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ABSTRACT 

Communication impairments can result from various medical conditions, such as speech 

problems, hearing loss, brain injuries, strokes, and physical disabilities. These conditions 

can affect verbal and non-verbal communication and may require specific rehabilitation and 

therapy. Currently, speech rehabilitation and treatment are time-consuming and involve 

physical activity, with most facilities still manually performing the process. However, 

technological advancements, such as Artificial Intelligence (AI), have opened up innovative 

solutions in speech rehabilitation. AI studies have focused on speech classification for 

various human languages, with the potential to revolutionize speech rehabilitation and make 

it more accessible to individuals worldwide. Since computer vision has impacted this field, 

machine learning and deep learning have been applied to the medical and healthcare 

industries to enhance rehabilitation by utilizing the new technology. Convolutional Neural 

Network (CNN) network models have been proven in countless studies to be precise at 

classifying performance in object and speech classification. This research analyzed the 

performance accuracy of different deep learning comparative network models, proposed 

network models, VGG-Net, AlexNet, and Inception, and performed a complete comparative 

analysis to assess these network models' classification accuracy and suitability for 

rehabilitation purposes. This thesis aims to develop a reliable vowel classification system 

with high-performance accuracy that can successfully recognize the classification of vowels 

in the normal person group, the post-stroke patient group with speech disorders, and the 

combination of both groups using the two proposed image profiles: the Mel spectrogram and 

the Mel Frequency Cepstral Coefficients (MFCC). According to the experimental results, 

the proposed network network model, which used six batch sizes, 20 epochs, and ADAM as 

the optimizer, managed to outperform the performance accuracy of the other existing 

comparative network network models. The highest performance accuracy gained for the Mel 

spectrogram, and MFCC image profile in the analyses conducted was 96.30% and 98.77%, 

respectively. 
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KLASIFIKASI VOKAL BAHASA MELAYU MENGGUNAKAN PROFIL IMEJ 

AUDIO MELALUI PEMBELAJARAN MENDALAM BAGI PENILAIAN 

PEMULIHAN GANGGUAN PERTUTURAN 

 

ABSTRAK 

 

Kecacatan komunikasi boleh disebabkan oleh pelbagai keadaan di dalam bidang perubatan, 

seperti masalah pertuturan, kehilangan pendengaran, kecederaan otak, strok dan kecacatan 

fizikal. Keadaan ini boleh menjejaskan komunikasi lisan dan bukan lisan dan mungkin 

memerlukan pemulihan dan terapi khusus. Pada masa ini, pemulihan dan rawatan 

pertuturan memakan masa dan melibatkan aktiviti fizikal, dengan kebanyakan kemudahan 

masih melakukan proses secara manual. Walau bagaimanapun, kemajuan teknologi, seperti 

Kepintaran Buatan (AI), telah membuka penyelesaian inovatif dalam pemulihan pertuturan. 

Kajian AI telah menumpukan pada pengecaman pertuturan untuk pelbagai bahasa manusia, 

dengan potensi untuk merevolusikan pemulihan pertuturan dan menjadikannya lebih mudah 

diakses oleh individu di seluruh dunia. Memandangkan penglihatan komputer telah 

memberi kesan kepada bidang ini, pembelajaran mesin dan pembelajaran mendalam telah 

digunakan pada industri perubatan dan kesihatan untuk meningkatkan pemulihan dengan 

menggunakan teknologi baharu. Model Rangkaian Neural Convolutional (CNN) telah 

terbukti dalam banyak kajian tentang ketepatannya dalam mengklasifikasi prestasi dalam 

pengecaman objek dan pertuturan. Penyelidikan ini menganalisis ketepatan prestasi 

cadangan model rangkaian dengan model-model pra-latihan pembelajaran mendalam yang 

berbeza model yang direka bentuk, VGG-Net, AlexNet dan Inception, serta melakukan 

analisis perbandingan lengkap untuk menilai ketepatan klasifikasi dan kesesuaian model ini 

untuk tujuan pemulihan. Projek ini bertujuan untuk membangunkan sistem yang boleh 

diandalkan dengan ketepatan prestasi tinggi, dan ia berjaya mengenali klasifikasi vokal 

terhadap kumpulan orang normal, kumpulan pesakit selepas diserang strok dengan 

gangguan pertuturan, dan gabungan kedua-dua kumpulan ini menggunakan dua profil imej,  

Spektrogram Mel dan ‘Mel Frequency Cepstral Coefficients’ (MFCC). Mengikut keputusan 

percubaan, rangkaian model yang direka, yang menggunakan saiz kelompok enam, 20 

kitaran, dan ADAM sebagai pengoptimum, berjaya mengatasi ketepatan prestasi rangkaian 

model-model pra-latihan sedia ada yang lain. Ketepatan prestasi tertinggi yang diperoleh 

untuk spektrogram Mel, dan profil imej MFCC dalam analisis yang dijalankan masing-

masing ialah 96.30% dan 98.77%. 
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1 

CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

Artificial intelligence (AI) is a complex creation of humans. AI is everywhere, 

moulding modern society in many ways, and continuing to advance, which nowadays its 

impact on various industries is becoming increasingly evident. While AI has made 

remarkable progress in tasks like language processing and pattern classification, it still needs 

to understand the humanly context and emotions. These questions are not just philosophical 

musings but pressing inquiries that will shape the future of our world.  

The seeds of AI were sewn in the mid-20th century, a time of siginificant 

technological advancement. One of the key figures who laid the groundwork for AI was 

Alan Turing, known as the father of modern computing. Turing proposed an experiment that 

would become the benchmark for artificial intelligence (Varol Akman, 2000). Others, like 

John McCarthy, came up with the phrase "artificial intelligence" and planned the first AI 

conference at Dartmouth College in 1956. The idea put forth by Turing and his associates 

was that each aspect of learning and every other aspect of intelligence could be so thoroughly 

specified that a computer could replicate it (Cordeschi, 2007). It is the first formal 

classification of AI as a field of research, and it sent ripples through the scientific 

community. 

Artificial intelligence began to permeate various sectors, subtly influencing the way 

humans live, work and play in healthcare. AI started to lend a helping hand to doctors and 


