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ABSTRACT 

 

Conventional Electron Transport Layer (ETL) TiO2 (Titanium dioxide) has been widely used 

in Perovskite Solar Cells (PSCs) which have produced encouraging Power Conversion 

Efficiency (PCE), allowing the technology to be highly regarded and propitious. 

Nevertheless, the recent high demand for energy harvesters in wearable electronics, 

aerospace and building integration has led to the need for flexible solar cells. However, the 

conventional TiO2 ETL layer is less preferred, where a crystallization process at a 

temperature as high as 450 °C is required, which degrades the plastic substrate. Zinc Oxide 

nanorods (ZnO NRs) is yet simple and low-cost fabrication may lead the task as ETL, but 

still suffer from low PCE due to atomic defects vacancy. To delve into the issue, Lanthanum 

(La) dopant has been introduced as an additive to passivate or substitute the Zn2+ vacancies. 

Pure ZnO nanorods and La-doped ZnO nanorods with different growth time (3,5,7,9 hours) 

and concentration (1 mol%-4 mol%) were synthesized by hydrothermal method with 90 ℃ 

of annealing temperature. The influence of different growth time and La concentration as 

dopant in terms of structural, optical and electrical properties have been investigated. 

Scanning electron microspcopy (SEM) revealed that La-doped ZnO produced smooth and 

stable morphology with less pore of nanorods compared to pure ZnO. From Raman-

spectroscopy, La-doped ZnO at 1 mol% produced the best peak intensity with fewer defect 

peak. X-ray diffraction (XRD) revealed that the size of the crystal structure reduced, ranging 

from 23.626 nm to 27.089  nm when introducing La into ZnO lattice. The optical 

measurement from ultraviolet visible spectrometer (UV-Vis) indicates an enhancement of 

absorption in La-doped ZnO with transmittance value lies between 18.03% to 79.7% and 

direct bandgap between 2.90 eV to 3.39 eV. According to IV-measurement, 1 mol% of La-

doped ZnO at 9 hours of growth time produced the best conductivity with 5.46 S/m making 

it the ideal concentration and growth time of La doped into ZnO. Following this, 1 mol%-9 

hours was chosen as the ETL for SCAPS-1D study by applying its bandgap and absorption 

coefficient parameters obtained from the experiment. CH3NH3PbI3 (methylammonium lead 

iodide) was used as the absorber layer, Cu2O (copper (I) oxide) as Hole Transport Layer 

(HTL), Indium Tin Oxide (ITO) and platinum as front and back contact. The investigation 

was determined by varying various parameters within each tuned layer including layer 

thickness, doping concentration, defect density, electron affinity, bulk density, operating 

temperature and metal work function. From the simulation, the fully optimized device 

structure, ITO/La-ZnO/CH3NH3SnI3/Cu2O/Pt attained a PCE of 30.70%, proving a drastic 

improvement over the initial PCE of 19.21% by 59.81%. Therefore, this study proposes a 

low-cost hydrothermal synthesis method with a low operating temperature, and emphasizes 

novel doping techniques for efficient, lead-free PSC.  
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ROD NANO ZNO DOPAN LANTHANUM  SEBAGAI LAPISAN PENGANGKUTAN 

ELEKTRON DALAM SEL SOLAR PEROVSKITE 

 

ABSTRAK 

 

Lapisan Pengangkutan Elektron Konvensional (ETL) TiO2 telah digunakan secara meluas 

dalam Sel Suria Perovskite (PSC) yang menghasilkan Kecekapan Penukaran Kuasa (PCE) 

yang menggalakkan, membolehkan teknologi itu dipandang tinggi. Namun begitu, 

permintaan tinggi baru-baru ini untuk penuai tenaga dalam elektronik boleh pakai, 

aeroangkasa dan integrasi bangunan telah membawa kepada keperluan untuk sel solar yang 

fleksibel. Walau bagaimanapun, lapisan TiO2 ETL konvensional kurang dipilih, di mana 

proses penghabluran pada suhu setinggi 450 ℃ yang diperlukan, merosakkan substrat 

plastik. Zinc Oxide nanorods (ZnO NRs) yang mudah dengan kos fabrikasi rendah mungkin 

dipilih sebagai ETL, tetapi masih mengalami PCE yang rendah kerana kekosongan 

kecacatan atom. Untuk menyelidiki isu ini, Lanthanum (La) dopan telah diperkenalkan 

sebagai bahan tambahan untuk memasifkan atau menggantikan kekosongan Zn2+. Nanorod 

ZnO tulen dan ZnO terdop La dengan masa pertumbuhan (3,5,7,9 jam)  dan kepekatan (1 

mol%-4 mol%)  berbeza telah disintesis melalui kaedah hidroterma dengan 90 ℃ suhu 

penyepuhlindapan. Pengaruh masa pertumbuhan yang berbeza dan kepekatan La sebagai 

dopan dari segi sifat struktur, optik dan elektrik telah disiasat. Pengimbasan mikroskop 

elektron (SEM) mendedahkan bahawa ZnO terdop La menghasilkan morfologi licin dan 

stabil dengan liang nanorod yang lebih kecil berbanding ZnO tulen. Daripada spektroskopi 

raman, ZnO terdop-La pada 1 mol% menghasilkan keamatan puncak terbaik dengan 

kecacatan yang lebih sedikit. Difraksi sinar-X (XRD) mendedahkan bahawa saiz struktur 

kristal berkurangan, antara 23.626 nm hingga 27.089 nm apabila memasukkan La ke dalam 

kekisi ZnO. Pengukuran optik ultraungu daripada spektrometer (UV-Vis) menunjukkan 

peningkatan penyerapan dalam ZnO terdop La dengan nilai transmisi di antara 18.03% 

hingga 79.7% dan jurang jalur antara 2.90 eV hingga 3.39 eV. Mengikut pengukuran IV, 1 

mol% ZnO berdop La pada masa pertumbuhan selama 9 jam menghasilkan kekonduksian 

terbaik dengan 5.46 S/m menjadikan kepekatan dan masa pertumbuhan tersebut adalah 

ideal bagi pengedopan La ke dalam ZnO. Berikutan ini, 1 mol% selama 9 jam telah dipilih 

sebagai ETL untuk kajian SCAPS-1D dengan menggunakan jurang jalur dan parameter 

pekali penyerapan yang diperoleh daripada eksperimen. CH3NH3PbI3 digunakan sebagai 

lapisan penyerap, Cu2O sebagai HTL, ITO dan platinum sebagai sentuhan depan dan 

belakang. Penyiasatan ditentukan dengan memvariasikan pelbagai parameter dalam setiap 

lapisan termasuk ketebalan lapisan, kepekatan dopan, ketumpatan kecacatan, pertalian 

elektron, ketumpatan pukal, suhu operasi dan fungsi kerja logam. Daripada simulasi, 

struktur peranti yang dioptimumkan sepenuhnya, ITO/La-ZnO/CH3NH3SnI3/Cu2O/Pt 

mencapai PCE sebanyak 30.70%, membuktikan peningkatan drastik berbanding PCE awal 

sebanyak 19.21% dengan peningkatan sebanyak 59.81%. Oleh itu, kajian ini mencadangkan 

kaedah sintesis hidroterma kos rendah dengan suhu operasi yang rendah, dan menekankan 

teknik pengedopan baharu untuk PSC yang cekap dan bebas plumbum. 
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