current work comprises two main parts of methodology named as numerical simulation and 

hybrid optimization. The numerical simulation of the perovskite solar cell with MoS2-based inorganic HTM 

is firstly performed by utilizing SCAPS-1D, an open source 1D simulation tool designed by the Department 

of Electronics and Information Systems, University of Gent, Belgium [43]. Afterwards, the proposed hybrid 

optimization method [44], [45] are conducted to further optimize multiple layer parameters of the device in 

an effort to attain better FF and PCE. Comprehensive description on both numerical simulation and hybrid 

optimization will be extensively elaborated in the following sub-sections. 

 

2.1.  Numerical simulation 

The perovskite solar cell with MoS2-based inorganic HTM (depicted in Figure 1) was numerically 

modeled by employing SCAPS-1D where the mathematical computation involved hole/electron continuity 

and poisson equations. Figure 2 depicts the energy band diagram of a perovskite solar cell with MoS2-based 

Inorganic HTM. The initial layer parameters (listed in Table 1) including thickness and donor/acceptor 

concentration were taken from related previous experimental and theoretical data [31]. 
 

 

  
 

Figure 1. Physical layout of perovskite solar cell 

with MoS2-based inorganic HTM 

 

Figure 2. Energy band diagram alignment 

 

 

Table 1. Simulation parameters for multiple layers of materials 
Parameters SnO2: F (TCO) TiO2 (ETM) CH3NH3PbI3 (absorber) MoS2 (HTM) 

Thickness (μm) 0.2 0.04 0.4 0.3 

χ (eV) 4 4 3.9 4.2 

Ԑr  9 100 6.5 3 
Eg (eV) 3.5 3.2 1.55 1.29 

μn (cm2/Vs) 20 6×10-3 2 100 

μp (cm2/Vs) 10 6×10-3 2 150 
Nv (cm-3) 1.8×1019 1×1019 1.8×1019 1.8×1019 

Nc (cm-3) 2.2×1018 1×1019 2.2×1018 2.2×1018 

Na (cm-3) - - - 1×1017 
Nd (cm-3) 1×1018 1×1016 1x1013 - 

Nt (cm-3) 1×1015 1×1015 2.5×1013 1x1014 

Ref. [46], [47] [29], [48] [31], [49] [50] 
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In Table 1, the symbols; Nt, Nd, Na, Nc, Nv, μp, μn, Eg, Ԑr, and χ represent defect density, donor 

concentration, acceptor concentration, effective conduction band density, effective valence band density, hole 

mobility, electron mobility, bangap energy, relative permittivity, and electron affinity accordingly. To 

perform the simulation, the standard solar spectrum AM 1.5 was utilized as an optical energy source beamed 

at the front contact. The simulation solved carrier transport, drift-diffusion and recombination model to 

generate current density-voltage curves as the open circuit voltage (Voc), short circuit current density (Jsc), FF 

and PCE were extracted and computed. The multiple layers of the device were virtually arranged in which 

the spray pyrolyzed fluorine-doped tin oxide (SnO2F), titanium dioxide (TiO2), perovskite (CH3NH3PbI3), 

and MoS2 were stacked together as transparent conducting oxide (TCO), electron transport material (ETM), 

absorber, and HTM layers accordingly. Both metal workfunctions for front and back contacts of the cell were 

fixed at 4.4 eV and 5.1 eV respectively. 

 

2.2.  Hybrid optimization 

This section provides a comprehensive description on the hybrid optimization method comprising 

DoE based on L27 Taguchi orthogonal array, GRA, MLR, and GA. The proposed work-flow of the hybrid 

optimization method are depicted in Figure 3. After running 27 simulation runs based on the L27 Taguchi 

orthogonal array, the output properties of the device; FF and PCE were measured by using (1) and (2): 

 

𝐹𝐹 =
𝑉𝑚𝑝𝐽𝑚𝑝

𝑉𝑜𝑐𝐽𝑠𝑐
 (1) 

 

𝑃𝐶𝐸 =
𝐽𝑠𝑐×𝐹𝐹×𝑉𝑜𝑐

𝑃𝑖𝑛
 (2) 

 

where Vmp and Jmp are voltage and current density at maximum power point respectively. 
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Figure 3. Proposed work-flow of the hybrid optimization method 

 

 

The objective function was fed into a mechanism governed by GA where the initial population were 

occupied with initial magnitude of layer parameters. Basically, GA was utilized as a mechanism to search the 

local optimal magnitude of the objective function [51]–[56]. Although a linear objective function can 

typically be optimized by maximizing positive factors and minimizing negative ones, metaheuristics like GA 

may still be needed if the linear function involves complex constraints, particularly non-linear or 

combinatorial ones. Traditional optimization techniques may have difficulty handling such cases, but GA can 

navigate these constraints effectively by exploring a broader solution space. Additionally, in multi-objective 

scenarios, GA can provide a range of optimal solutions rather than just one, helping to balance competing 

objectives. The objective function was appropriately scaled to fit into the working space within specific range 

limited by the lower and upper boundaries which was later named as the fitness function (f i). Since the main 

aim of this work was to search the local maxima of the function, the fi was then inverted and numerically 

formulated as: 
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Minimize - f(A, B, C, D, E, F, G, H) 

Subject to the constraints: 

0.1 μm≤A≤0.9 μm 

0.5×1018 cm-3≤B≤9.5×1018 cm-3 

0.01 μm≤C≤0.09 μm 

0.5×1016 cm-3≤D≤9.5×1016 cm-3 

0.1 μm≤E≤0.9 μm 

0.5×1013 cm-3≤F≤9.5×1013 cm-3 

0.1 μm≤G≤0.9 μm 

0.5×1017 cm-3≤H≤9.5×1017 cm-3 

   

Through iteration of selection, crossover and mutation, the most local maxima point of the fi should 

be identified. For random numbers of iteration, those processes were halted mainly due to no further increase 

exhibited in the fitness curve. At this stage, the maximum magnitude of the fi were identified whereby the 

new population; SnO2F thickness, SnO2F donor concentration, TiO2 thickness, TiO2 donor concentration, 

CH3NH3PbI3 thickness, CH3NH3PbI3 donor concentration, MoS2 thickness and MoS2 acceptor concentration 

should be successfully predicted. For selection, the roulette wheel method is employed, single-point is used 

for crossover, and uniform random is the mutation method. The initial preferences for the GA optimization 

were shown as: 

 

Type=real-valued 

Population size=50 

Number of generations=1,000 

Elitism=2 

Crossover probability=0.8 

Mutation probability=0.1 

 

 

3. RESULT AND DISCUSSION 

This section provides a comprehensive discussion on the results of the predictive analytics. The data 

retrieved after being processed via both L27 Taguchi orthogonal array and GRA are recorded in Table 2. The 

respective magnitudes of deviation sequences, GRCs and GRGs for 27 experimental rows are calculated 

accordingly using the appropriate equations aforementioned in previous section. 
 

 

Table 2. Deviation sequences, GRCs, GRGs, and ranks 

Exp. no. 
Deviation sequences, ∆oi (n) GRC (n) 

GRG (n) Rank 
FF PCE FF PCE 

1 0.938931 0.928349 0.34748 0.350055 0.348767 26 

2 0.274809 0.239875 0.64532 0.675789 0.660555 11 

3 0.328244 0 0.603687 1 0.801843 4 
4 0.236641 0.725857 0.678756 0.407878 0.543317 19 

5 0.053435 0.17757 0.903448 0.737931 0.82069 2 
6 0.526718 0.227414 0.486989 0.687366 0.587178 17 

7 0.068702 0.672897 0.879195 0.426295 0.652745 13 

8 0.51145 0.439252 0.49434 0.532338 0.513339 22 

9 0.244275 0.383178 0.671795 0.566138 0.618966 14 

10 0.877863 0.962617 0.362881 0.341853 0.352367 25 

11 0.221374 0.277259 0.693122 0.643287 0.668204 10 
12 0.290076 0.034268 0.63285 0.93586 0.784355 5 

13 0.358779 0.772586 0.582222 0.392901 0.487562 24 

14 0.167939 0.227414 0.748571 0.687366 0.717969 7 
15 0.671756 0.274143 0.42671 0.645875 0.536293 21 

16 0 0.654206 1 0.433198 0.716599 8 

17 0.427481 0.423676 0.539095 0.541315 0.540205 20 
18 0.183206 0.05296 0.731844 0.904225 0.818034 3 

19 1 1 0.333333 0.333333 0.333333 27 

20 0.366412 0.317757 0.577093 0.611429 0.594261 16 
21 0.419847 0.074766 0.543568 0.869919 0.706744 9 

22 0.160305 0.738318 0.757225 0.403774 0.5805 18 

23 0 0.193146 1 0.721348 0.860674 1 
24 0.473282 0.239875 0.513725 0.675789 0.594757 15 

25 0.061069 0.688474 0.891156 0.420708 0.655932 12 

26 0.526718 0.454829 0.486989 0.523654 0.505322 23 

27 0.244275 0.087227 0.671795 0.851459 0.761627 6 
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The rank of each experimental row is determined based on the highest computed GRGs. The GRA 

results indicate that the experimental row no. 23 has the highest rank of GRG compared to others at 0.8607. 

This justifiably implies that the 23rd experimental row has the best combinational layer parameters yielding 

the optimal FF and PCE of the perovskite device. The computed GRGs for each row can be evenly 

distributed into the respective layer parameters, owing to the orthogonality of the DoE L27 Taguchi 

orthogonal array. Therefore, the GRGs for each individual layer parameters with their corresponding levels 

are computed and summarized in Table 3. From Table 3, the optimal levels of layer parameters representing 

the highest GRG are; SnO2F thickness (0.4 μm), SnO2F donor concentration (9×1018 cm-3), TiO2 thickness 

(0.04 μm), TiO2 donor concentration (5×1016 cm-3), CH3NH3PbI3 thickness (0.8 μm), CH3NH3PbI3 donor 

concentration (1x1013 cm-3), MoS2 thickness (0.4 μm) and MoS2 acceptor concentration (9×1017 cm-3). Based 

on the information in Table 3, the analysis of variance (ANOVA) is carried out to determine the significance 

of each layer parameters on influencing the GRG variation. The ANOVA results for this work are 

summarized in Table 4. 

 

 

Table 3. GRG for layer parameters at multiple levels 

Symbol Layer parameters 
GRG 

Low Medium High 

A SnO2:F thickness 0.6164 0.6246 0.6215 
B SnO2:F donor concentration 0.5834 0.6365 0.6425 

C TiO2 thickness 0.6580 0.6310 0.5735 

D TiO2 donor concentration 0.6084 0.6289 0.6251 
E CH3NH3PbI3 thickness 0.5147 0.6535 0.6900 

F CH3NH3PbI3 donor concentration 0.6271 0.6124 0.6116 

G MoS2 thickness 0.6149 0.6337 0.6139 
H MoS2 acceptor concentration 0.4791 0.6370 0.7464 

 

 

Table 4. ANOVA results 
Layer parameter DF SSQ MS F-ratio Contribution (%) 

A 2 0.000108 5.38111E-05 0.268844 0.059545 

B 2 0.006365 0.003182509 15.90008 3.521612 

C 2 0.011187 0.005593413 27.94515 6.189402 

D 2 0.000717 0.000358317 1.790183 0.396497 
E 2 0.051286 0.025643129 128.1152 28.37546 

F 2 0.000547 0.00027372 1.367528 0.302885 

G 2 0.000749 0.000374308 1.870075 0.414192 
H 2 0.108382 0.054191056 270.743 59.96522 

Error 7 0.001401 0.000200157 - 0.775194 

Total 23 0.180742 0.089870421 - 100 

 

 

In addition, the percentage contribution of layer parameters on the GRG are displayed in Figure 4. It 

is clearly shown that the most significant layer parameters influencing GRG variation are layer parameter H 

(MoS2 acceptor concentration) with ~60% of contribution, followed by layer parameter E (CH3NH3PbI3 

thickness) with ~28% of contribution. The remaining layer parameters can be considered neutral mainly due 

to their extremely small percentage contribution as they would not inflict any significant alteration on the 

GRG. The correlation between eight layer parameters and the GRGs are further analyzed using MLR method 

in which normal Q-Q plot is extracted as depicted in Figure 5. The retrieved data are plotted against a 

theoretical normal distribution in which the data points should form an approximate straight line. Spreading 

away from this straight line indicate the data points are spreading away from normality. 

Using MLR method, the objective function of those correlation can be derived in which the 

regression coefficients for each layer parameters are estimated as (3): 

 

𝑌 = 0.28341 + 0.012708 ∗ 𝐴 + 0.007394 ∗ 𝐵 − 2.113125 ∗ 𝐶 + 0.002084 ∗ 𝐷 +
0.42741 ∗ 𝐸 − 0.001939 ∗ 𝐹 − 0.005313 ∗ 𝐺 + 0.033417 ∗ 𝐻 (3) 

 

However, the objective function needs to be converted to the fitness function (f i) where it is inverted and 

fitted within specified lower and upper boundaries for determining the local maxima of the curve. Thus, the fi 

of the maximization problem can be formulated as (4): 

 

𝑓𝑖 = −0.28341 − 0.012708 ∗ 𝐴 − 0.007394 ∗ 𝐵 + 2.113125 ∗ 𝐶 − 0.002084 ∗ 𝐷 −
0.42741 ∗ 𝐸 + 0.001939 ∗ 𝐹 + 0.005313 ∗ 𝐺 − 0.033417 ∗ 𝐻 (4) 
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Figure 4. Contribution of layer parameters on GRG variation 

 

 

 
 

Figure 5. Normal Q-Q for multiple layer parameters 

 

 

The fi is repeatedly processed through the GA mechanisms; selection, crossover and mutation until 

no increase in fitness magnitude detected. For this work, the fi has converged and instantly stopped at 

optimum magnitude after 1,000 cycles of generation as plotted in Figure 6. The maximum converged fitness 

magnitude of the GRG is observed to be 1.052030 associated with the predicted optimum layer parameters; 

SnO2: F thickness (0.855 μm), SnO2: F donor concentration (9.206×1018 cm-3), TiO2 thickness (0.011 μm), 

TiO2 donor concentration (9.306×1016 cm-3), CH3NH3PbI3 thickness (0.897 μm), CH3NH3PbI3 donor 

concentration (0.906×1013 cm-3), MoS2 thickness (0.154 μm), and MoS2 acceptor concentration  

(9.373×1017 cm-3). Lastly, the simulation of the perovskite solar cell is repeated using the predicted 

magnitude of layer parameters for verification. Figure 7 shows the comparison of the generated J-V transfer 

curves during pre-optimization, post-optimization via Taguchi-GRA and post-optimization via Taguchi-

GRA-MLR-GA. 

From the J-V transfer curves, the current density (J) of the device has been marginally improved by 

~8.2% and ~8.7% during post-optimization using Taguchi-GRA and Taguchi-GRA-MLR-GA respectively. 

The magnitudes of current density during pre-analytics, post-analytics via GRA and post-optimization via 

Taguchi-GRA-MLR-GA are measured at 23.4 mA/cm2, 25.51 mA/cm2, and 25.63 mA/cm2 respectively. The 

presence of MoS2 as a HTM layer is one of the main factors improving the current density of device which 

predominantly due to higher level acceptor concentration. At lower doping concentration, the hole mobility is 

heavily influenced by scattering effects in the MoS2 material itself. As temperature increases, the scattering 

effects becoming more dominant which subsequently result in lower hole mobility. By increasing the doping 

concentration of the MoS2 material, the probability of the carriers colliding to each other will be high which 

cause significant improvement in hole mobility as well as total current density. Figure 8 depicts the 
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comparative cylindrical graph between FF and PCE of the device during pre-optimization, post-optimization 

using Taguchi-GRA and Taguchi-GRA-MLR-GA. 

 

 

  
 

Figure 6. Genetic algorithm performance during 

convergence 

 

Figure 7. J-V transfer curves during  

pre-optimization and post-optimization  

 

 

 
 

Figure 8. Comparative cylindrical graph of FF and PCE during pre-optimization, post-optimization using 

Taguchi-GRA and Taguchi-GRA-MLR-GA 

 

 

There is a marginal increase in PCE of the device during pre-optimization and post-optimization. 

The device has shown a slight improvement for approximately 12.2% and 12.6% via Taguchi-GRA and 

Taguchi-GRA-MLR-GA, respectively. In term of FF, improvement in percentage for both types of 

optimization method are almost indistinct where their corresponding FF has shown a slight improvement for 

approximately 1.2% and 1.1% via Taguchi-GRA and Taguchi-GRA-MLR-GA, respectively. Table 5 

summarizes the overall results during pre-optimization, post-optimization using Taguchi-GRA and  

Taguchi-GRA-MLR-GA. Higher GRG implies that the opted layer parameters have contributed better  

multi-performance characteristics (FF and PCE) for the perovskite device. In this case, the GRG has been 

predictively improved by approximately 66.8% using Taguchi-GRA-MLR-GA optimization method. Besides 

that, the predicted GRG using Taguchi-GRA-MLR-GA are ~18.2% higher compared to Taguchi-GRA. This 

is solely due to the capability of the Taguchi-GRA-MLR-GA to further optimize the fitness function beyond 

the discrete magnitude of layer parameters. For instance, Taguchi-GRA alone is restricted to estimate only 

discrete magnitude of layer parameters while Taguchi-GRA-MLR-GA is capable of estimating continuous 

magnitude of layer parameters in which the lower and upper boundaries can be pre-specified according to 

desired preferences. Figure 9 shows the comparison of optimized FF and PCE with different algorithms. 
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Table 5. Overall results during pre-optimization, post-optimization using Taguchi-GRA and  

Taguchi-GRA-MLR-GA 

Layer parameters Pre-optimization 
Post-optimization 
via Taguchi-GRA 

Post-optimization via  
Taguchi-GRA-MLR-GA 

SnO2: F thickness 0.2 μm 0.4 μm 0.885 μm 

SnO2: F donor concentration 1×1018 cm-3 9×1018 cm-3 9.206×1018 cm-3 

TiO2 thickness 0.04 μm 0.04 μm 0.011 μm 
TiO2 donor concentration 1×1016 cm-3 5×1016 cm-3 9.306×1016 cm-3 

CH3NH3PbI3 thickness 0.4 μm 0.8 μm 0.897 μm 

CH3NH3PbI3 donor concentration 1×1013 cm-3 1×1013 cm-3 0.906×1013 cm-3 
MoS2 thickness 0.3 μm 0.4 μm 0.154 μm 

MoS2 acceptor concentration 1×1017 cm-3 9×1017 cm-3 9.373×1017 cm-3 

FF 86.77% 87.83.% 87.77% 
PCE 21.59% 24.59% 24.71% 

Grey relational grade (GRG) 0.3488 0.8607 1.052 

Improvement in the predicted GRG=~66.8% 

   

 

The utilization of Taguchi, GRA, and MLR extends to other algorithms besides GA. GA's 

optimization results are compared to those from pelican optimization algorithm (POA), marine predator 

algorithm (MPA), JAYA algorithm, and grey wolf optimizer (GWO) algorithm. The POA emulates the 

natural hunting behaviors and strategies of pelicans in which it simulate the hunting techniques and behaviors 

of pelicans [57]. The MPA optimizes efficiently by integrating the unique characteristics of Lévy strategy 

with Brownian motion features, proving superior in optimization tasks [58]. The JAYA algorithm effectively 

handles optimization tasks, both constrained and unconstrained, by moving solutions towards the best and 

avoiding the worst, all while maintaining simplicity [59]. The GWO algorithm replicates grey wolves' 

leadership and hunting techniques, utilizing alpha, beta, delta, and omega wolves to simulate their hierarchy 

and follow the hunting stages: searching, encircling, and attacking prey [60]. 

 

 

 
 

Figure 9. Comparison of optimized FF and PCE with different algorithms 

 

 

The observed optimized FF and PCE are nearly indistinguishable, suggesting that all algorithms 

show comparable performance in this particular problem space. Thus, it can be concluded that the proposed 

hybrid optimization method is capable of predicting robust solutions that globally optimize the perovskite 

solar cell performances. In the future, metaheuristic algorithms and predictive learnings other than the GA 

could be empirically explored and integrated into the Taguchi DoE in an attempt to provide more precise and 

comprehensive results. 

 

 

4. CONCLUSION 

The perovskite solar cell with MoS2-based inorganic HTM has been predictively modeled using a 

combination of SCAPS-1D, Taguchi GRA, MLR, and GA. The experimental data were mined using L27 

Taguchi orthogonal array and subsequently analyzed using GRA. The magnitudes of FF and PCE were 

normalized and converted into a single representative unit based on higher-the better characteristic, called 

GRG. Based on ANOVA, the most significant layer parameters influencing GRG variation were MoS2 

acceptor concentration with ~60% of contribution, followed by CH3NH3PbI3 thickness with ~28% of 
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contribution. MLR approach was then deployed to derive the objective function. With pre-specified lower 

and upper boundaries, the fitness function was determined and subsequently fed into GA mechanism in order 

to search the local maxima of the function. The most optimal fitness GRG magnitude was identified at 1.052 

after 1,000 cycles of GA mechanism in which the optimum layer parameters were successfully predicted. 

Both FF and PCE of the perovskite device were slightly optimized by ~1.1% and ~12.6% respectively 

compared to the magnitudes during pre-optimization. The results clearly proved that the proposed hybrid 

optimization method was capable of predicting robust solutions that could globally optimize the perovskite 

solar cell performance. Future studies could explore and incorporate other metaheuristic algorithms and 

predictive learning approaches besides the GA within the Taguchi DoE to obtain more accurate and 

comprehensive results. These significant findings highlight the considerable progress achieved in modeling 

the PSC structure. Ultimately, this work's results can direct researchers in fabricating highly efficient PSCs in 

the future. 
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