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ABSTRACT 

 

Bioprinting is an emerging technology to produce biologically adaptive tissues and organs 

particularly useful in clinical treatment, requiring the replacement of body parts. The 

alternative to producing biologically adaptive material has been studied using additive 

manufacturing (AM) technology due to its ability to create complex geometry. However, 

building soft biological tissues using a three-dimensional (3D) print technology has been 

significant challenge in bioprinting. Furthermore, the accessibility and customisation of the 

existing bioprinter has its own limitation. Moreover, the existing bioprinter experiences 

vibration issue and volume of syringe which impacts on printing quality. Therefore, this 

study aims to develop the Modular-based Syringe Extruder (MSE) on the 3D printer 

technology to enable customised 3D printing of biomaterial. A sodium alginate with 2% 

(w/v) represents a medium viscosity, ideal for hydrogel print. The printing variable will be 

investigated for seven printing parameters, which are nozzle shape, nozzle size, layer height, 

print speed, infill percentage, flow rate and retraction effect. Furthermore, the optimisation 

of the printing parameters would have been performed using the L8(27) orthogonal array. 

The quality of the printed would have been measured based on the scoring system. Based on 

Taguchi method, the data collected from the experiment was analyzed using concept of 

signal-to-noise ratio (SNR). Response data reveals that the print speed and retraction effect 

is the most significant factor that effects the printing quality. On the other hand, response 

graph shows that conical nozzle shape, 18G nozzle size, 0.8 mm layer height, 4 mm/s print 

speed, 15% infill percentage, 100% flow rate and no retraction effect are the optimal printing 

parameter in order to print high quality of printed structure. Printing soft biomaterials such 

as sodium alginate has been a major challenge due to their susceptibility to gravitational 

collapse. To overcome the issue, a Freeform Reversible Embedding of Suspended Hydrogels 

(FRESH) method was developed, providing solution by holding the sodium alginate in 

gelatin slurry support bath during printing. This method polymerizes the biomaterial for 

crosslinking, resulting in a well-structured scaffold build-up. The experiment involved 

printing four different structures, including grid square, circle, zigzag and blood vein profile, 

all of which were successfully printed five layers of 3D printed alginate scaffold. 

Compression testing and microstructure analysis were conducted to evaluate strength and 

porosity of the hydrogel. It was found that the stress value was 0.0150.003 MPa when the 

hydrogel was compressed up to 70% before failure. Furthermore, microstructure analysis of 

the scaffold revealed a high porosity (25-255 m), which creates an ideal environment for 

cell attachment and migration. Overall, this research contributes valuable knowledge to the 

field of bioprinting and its potential applications in clinical treatments, particularly in the 

context of replacing degenerated body parts. 
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PEMBANGUNAN DAN ANALISIS BIOPENCETAK BERASASKAN MODUL BAGI 

PENCETAKAN HIDROGEL TIGA-DIMENSI (3D) 

 

ABSTRAK 

 

Biopencetakan adalah teknologi yang sedang berkembang untuk menghasilkan tisu dan 

organ yang dapat menyesuaikan dengan tubuh secara biologis, khususnya dalam perawatan 

klinikal yang memerlukan penggantian bahagian tubuh. Alternatif untuk menghasilkan 

bahan yang dapat disesuaikan dengan manusia telah dikaji menggunakan teknologi 

pembuatan tambahan kerana keupayaannya untuk mencipta geometri kompleks. Namun, 

membina tisu biologi lembut menggunakan teknologi pencetakan tiga-dimensi (3D) telah 

menjadi cabaran besar dalam biopencetakan. Selain itu, kebolehcapaian dan penyesuaian 

pencetak sedia ada mempunyai hadnya sendiri. Tambahan pula, pencetak sedia ada 

mengalami isu getaran dan isu isipadu suntikan yang memberi impak kepada kualiti 

pencetakan. Oleh itu, kajian ini bertujuan untuk membangunkan extruder gel-cairan 

berdasarkan modul pada teknologi pencetak 3D untuk membolehkan pencetakan 3D 

biomaterial yang disesuaikan. Natrium alginat akan digunakan sebagai biomaterial yang 

akan dicetak. Natrium alginat dengan 2% (w/v) mewakili kelikatan sederhana, sesuai untuk 

pencetakan hidrogel. Pemboleh ubah pencetakan akan disiasat untuk tujuh parameter 

pencetakan, iaitu bentuk muncung, saiz muncung, tinggi lapisan, kelajuan cetak, peratusan 

infill, kadar limpahan, dan kesan retraksi. Selanjutnya, pengoptimuman parameter 

pencetakan akan dilakukan menggunakan pengaturan ortogonal L8(27). Kualiti bahan yang 

dicetak akan diukur berdasarkan sistem penilaian. Berdasarkan kaedah Taguchi, data yang 

dikumpulkan dari eksperimen dianalisis menggunakan konsep signal-to-noise ratio (SNR). 

Data respons menunjukkan bahawa kelajuan cetak dan kesan retraksi adalah faktor yang 

paling signifikan yang memberi kesan kepada kualiti pencetakan. Selain itu, graf respons 

menunjukkan bahawa bentuk muncung kon, 18G saiz muncung, 0.8 mm tinggi lapisan, 4 

mm/s kelajuan cetak, 15% peratusan infill, 100% kadar limpahan dan tanpa kesan retraksi 

adalah parameter pencetakan yang optimum untuk mencetak struktur yang berkualiti tinggi. 

Pencetakan biomaterial lembut seperti natrium alginat telah menjadi cabaran besar kerana 

mudah runtuh akibat graviti. Untuk mengatasi isu ini, kaedah Freeform Reversible 

Embedding of Suspended Hydrogel (FRESH) telah dibangunkan, memberikan penyelesaian 

dengan mengekalkan natrium alginat dalam larutan gelatin semasa pencetakan. Kaedah ini 

mempolimerisasi biomaterial untuk crosslinking, menghasilkan struktur bingkai yang 

terbentuk dengan baik. Eksperimen melibatkan pencetakan empat struktur berbeza, 

termasuk kotak grid, bulatan, zigzag, dan profil saluran darah, yang semuanya berjaya 

dihasilkan dalam lima lapisan bingkai alginat 3D yang dicetak. Ujian mampatan dan 

analisis mikrostruktur telah dijalankan untuk menilai kekuatan dan keliangan hidrogel. 

Didapati nilai tekanan ialah 0.015±0.003 MPa apabila hidrogel dimampat sehingga 70% 

sebelum kegagalan. Analisis mikrostruktur pada perancah menunjukkan keliangan yang 

tinggi (25-255 μm), yang mewujudkan persekitaran yang ideal untuk pelekatan dan 

penghijrahan sel. Secara keseluruhan, penyelidikan ini menyumbang pengetahuan berharga 

kepada bidang biopencetakan dan potensinya untuk digunakan dalam rawatan klinikal, 

terutamanya dalam konteks menggantikan bahagian tubuh yang telah rosak. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background of Study 

Additive manufacturing (AM) is an advanced manufacturing process that can 

produce three-dimensional (3D) structures in a layer-by-layer approach through computer-

aided design (CAD). This technology can fabricate a complex structure, replacing the 

traditional manufacturing method that uses moulds to fabricate a 3D structure. Recently, 3D 

printing technology has been considered in the medical field as it offers a promising 

alternative for fabricating soft tissues with patient-specific geometry. Such advancement 

would be revolutionary to clinical treatment requiring organ transplants (Mobaraki et al., 

2020).  

In bioprinting, the materials are deposited layer-on-layer to build a scaffold as the 

cell-cultured medium. Scaffolds are 3D porous structures with crucial features that support 

and direct the regeneration of specific tissues (Hutmacker, 2001). To provide the necessary 

function, the scaffolds need a porous structure that provides room for cell development and 

facilitates the movement of nutrients and waste products to and from the cells. The scaffold 

must be biocompatible, support cell functioning, and align with the development of cells and 

tissues. The scaffold must possess appropriate chemical and biological characteristics to 

facilitate cell attachment, growth, movement, specialization, and other cellular activities 

while demonstrating adequate mechanical strength to maintain structural stability. Scaffolds 

may have additional functional needs based on the unique application. 
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Hydrogel is an alternative material that can be used to build the scaffold. Its 

properties are suitable for cell culture and bioactive substances. Hydrogels comprise a water-

rich network of polymers, mimicking the natural extracellular matrix (ECM) found in living 

tissues (Kyle et al., 2017). The unique properties of hydrogels, such as high-water content, 

biocompatibility, and tunable mechanical characteristics, make them well-suited for 

supporting cell growth and promoting tissue development (Li et al., 2018). Hydrogels can 

be categorised as natural or synthetic, each with distinct benefits. Hydrogels with inherent 

ligands encourage cell attachment and differentiation, often derived from ECM elements. 

Polymers obtained from non-mammalian sources, including alginate from brown seaweed, 

are frequently used as alternatives for cell culture (Bajaj et al., 2014; Li et al., 2014). 

On the other hand, synthetic hydrogels have been developed to act as ‘blank slate’ 

materials and can be customised through chemical modifications to suit specific applications 

(Murphy and Atala, 2014; Bajaj et al., 2014). Currently, the synthetic hydrogels used in 

bioprinting include methacrylate gelatin (GeIMA), polyethene glycol diacrylate (PEGDA), 

and polylactic acid (PLA). Synthetic gels do not support cell adhesion. However, these 

hydrogels can be functionalized with ECM proteins to facilitate cell support. 

An important consideration in using hydrogel for bioprinting is that it should be able 

to form and maintain a reproducible 3D structure with sufficient structural integrity (Chung 

et al., 2013). Similarly, an extrusion-based technique can be adopted to deposit the hydrogel 

in liquid form. Hydrogels can undergo physical, thermal and chemical cross-linking to 

enable the polymerization of the material for constructing a 3D structure. Hydrogel cross-

linking is time-consuming, allowing the hydrogel to flow, spread, and perhaps deviate 

significantly from the intended design. The poor printability of hydrogels can lead to the 

collapse and failure to form a 3D structure of printed scaffolds. Printability is crucial as 
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variations between a printed scaffold and the optimal design might affect mechanical and 

biological characteristics like strength and cell functionality. 

The motivation of this study is to advance medical research by developing 

customizable equipment for fabricating patient-specific soft tissues through additive 

manufacturing (AM). By improving the printability and structural integrity of 3D printed 

hydrogels, the study aims to support basic research in biomaterial development and 

processing mechanisms. This will ensure that the resulting scaffolds not only meet the 

complex biological and mechanical requirements necessary for tissue regeneration but also 

maintain the precision needed for clinical applications, such as organ transplants. 

1.2 Problem Statements 

The scaffold, serving as a vital medium for cell growth, plays a pivotal role in 

replicating the biological functions of healthy tissues to substitute damaged organs. 

However, the accessibility and customisation of the bioprinting process pose significant 

challenges, particularly concerning commercial bioprinters (Kahl et al., 2019; Tashman et 

al., 2022). The high cost of these bioprinters restricts their widespread use, limiting the 

exploration of crucial customisation in printing parameters. This is essential for evaluating 

the viability of hydrogel formulations in producing high-quality scaffolds. 

Furthermore, the commonly used syringe pump extruders are mostly high resolution 

or low volume, as there is a trade-off between moving mass and high positioning precision 

(Bociaga et al., 2020). Commercial bioprinters uses small syringe volumes to reduce carriage 

mass. However, this solution limits the printout size and affects printing productivity. 

Researchers may consider increasing the volume of the syringe as an alternative. However, 

additional weight may negatively affect printing quality. This is because attaching the liquid 
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extruder system directly to the 3D printer body affects the syringe plunger retraction and 

vibration control, leading to poor printing quality. Based on the previous study, the 

customised bioprinter has an issue of vibration, which was found to impact the quality of the 

fabricated scaffold (Pusch et al., 2018; Hinton et al., 2015). 

Hydrogel, a key material in this investigation, presents inherent challenges in 3D 

printing due to its partial-liquid state (Hinton et al., 2015). Hydrogels typically have a high 

water content, which makes them flow easily. However, this can cause issues with 

maintaining shape and stability during printing. Therefore, there is a need to control the flow 

of the hydrogel through the printer nozzle with precise tuning to ensure consistent deposition 

and avoid clogging or dripping. 

Printing parameters also plays a crucial role in achieving high-quality prints, 

especially for scaffolding constructs. Nowadays, scaffolding constructs have gained 

significant attention for their potential contribution to tissue structures. When designing 

scaffolding, each biomaterial is strongly influenced by several printing parameters. This is 

because the scaffolding structures include bioinks and microchannels that allow the diffusion 

of nutrients and oxygen. Thus, optimising the printing parameters is vital to achieve high 

printing quality.  

In light of these challenges, there is a need for advancements in bioprinting 

technology, which allow extrusion system customisation, effective extrusion of liquid-based 

biomaterial, improved bioink capacity, and optimised printing parameters 

1.3 Research Objectives 

The objectives of the research are: 

i. To develop an extrusion system for liquid-based hydrogel printing.  
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