

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LANTHANUM-DOPED ZNO NANORODS AS ELECTRON TRANSPORT LAYER IN PEROVSKITE SOLAR CELL

MASTER OF SCIENCE IN ELECTRONIC ENGINEERING

Faculty of Electronics and Computer Technology and Engineering

Master of Science in Electronic Engineering

LANTHANUM-DOPED ZNO NANORODS AS ELECTRON TRANSPORT LAYER IN PEROVSKITE SOLAR CELL

NURUL ALIYAH BINTI ZAINAL ABIDIN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2024

DEDICATION

To my beloved supervisor, my family, my team and my cats

whose constant guidance, love and encouragement have been my strength throughout this academic journey.

Thank you for your support and always believing me.

ABSTRACT

Conventional Electron Transport Layer (ETL) TiO₂ (Titanium dioxide) has been widely used in Perovskite Solar Cells (PSCs) which have produced encouraging Power Conversion Efficiency (PCE), allowing the technology to be highly regarded and propitious. Nevertheless, the recent high demand for energy harvesters in wearable electronics, aerospace and building integration has led to the need for flexible solar cells. However, the conventional TiO₂ ETL layer is less preferred, where a crystallization process at a temperature as high as 450 °C is required, which degrades the plastic substrate. Zinc Oxide nanorods (ZnO NRs) is yet simple and low-cost fabrication may lead the task as ETL, but still suffer from low PCE due to atomic defects vacancy. To delve into the issue, Lanthanum (La) dopant has been introduced as an additive to passivate or substitute the Zn^{2+} vacancies. Pure ZnO nanorods and La-doped ZnO nanorods with different growth time (3.5.7.9 hours) and concentration (1 mol%-4 mol%) were synthesized by hydrothermal method with 90 °C of annealing temperature. The influence of different growth time and La concentration as dopant in terms of structural, optical and electrical properties have been investigated. Scanning electron microspcopy (SEM) revealed that La-doped ZnO produced smooth and stable morphology with less pore of nanorods compared to pure ZnO. From Ramanspectroscopy, La-doped ZnO at 1 mol% produced the best peak intensity with fewer defect peak. X-ray diffraction (XRD) revealed that the size of the crystal structure reduced, ranging from 23.626 nm to 27.089 nm when introducing La into ZnO lattice. The optical measurement from ultraviolet visible spectrometer (UV-Vis) indicates an enhancement of absorption in La-doped ZnO with transmittance value lies between 18.03% to 79.7% and direct bandgap between 2.90 eV to 3.39 eV. According to IV-measurement, 1 mol% of Ladoped ZnO at 9 hours of growth time produced the best conductivity with 5.46 S/m making it the ideal concentration and growth time of La doped into ZnO. Following this, 1 mol%-9 hours was chosen as the ETL for SCAPS-1D study by applying its bandgap and absorption coefficient parameters obtained from the experiment. CH₃NH₃PbI₃ (methylammonium lead iodide) was used as the absorber layer, Cu₂O (copper (I) oxide) as Hole Transport Layer (HTL), Indium Tin Oxide (ITO) and platinum as front and back contact. The investigation was determined by varying various parameters within each tuned layer including layer thickness, doping concentration, defect density, electron affinity, bulk density, operating temperature and metal work function. From the simulation, the fully optimized device structure, ITO/La-ZnO/CH₃NH₃SnI₃/Cu₂O/Pt attained a PCE of 30.70%, proving a drastic improvement over the initial PCE of 19.21% by 59.81%. Therefore, this study proposes a low-cost hydrothermal synthesis method with a low operating temperature, and emphasizes novel doping techniques for efficient, lead-free PSC.

ROD NANO ZNO DOPAN LANTHANUM SEBAGAI LAPISAN PENGANGKUTAN ELEKTRON DALAM SEL SOLAR PEROVSKITE

ABSTRAK

Lapisan Pengangkutan Elektron Konvensional (ETL) TiO₂ telah digunakan secara meluas dalam Sel Suria Perovskite (PSC) yang menghasilkan Kecekapan Penukaran Kuasa (PCE) yang menggalakkan, membolehkan teknologi itu dipandang tinggi. Namun begitu, permintaan tinggi baru-baru ini untuk penuai tenaga dalam elektronik boleh pakai, aeroangkasa dan integrasi bangunan telah membawa kepada keperluan untuk sel solar yang fleksibel. Walau bagaimanapun, lapisan TiO_2 ETL konvensional kurang dipilih, di mana proses penghabluran pada suhu setinggi 450 °C yang diperlukan, merosakkan substrat plastik. Zinc Oxide nanorods (ZnO NRs) yang mudah dengan kos fabrikasi rendah mungkin dipilih sebagai ETL, tetapi masih mengalami PCE yang rendah kerana kekosongan kecacatan atom. Untuk menyelidiki isu ini, Lanthanum (La) dopan telah diperkenalkan sebagai bahan tambahan untuk memasifkan atau menggantikan kekosongan Zn^{2+.} Nanorod ZnO tulen dan ZnO terdop La dengan masa pertumbuhan (3,5,7,9 jam) dan kepekatan (1 mol%-4 mol%) berbeza telah disintesis melalui kaedah hidroterma dengan 90 °C suhu penyepuhlindapan. Pengaruh masa pertumbuhan yang berbeza dan kepekatan La sebagai dopan dari segi sifat struktur, optik dan elektrik telah disiasat. Pengimbasan mikroskop elektron (SEM) mendedahkan bahawa ZnO terdop La menghasilkan morfologi licin dan stabil dengan liang nanorod yang lebih kecil berbanding ZnO tulen. Daripada spektroskopi raman, ZnO terdop-La pada 1 mol% menghasilkan keamatan puncak terbaik dengan kecacatan yang lebih sedikit. Difraksi sinar-X (XRD) mendedahkan bahawa saiz struktur kristal berkurangan, antara 23.626 nm hingga 27.089 nm apabila memasukkan La ke dalam kekisi ZnO. Pengukuran optik ultraungu daripada spektrometer (UV-Vis) menunjukkan peningkatan penyerapan dalam ZnO terdop La dengan nilai transmisi di antara 18.03% hingga 79.7% dan jurang jalur antara 2.90 eV hingga 3.39 eV. Mengikut pengukuran IV, 1 mol% ZnO berdop La pada masa pertumbuhan selama 9 jam menghasilkan kekonduksian terbaik dengan 5.46 S/m menjadikan kepekatan dan masa pertumbuhan tersebut adalah ideal bagi pengedopan La ke dalam ZnO. Berikutan ini, 1 mol% selama 9 jam telah dipilih sebagai ETL untuk kajian SCAPS-1D dengan menggunakan jurang jalur dan parameter pekali penyerapan yang diperoleh daripada eksperimen. CH₃NH₃PbI₃ digunakan sebagai lapisan penyerap, Cu₂O sebagai HTL, ITO dan platinum sebagai sentuhan depan dan belakang. Penyiasatan ditentukan dengan memvariasikan pelbagai parameter dalam setiap lapisan termasuk ketebalan lapisan, kepekatan dopan, ketumpatan kecacatan, pertalian elektron, ketumpatan pukal, suhu operasi dan fungsi kerja logam. Daripada simulasi, struktur peranti yang dioptimumkan sepenuhnya, ITO/La-ZnO/CH₃NH₃SnI₃/Cu₂O/Pt mencapai PCE sebanyak 30.70%, membuktikan peningkatan drastik berbanding PCE awal sebanyak 19.21% dengan peningkatan sebanyak 59.81%. Oleh itu, kajian ini mencadangkan kaedah sintesis hidroterma kos rendah dengan suhu operasi yang rendah, dan menekankan teknik pengedopan baharu untuk PSC yang cekap dan bebas plumbum.

ACKNOWLEDGEMENT

In the Name of Allah, the Most Gracious, the Most Merciful.First and foremost, I would like to take this opportunity to express my sincere acknowledgement to my supervisor, Ts. Dr Faiz Arith, whose guidance and support have been absolutely crucial throughout this journey. Your insights and encouragement have made all the difference, helping me navigate through challenges in every step of this journey.

I'm also grateful to my research team for their invaluable assistance and encouragement. Their expertise and willingness to lend a hand have been immensely appreciated.

To my family, I owe a debt of gratitude for their unwavering love and support. Their patience and understanding have been a constant source of strength, keeping me motivated even during the toughest times.

Finally, I am grateful to all those who have directly or indirectly contributed to this research, no matter how big or small their role. Your support and contributions have made this achievement possible. May Allah bless you always!

Thank you.

Nurul Aliyah

TABLE OF CONTENTS

DECLARATION	
APPROVAL	
DEDICATION	
ABSTRACT	i
ABSTRAK	ii
ACKNOWLEDGEMENT	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vii
LIST OF FIGURES	ix
LIST OF ABBREVIATIONS	xvi
LIST OF SYMBOLS	xix
LIST OF APPENDICES	xxii
LIST OF PUBLICATIONS	xxiii

CHAPTER

CHA	APIER	1 AV P.	
1	INT	PODUCTION	1
1.		Background	1
	1.1	Droblem Statement	1
	1.2	Pasaarch Question	2
	1.5	Research Objective	J 4
	1.4	Scope of Research	4
	1.5	Thesis Outline	+ 6
	1.0	Thesis Outline	0
2.	LIT	ERATURE REVIEW C	8
	2.1	Introduction	8
		2.1.1 Solar Cells	8
	2.2	Emerging Perovskite Photovoltaic ALAYSIA MELAKA	11
		2.2.1 PSC working principle	18
	2.3	PSC ETL characteristics	20
		2.3.1 Metal oxide as ETL materials in PSC	21
		2.3.2 Titanium dioxide (TiO ₂)	22
		2.3.3 Tin Oxide (SnO ₂)	25
		2.3.4 Barium Stannate (BaSnO ₃)	26
		2.3.5 Tungsten Oxide (WO ₃)	28
		2.3.6 Indium Oxide (In_2O_3)	30
		2.3.7 Zinc Oxide (ZnO)	32
		2.3.7.1 ZnO Nanostructures	34
	2.4	Fabrication Techniques in ZnO Growth Process	35
		2.4.1 Hydrothermal	36
		2.4.2 Sol-gel spin coating	37
		2.4.3 Sputtering	39
		2.4.4 Atomic layer deposition	40
	2.5	Influences of Dopants on ZnO as ETL in PSC	41
		2.5.1 Aluminium doped ZnO (ZnO:Al)	43

	2.6	 2.5.2 Silver doped ZnO (ZnO: Ag) 2.5.3 Iodine doped ZnO (ZnO: I) 2.5.4 PbX₂ doped ZnO (ZnO: PbX₂) Recent Advances and Future Perspective 2.6.1 Lanthanum doped ZnO (ZnO: La) 2.6.2 Doping elements of ZnO-ETL in PSC and other doping elements 	45 47 49 51 52 s in
	0.7	other solar cells	56
	2.7	Summary	61 64
2	ME		((
5.	31	Introduction	68
	3.2	Synthesis of Pure ZnO and La-doped ZnO NRs ETL	69
		3.2.1 Cleaning process	62
		3.2.2 Seeding process of pure ZnO and La-doped ZnO NRS	70
		3.2.3 Growth process of Pure ZnO and La-doped ZnO NRS	72
	3.3	Equipment and materials used in fabrication	76
	3.5	Simulation of Perovskite Solar Cell (PSC)	80
		3.5.1 SCAPS 1D Software	80
		3.5.2 Design Structure Simulation of PSC based La-doped ZnO ETL	85
		3.5.5 La-doped ZnO ETL in Simulated PSC	80 87
		3.5.4 Various III Es in Simulated PSC based La-doped ZhO ETL 3.5.5 Absorber layers in Simulated PSC based La-doped ZnO ETL	88
		3.5.6 Interface defect density in PSC	89
	3.6.	Summary	90
4	DEG	NULT AND DISCUSSION (FAPPICATION)	01
4.	KE S 4 1	Introduction	91 91
	$\frac{4.1}{4.2}$	Structural Characterization CAL MALAYSIA MELAKA	92
	1.2	4.2.1 Scanning Electron Microscopy (SEM)	92
		4.2.2 Raman Spectroscopy	100
		4.2.3 X-ray diffraction (XRD)	105
	4.3	Optical Characterization	116
		4.3.1 Absorbance and transmittance spectra of UV-Vis analysis	117
		4.3.2 Band gap analysis	124
	4.4	Electrical Characterization	128
	4.5	4.4.1 Keithley 2401 Source Meter analysis	129
	4.5	Summary	134
5.	RES	SULT AND DISCUSSION (SIMULATION)	136
	5.1	Introduction	136
	5.2	Optimization of La-ZnO as ETL in PSC	137
		5.2.1 Effect of changing ETL donor doning density. N	138
		5.2.2 Effect of changing ETL (Absorber interface defect density, ND	139
		5.2.5 Effect of changing electron affinity v_{men}	140
		J.2.7 Effect of changing election armity, XETL	174
		v	

	5.3	Optimization of HTL in PSC	145
		5.3.1 Effect of changing HTL thickness	146
		5.3.2 Effect of changing HTL acceptor doping density, N _A	147
		5.3.3 Effect of changing Absorber/HTL interface defect density	149
		5.3.4 Effect of changing electron affinity, X _{HTL}	150
		5.3.5 Different HTL materials in PSC	153
	5.4	Optimization of the absorber layer	157
		5.3.1 Effect of changing absorber layer thickness	158
		5.3.2 Effect of changing absorber layer doping density	159
		5.4.3 Effect of changing absorber layer bulk defect density	160
		5.4.4 Different absorber material in PSC	163
	5.5	Effect of changing back contact work function, φ	165
	5.6	Effect of changing temperature on PSC	168
	5.7	Final optimization of PSC	169
	5.8	Summary	171
6.	CO	NCLUSION AND RECOMMENDATIONS FOR FUTURE	
	RES	SEARCHALAYSIA	173
	6.1	Conclusion	153
	6.2	Recommendation for future research	175
_			
REF	EREN	CES	177
APP	PENDI		219
		AIND	
		All in the second second	
		اويوم سيى بياسيان سيسيا سرد	

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1	Basic properties of ZnO	33
Table 2.2	Lanthanum as dopant in solar cells application	54
Table 2.3	La-doped ZnO in other application	55
Table 2.4	Summary of ZnO doped in PSCs	58
Table 2.5	Summary of other ETL doped in PSCs	59
Table 2.6	Impacted factors on PCE for various types of dopants in ZnO E PSC	TL- 64
Table 3.1	List of equipment used in fabrication	76
Table 3.2	List of materials used in fabrication	76
Table 3.3	Basic parameters of the device structure	86
Table 3.4	Basic parameters of various HTLs	88
Table 3.5	Parameters for different absorber layers	89
Table 3.6	Interface defect density in PSC simulation	90
Table 4.1	Structural dimension of pure ZnO NRs and 1 mol% to 4 mo concentration of La-doped ZnO NRs samples	ol% 99
Table 4.2	Values of the structural parameters of pure ZnO and 1-4 mol% doped ZnO calculated at peak (002) with a growth time of 3 hou	La- urs 112
Table 4.3	Values of the structural parameters of pure ZnO and 1-4 mol% doped ZnO calculated at peak (002) with a growth time of 5 hou	La- urs 112
Table 4.4	Values of the structural parameters of pure ZnO and 1-4 mol% doped ZnO calculated at peak (002) with a growth time of 7 hor	La- urs 113
Table 4.5	Values of the structural parameters of pure ZnO and 1-4 mol% doped ZnO calculated at peak (002) with a growth time of 9 hor	La- irs 113
Table 4.6	XRD analysis comparison of La-doped ZnO from our work previous studies	and 116
Table 4.7	Transmittance values for all samples at 700 nm wavelength vii	123

Table 4.8	Band gap energy, $E_g(eV)$, Urbach energy, $E_u(meV)$, and R^2 value for all samples at different growth time	or 125
Table 4.9	Electrical properties of pure ZnO and La-doped ZnO samples	129
Table 4.10	Conductivity comparison of La-doped ZnO from our work wi previous studies	th 135
Table 5.1	Calculated CBO for different electron affinity, χ_{ETL} of La-ZnO	142
Table 5.2	Calculated VBO for different electron affinity, χ_{HTL} of Cu ₂ O	150
Table 5.3	Effect of E_{c_ETL} - E_{v_HTL} , qVbi, Voc, Jsc, FF, and PCE on differe HTLs in PSC	nt 154
Table 5.4	Compilation of parameters optimization from all sections	170
Table 5.5	Simulation comparison of other doping materials with ZnO as ET	ΈL 172
	اونيومرسيتي تيكنيكل مليسيا ملاك	

```
UNIVERSITI TEKNIKAL MALAYSIA MELAKA
```

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.1	Net renewable power capacity growth by technology. Data derived by International Renewable Energy Agency report	1 9
Figure 2.2	Silicon, perovskite, and perovskite–silicon tandem devices efficiency evolution over the past decade, published by Nationa Renewable Energy Laboratory	s 1 11
Figure 2.3	Basic schematic diagram of PSC: (a) Hole Transport Layer, (b) Perovskite Layer, (c) Electron Transport Layer, (d) FTO/ITO coated glass, and (e) front contact) 1 13
Figure 2.4	Enhancement of Voc in PSC through the reduction of the HOMC energy level in the HTL and optimization of the charge carrier mobility ratio) r 14
Figure 2.5	(a) Diffusion of particles moving into the low-density area causes concentration gradient to exist, (b) Shorter diffusion length caused by high recombination rate of particles, (c) Longer diffusion length caused by low recombination rate of particles	s 1 1 18
Figure 2.6	Generic structure of PSC for achieving optimal efficiency based or energy levels of materials from each layers	n 18
Figure 2.7	Schematic of the operational principle of PSC	19
Figure 2.8	Summary of energy level of metal oxide materials as ETL and perovskite	1 22
Figure 2.9	J-V characteristics of PSC based on (a) Bare TiO ₂ , (b) 1% Mg-doped TiO ₂ , (c) 2% Mg-doped TiO ₂ , (d) 3% Mg-doped TiO ₂	1 24
Figure 2.10	Material images of (a) AFM for bare SnO_2 , (b) AFM for Ni-doped SnO_2 , (c) SEM for bare SnO_2 and (d) SEM for Ni-doped SnO_2	1 26
Figure 2.11	(a) Cross-sectional view of SEM images from La-doped BSO in PSC, (b) J-V curves of La-doped BSO in PSC under AM 1.5 illumination	n 5 28
Figure 2.12	(a) IPCE curves of pristine TiO ₂ and 0.3%mol W-doped TiO ₂ , (b) IV curve of PSC with different W concentrations and (c) Reverse and forward direction of IV curve) e 30

Figure 2.13	FE-SEM images of the In_2O_3 belt-like products annealed at (a) 550 °C, (b) 600 °C, (c) 700 °C, (d) 800 °C and (e) 900 °C) 31
Figure 2.14	ZnO various morphologies from SEM images of ZnO nanostructures: (a), (b) tetrapod structures; (c) variable diameter structures; (d) nanosheets; (e) nanoshells; (f) multipods; (g), (h), and (i) nanorods	1 35
Figure 2.15	Schematic diagram of ZnO NRs hydrothermal process	37
Figure 2.16	Sol-gel spin coating in ZnO growth process	38
Figure 2.17	A schematic of the ZnO RF magnetron sputtering system	39
Figure 2.18	ZnO Atomic Layer Deposition synthesis schematic illustration	40
Figure 2.19	Schematic image of ZnO^{2+} cation substitution or passivation in the doping engineering process with Lanthanum as addictive dopant	e 43
Figure 2.20	Schematic representation of growth process of ZnO and AZO films by ALD	3 45
Figure 2.21	 (a) Functional of rGO/Ag-doped (1wt%)bilayer ETL of PSC ZnO. (b) J-V characteristics of Ag-doped and rGO/Ag-doped ZnO (1wt%) 	,) 46
Figure 2.22	Schematic illustration of the PSC configuration, in which a dense and homogeneous perovskite cap layer completely covers the ZnO: I nanopillars	e : 49
Figure 2.23	(a) Energy level alignment of ETLs and the Perovskite Layer (b) Visualization of the impact of enhanced oxygen vacancy in PbX_{22} ZnO) : 51
Figure 2.24	Current status of PCE ETL with doped-ZnO and undoped-ZnO in PSC with different fabrication techniques in the last decades	1 57
Figure 2.25	Summary of infected factors on PCE for various types of dopant in ZnO ETL-PSC	63
Figure 3.1	Flowchart of the research incorporate with objective 1,2 and 3	67
Figure 3.2	Hydrothermal schematic process of ZnO and La-doped ZnO	68
Figure 3.3	Cleaning process in ultrasonic bath	69
Figure 3.4	Substrates drying on the hot plate	69

Figure 3.5	Three beakers labelled as, A 60 ml (ethanol + ZnA), beaker B 60 ml (ethanol + NaOH) and beaker C 60 ml (ethanol)	71
Figure 3.6	Adding 1 ml of chemical solution B to the mixed chemical solution (A+C) every minute	71
Figure 3.7	a) Double boil process for chemical solution A+B+C on a hotplate at 60 $^{\circ}$ C for 3 hrs, b) Drop chemical solutions on SLG at 90 $^{\circ}$ C	72
Figure 3.8	Beaker D (4.4624 g of ZnH+ 2.286 g of La-doped ZnO + 250 ml of DI water) and beaker E (2.1029 g of HMT + 250 ml of DI water)	75
Figure 3.9	Samples annealing process in the oven at 90 °C	75
Figure 3.10	Substrates in powder form after the growth process	75
Figure 3.11	Equipment used in characterization a) Scanning electron microscopy (SEM); b) X-ray diffraction (XRD); c) Ultraviolet-visible spectroscopy (UV-vis); d) I-V characteristics (Keithley 2401 source meter) and e) Raman spectroscopy	79
Figure 3.12	Action panel of SCAPS 1D software	81
Figure 3.13	Definition panel of SCAPS 1D software	81
Figure 3.14	Layer properties of SCAPS 1D software	82
Figure 3.15	Output panel generated from SCAPS 1D software	82
Figure 3.16	Flowchart of SCAPS 1D simulation	84
Figure 3.17	Energy level diagram of each layer in simulated PSC	85
Figure 4.1	SEM images of a) Pure ZnO, b) 1 mol% of La-doped ZnO c) 2 mol% of La-doped ZnO d) 3 mol% of La-doped ZnO e) 4 mol% of La-doped ZnO annealed at 90 °C for 3 hours of growth time on glass substrate	95
Figure 4.2	SEM images of a) Pure ZnO, b) 1 mol% of La-doped ZnO c) 2 mol% of La-doped ZnO d) 3 mol% of La-doped ZnO e) 4 mol% of La-doped ZnO annealed at 90 °C for 5 hours of growth time on glass substrate	96
Figure 4.3	SEM images of a) Pure ZnO, b) 1 mol% of La-doped ZnO c) 2 mol% of La-doped ZnO d) 3 mol% of La-doped ZnO e) 4 mol% of La-doped ZnO annealed at 90 °C for 7 hours of growth time on glass substrate	97

Figure 4.4	SEM images of a) Pure ZnO, b) 1 mol% of La-doped ZnO c) 2 mol% of La-doped ZnO d) 3 mol% of La-doped ZnO e) 4 mol% of La-doped ZnO annealed at 90 °C for 9 hours of growth time on glass substrate 98
Figure 4.5	Raman shift images of pure ZnO and La-doped ZnO (1mol%-4 mol% concentration) annealed at 90 °C for 3 hours of growth time on glass substrate 100
Figure 4.6	Raman shift images of pure ZnO and La-doped ZnO (1mol%-4 mol% concentration) annealed at 90 °C for 5 hours of growth time on glass substrate 101
Figure 4.7	Raman shift images of pure ZnO and La-doped ZnO (1mol%-4 mol% concentration) annealed at 90 °C for 7 hours of growth time on glass substrate 101
Figure 4.8	Raman shift images of pure ZnO and La-doped ZnO (1mol%-4 mol% concentration) annealed at 90 °C for 9 hours of growth time on glass substrate 101
Figure 4.9	Raman shift images for 1 mol% of La-doped ZnO annealed at 90 °C for 3,5,7, and 9 hours of growth time on soda lime glass substrate 102
Figure 4.10	XRD analysis; a) Patterns of pure ZnO and La-doped ZnO NRs and b) the corresponding peak positions of (100), (002), and (101) planes for both ZnO and La-doped ZnO NRs at 3 hours of growth time and annealed at 90 °C 106
Figure 4.11	XRD analysis; a) Patterns of pure ZnO and La-doped ZnO NRs and b) the corresponding peak positions of (100), (002), and (101) planes for both ZnO and La-doped ZnO NRs at 5 hours of growth time and annealed at 90 $^{\circ}$ C 107
Figure 4.12	XRD analysis; a) Patterns of pure ZnO and La-doped ZnO NRs and b) the corresponding peak positions of (100), (002), and (101) planes for both ZnO and La-doped ZnO NRs at 7 hours of growth time and annealed at 90 $^{\circ}$ C 108
Figure 4.13	XRD analysis; a) Patterns of pure ZnO and La-doped ZnO NRs and b) the corresponding peak positions of (100), (002), and (101) planes for both ZnO and La-doped ZnO NRs at 9 hours of growth time and annealed at 90 $^{\circ}$ C 109
Figure 4.14	Relationship between grain size and micro strain XRD analysis from our work and previous studies 115

Figure 4.15	Absorbance and transmittance of samples during 3 hours of grow time at 90 °C annealing temperature from wavelength 330-700 nm	th 118
Figure 4.16	Absorbance and transmittance of samples during 5 hours of grow time at 90 °C annealing temperature from wavelength 330-700 nm	th 119
Figure 4.17	Absorbance and transmittance of samples during 7 hours of grow time at 90 °C annealing temperature from wavelength 330-700 nm	th 120
Figure 4.18	Absorbance and transmittance of samples during 9 hours of grow time at 90 °C annealing temperature from wavelength 330-700 nm	th n 121
Figure 4.19	Transmittance values for all samples from different I concentrations and different growth times at 700 nm wavelength	La 124
Figure 4.20	Tauc plot band gap energy for all samples	125
Figure 4.21	Influence of doping on band tailing and Urbach Energy in La-dope ZnO	ed 126
Figure 4.22	Comparison of Band gap energy, $E_g(eV)$ and Urbach energ $E_u(meV)$, of pure ZnO and La-doped ZnO at different concentration oncentrations and growth time	y, on 127
Figure 4.23	Average electrical resistivity and conductivity of pure ZnO and L doped ZnO (1 mol%-4 mol%) at 3 hours of growth time	a- 130
Figure 4.24	Average electrical resistivity and conductivity of pure ZnO and L doped ZnO (1 mol%-4 mol%) at 5 hours of growth time	a- 131
Figure 4.25	Average electrical resistivity and conductivity of pure ZnO and L doped ZnO (1 mol%-4 mol%) at 7 hours of growth time	a- 131
Figure 4.26	Average electrical resistivity and conductivity of pure ZnO and L doped ZnO (1 mol%-4 mol%) at 9 hours of growth time	a- 132
Figure 4.27	Correlation between crystallite size, average resistivity, and average conductivity in our work at various concentrations during 9 hours of growth time	ge of 133
Figure 4.28	Comparative analysis of conductivity against annealing temperatu of our work to previously reported study	re 135
Figure 5.1	Schematic diagram of the PSC	137
Figure 5.2	Effect of changing La-ZnO ETL thickness from 100 nm-1000 nm σ a) Voc, b) J_{sc} , c) FF and d) PCE	on 138

Figure 5.3	Effect of changing La-ZnO ETL doping density on (a) Voc, (b) J (c) FF, and (d) PCE	sc, 140
Figure 5.4	Effect of changing La-ZnO ETL interface defect density on (a) Ve (b) Jsc, (c) FF, and (d) PCE	oc, 141
Figure 5.5	Effect on output parameters by changing electron affinity, χ_{ETL} CBO	on 143
Figure 5.6	Energy band diagram representation of ETL/absorber interfabarriers (a) Cliff, (b) Flat, (c) Optimum spike, and d) Spike	ice 145
Figure 5.7	Effect of changing Cu2O HTL thickness from 100 nm-1000 nm (a)Voc, (b) Jsc, (c) FF and (d) PCE	on 146
Figure 5.8	Effect of changing Cu2O doping density, NA on (a) Voc, (b) Jsc, FF, and (d) PCE	(c) 148
Figure 5.9	Effect of changing Cu2O defect density, Nt on (a) Voc, (b) Jsc, FF, and (d) PCE.	(c) 150
Figure 5.10	Effect on output parameters by changing electron affinity, χ_{HTL} VBO	on 151
Figure 5.11	Energy band diagram representation of HTL/absorber interfabarriers (a) Cliff, (b) Spike, and (c) Optimum cliff	ice 153
Figure 5.12	Voc, J _{sc} , FF, and PCE of different HTLs in PSC	154
Figure 5.13	Energy band diagram of various HTLs qVbi in PSC a) Cu ₂ O, CuSCN, c) Spiro-OMeTAD, d) CuI and e) P3HT	b) 156
Figure 5.14	Effect of changing CH3NH3PbI3 thickness from 100 nm-1000 n on (a) Voc, (b) Jsc, (c) FF and (d) PCE	nm 158
Figure 5.15	Effect of changing CH3NH3PbI3 doping density on (a) Voc, (b) J (c) FF, and (d) PCE.	sc, 160
Figure 5.16	Effect of changing CH ₃ NH ₃ PbI ₃ defect density on a) Voc, b) Jsc, FF, and d) PCE.	c) 161
Figure 5.17	Effect of changing $CH_3NH_3PbI_3$ absorber layer bulk defect dens on a) Total recombination rate and b) Diffusion length (<i>L</i>)	ity 162
Figure 5.18	Voc, J_{sc} , FF, and PCE of different absorber layers in PSC	163
Figure 5.19	Simulated QE curves for absorber layers in PSC	164

Figure 5.20	<i>J-V</i> characteristics of different Pt φ in PSC	166
Figure 5.21	Effect of changing Pt ϕ on FF and PCE in PSC	166
Figure 5.22	Simulated energy band diagram for Pt ϕ at a) 4.45 eV and b) 5. eV	65 167
Figure 5.23	Effect of changing temperature on a) Voc, b) Jsc, c) FF, and d) PO	CE 168
Figure 5.24	Final device structure of PSC	171

Figure 5.25 Comparative analysis of SCAPS 1D simulation for doping materials in ZnO against PCE of our work with previously reported study 172

LIST OF ABBREVIATIONS

ETL	-	Electron transport layer
HTL	-	Hole transport layer
PCE	-	Power conversion efficiency
PSC	-	Perovskite solar cell
TiO ₂	-	Titanium dioxide
ITO		Indium Tin Oxide
ZnO	_ 	Zinc Oxide
NRs MAL	-	Nanorods
La	-	Lanthanum
SEM	-	Scanning Electron Mircoscopy
XRD WANNO	-	X-ray diffraction
UV-Vis		UV-visible spectroscopy
IEA	-	International Energy Agency
PV	SIT	Photovoltaic
DSSCs	-	Dye-sensitize solar cells
QD	-	Quantum dots
AgNPs	-	Silver nanoparticles
MEA	-	Monoethanolamine
CuI	-	Copper (I) iodide
НОМО	-	Highest occupied molecular orbital
LUMO	-	Lowest occupied molecular orbital
SnO ₂	_	Tin Oxide

BaSnO ₃	-	Barium Stannate
WO ₃	-	Tungsten Oxide
In ₂ O ₃	-	Indium Oxide
ALD	-	Atomic layer deposition
СВ	-	Conduction band
VB	-	Valence band
Zn	-	Zinc
Al	-	Aluminium
Ag	-	Silver
rGO	AYS/	Reduced graphene oxide
I	-	Iodine
LAR	-	Low aspect ratio
Zn(O ₂ CCH ₃)2.2H ₂ O	-	Zinc acetate dihydrate
NaOH	-	Sodium hydroxide
(CH ₂)6N ₄		Hexamethylenetetramine
Zn(NO ₃)2.6H ₂ O	SIT	Zinc nitrate hexahydrate AYSIA MELAKA
DI	-	Deionized water
La(NO ₃) ₃ .6H ₂ O	-	Lanthanum nitrate hydrate
SLG	-	Soda lime glass
SCAPS 1D	-	Solar Cell Capacitance Simulator Program
CH ₃ NH ₃ PbI ₃	-	Methylammonium lead halide
CH ₃ NH ₃ SnI ₃	-	Methylammonium tin halide
Cu ₂ O	-	Copper(I) oxide copper
CuSCN	-	Copper(I) thiocyanate

РЗНТ	-	Poly 3-Hexylthiophene
Pt	-	Platinum
ТО	-	Transverse optical phonons
LO	-	Longitudinal optical phonons
FWHM	-	Full width at half maximum
Voc	-	Open circuit voltage
Jsc	-	Short-circuit voltage
FF	-	Fill Factor
СВО	-	Conduction band offset
VBO	LAYSI	Valence band offset
VBM	-	Valence band maximum
Vbi	1	Built-in potential
SRH	-	Shockley-Read Hall
QE	(n	Quantum efficiency
Ni allo	سيبا	اونيۇم سىتى تىكنىڭNicke

In UNIVERSIT Indium NIKAL MALAYSIA MELAKA

Ga	- Gallium
Ce	- Cerium
Dy	- Dysprosium
Nd	- Neodymium
Er	- Erbium
DFT	- Density Functional Theory

LIST OF SYMBOLS

Je	- Electron current density
q	- Elementary charge
De	- Diffusion coefficient of electron
Jh	Hole current density
Dh	- Diffusion coefficient of hole
g/mol	- Molecular mass
°C	- Temperature
mol%	Mole percent concentration of a component in a mixture
Eg (eV)	- Bandgap energy
X (eV)	Electron affinity
E / E _o	- Dielectric permittivity
N _c	Effective density of states of conduction band
\mathbf{N}_{v}	- Effective density of states of valence band
V _e U	Thermal velocity of electron
V_h	- Thermal velocity of holes
μ_{e}	- Electron Mobility
μ_{h}	- Hole mobility
N _D	- Density of donor
N _A	- Density of acceptors
μm	- Micrometer
λ	- X-ray wavelength

β		-	Full width at half maximum
20		-	Bragg diffraction angle
3		-	Lattice strain
δ		-	Dislocation density
Α		-	Absorbance
Т		-	Transmittance
ρ		-	Average resistivity
σ		-	Average conductivity
α		-	Absorption coefficient
d	L H	A.LA	Film thickness
σ_n	New York	-	Capture cross-sections for electrons
σ_p	E	- 1	Capture cross-sections for holes
v	T. ada	-	Electron thermal velocity
N_T	shi	i i	Atomistic defect concentration
n_i	ملاك		Intrinsic carrier density
n_1	UNIVE	RS	Concentrations of electrons in trap defect and valence band
p_1		-	Concentrations of holes in trap defect and valence band
R ^{SH}		-	Shockley-Read Hall recombination
$ au_{lifetin}$	ne	-	Carrier lifetime
K_B		-	Boltzmann constant
μ		-	Mobility of the charge carriers
q		-	Fundamental unit charge
L		-	Diffusion length
E_a		-	Activation energy